
ANNALES

POLONICI MATHEMATICI

LVI.2 (1992)

The existence of bounded solutions
for differential equations in Hilbert spaces

by B. Przeradzki ( Lódź)

Abstract. The existence of bounded solutions for equations x′ = A(t)x + r(x, t)
is proved, where the linear part is exponentially dichotomic and the nonlinear term r
satisfies some weak conditions.

Introduction. We shall deal with the nonlinear differential equations
of the form

(1) x′ = A(t)x+ r(x, t)

where A : R → L(H) is a continuous function taking values in the space
L(H) of bounded linear operators in a Hilbert space H and r : H × R→ H
is a nonlinear continuous mapping. We shall assume that the linear equation
x′ = A(t)x is exponentially dichotomic, hence there exists the Main Green
Function G : R→ L(H) such that

(2) ||G(t, s)|| ≤ Ne−α|t−s|

for all t, s ∈ R, where N and α are some positive constants. The bounded so-
lutions of (1) are the fixed points of the following operator S : BC(R, H)→
BC(R, H):

(3) Sx(t) :=
∞∫
−∞

G(t, s)r(x(s), s) ds

where BC(R, H) denotes the space of all bounded continuous functions x :
R→ H.

First, we shall consider the assumptions on r that yield the compactness
of S. We need a criterion for compactness of sets in the space BC(R, E) (we
replace the Hilbert space H by an arbitrary Banach space E since the result
is of independent interest). Then we pass to other assumptions which imply
that S is ultimately compact (in the sense of Sadovskĭı [5]). We apply the
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appropriate degree theories in both cases: the Leray–Schauder theory and
the Sadovskĭı theory.

The second part of the paper is devoted to finding a priori bounds for
fixed points of λS (λ ∈ [0, 1]), under various assumptions on r (and, ob-
viously, on A). Only for this purpose do we need a scalar product in the
space.

1. Compact subsets of BC(R, E). Let E be a Banach space and let
BC(R, E) be the space of all bounded continuous functions x : R→ E with
the norm

(4) ||x||∞ := sup
t∈R
||x(t)|| .

It is evident that BC(R, E) is a Banach space.

Theorem 1. For a set D ⊂ BC(R, E) to be relatively compact , it is
necessary and sufficient that :

1o {x(t) : x ∈ D} is relatively compact in E for any t ∈ R,
2o for each a > 0, the family Da := {x|[−a, a] : x ∈ D} is equicontinuous,
3o D is stable at ±∞, i.e. for any ε > 0, there exist T > 0 and δ > 0

such that if ||x(T ) − y(T )|| ≤ δ then ||x(t) − y(t)|| ≤ ε for t ≥ T and if
||x(−T )− y(−T )|| ≤ δ then ||x(t)− y(t)|| ≤ ε for t ≤ −T where x and y are
arbitrary functions in D.

P r o o f. Sufficiency. Suppose that conditions 1o–3o hold and take ε > 0.
We shall construct a finite ε-net of D.

Let T and δ be positive constants chosen for ε by 3o and δ ≤ ε. By 1o, we
can find finite δ-nets: x1(T ), . . . , xp(T ) in {x(T ) : x ∈ D} and y1(−T ), . . .
. . . , yr(−T ) in {x(−T ) : x ∈ D}. Repeating the proof of the General Ascoli–
Arzelà Theorem, we get a finite δ-net of the relatively compact set DT ⊂
C([−T, T ], E) consisting of functions z1, . . . , zs which take one of the values
yj(−T ), j = 1, . . . , r, at −T , and one of the values xi(T ), i = 1, . . . , p, at T .
Then it is obvious that the set of all continuous functions R→ E which are
obtained by “gluing” yj , zk and xi together is a finite ε-net for D.

Necessity. If D is relatively compact, then 1o and 2o hold, since Da,
a > 0, are relatively compact in C([−a, a], E) and by the General Ascoli–
Arzelà Theorem. Suppose that D is not stable at +∞, for instance, i.e.
there exist ε0 > 0 and sequences (xn), (yn) ⊂ D and (tn) ⊂ R such that

||xn(n)− yn(n)|| ≤ 1/n , ||xn(tn)− yn(tn)|| > ε0 , tn ≥ n ,

for any n ∈ N.
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Since D is relatively compact, it has a finite ε0/4-net z1, . . . , zp. We shall
define w1, . . . , wp ∈ BC(R, E) such that

(5) ||wi(t)− zi(t)|| ≤ ε0/4 , t ∈ R ,
for i ≤ p and

(6) ||wi(n)− wj(n)|| ≥ ε0/8p

for n ∈ N and i 6= j. Let w1 = z1 and assume that w1, . . . , wk have already
been defined. Fix n ∈ N. If (6) is satisfied for i ≤ k and wj replaced by zk+1,
we put hk+1,n = zk+1(n). If not, we choose hk+1,n arbitrarily from the set

B(zk+1(n), ε0/4) \
k⋃
i=1

B(wi(n), ε0/8p)

where B(u, a) (resp. B(u, a)) stands for the open (resp. closed) ball with
centre u and radius a. Then we define a multivalued mapping Φk+1 : R→ 2E

by

Φk+1(t) :=
{
B(zk+1(t), ε0/4), t 6∈ N,
hk+1,n, t = n ∈ N.

Rather simple calculations show that Φk+1 is lower semicontinuous. By the
Michael Selection Theorem it has a continuous selection wk+1 : R→ E. By
induction, we obtain wi, . . . , wp having properties (5) and (6). Obviously,
{w1, . . . , wp} is an ε0/2-net for D.

Let us return to the sequences (xn) and (yn). We can choose a subse-
quence (xnm) contained in an ε0/2-neighbourhood of one element wj . By
(6) and xn(n)− yn(n)→ 0, ynm

is in the same ball for sufficiently large m.
Hence,

||xnm
(t)− ynm

(t)|| ≤ 2 · ε0/2 = ε0

for each t ∈ R, which is impossible for t = tnm .

R e m a r k. It is surprising that the set

(7)
⋃
x∈D

⋃
t∈R

x(t)

need not be relatively compact in E ifD is so inBC(R, E). Counterexamples
are only possible for infinite-dimensional E but are very simple: one-point
sets. However, if x(R) is relatively compact for any x ∈ D and D has the
same property, then the set (7) is also relatively compact.

2. Compactness of the operator S. Now, we consider the nonlinear
integral Hammerstein operator S : BC(R, E) → BC(R, E) given by (3)
where the Green function G : R2 → L(E) satisfies (2) and r : E ×R→ E is
continuous.
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Theorem 2. If , in addition, r has the following properties:

(8) r(·, t) : E → E is completely continuous for any t ∈ R ,
(9) there exists a bounded continuous function b : R → E such that for

any M and ε > 0, there is T > 0 such that ||r(x, t)− b(t)|| ≤ ε where
||x|| ≤M and |t| ≥ T ,

then S is completely continuous.

P r o o f. We shall show that the image of {x ∈ BC(R, E) : ||x||∞ ≤ M}
under S is relatively compact.

First, we prove condition 1o of Theorem 1. Fix t ∈ R and ε > 0. We
shall find a finite ε-net for A := {Sx(t) : ||x||∞ ≤ M}. Choose T > 0 such
that

(10) ||r(x, s)− b(s)|| ≤ α

4N
ε

for ||x|| ≤M and |s| > T . Set

x0(t) =
∫

|s|>T

G(t, s)b(s) ds .

Then x0 ∈ BC(R, E). By (2) and (10)∥∥∥ ∫
|s|>T

G(t, s)(r(x(s), s)− b(s)) ds
∥∥∥ ≤ α

4N
ε
∫
R

Ne−α|t−s| ds =
ε

2
.

Consider B := {
∫
|s|≤T G(t, s)r(x(s), s) ds : ||x||∞ ≤ M}. It is easy to see

that the set {r(x, s) : ||x|| ≤M, |s| ≤ T} is relatively compact ((8) and the
continuity of r). Since G(t, ·) is continuous for s < t and s > t and it has
finite limits as s→ t±, the set

Z := {G(t, s)r(x, s) : ||x|| ≤M , |s| ≤ T}

is also relatively compact. But the integrals in B belong to the convex hull
2T convZ, so there exists a finite ε/2-net of B: x1, . . . , xp. Now, we easily
see that x0 + x1, . . . , x0 + xp constitute an ε-net of A:

||Sx(t)− (x0 + xj)|| ≤
∥∥∥ ∫
|s|≤T

G(t, s)r(x(s), s) ds− xj
∥∥∥

+
∥∥∥ ∫
|s|>T

G(t, s)(r(x(s), s)− b(s))) ds
∥∥∥ ≤ 2

ε

2
= ε .

Now, we prove condition 2o. Fix a > 0, ε > 0, and take T1 from (9) such
that

||r(x, s)− b(s)|| ≤ ||b||∞ + 1, ||x|| ≤M, |s| > T1 .
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Next, we choose T ≥ T1 such that∫
|s|>T

e−α|t−s|ds ≤ ε

3 · 2N(||b||∞ + 1)

for all t ∈ [−a, a]. Let

(11) M1 = sup
|s|≤T, ||x||≤M

||r(x, s)|| .

Since G is uniformly continuous on |t| ≤ a, |s| ≤ T , s > t and on |t| ≤ a,
|s| ≤ T , s < t, there exists δ > 0 such that |t′ − t| ≤ δ implies ||G(t′, s) −
G(t, s)|| ≤ ε/12M1T for any |s| ≤ T and either t, t′ ∈ [−a,min(s, a)) or
t, t′ ∈ (max(s,−a), a]. One can assume that δ ≤ ε/12NM1. Finally, if
||x||∞ ≤M and t, t′ ∈ [−a, a], |t′ − t| ≤ δ, then

||Sx(t′)− Sx(t)|| ≤
∫

|s|≤T, s 6∈[t,t′]

||G(t′, s)−G(t, s)|| · ||r(x(s), s)|| ds

+ 2
∫

|s|≤T, s∈[t,t′]

N ||r(x(s), s)|| ds

+ 2
∫

|s|>T

sup
|t|≤a

||G(t, s)|| ||r(x(s), s)− b(s)|| ds

+ 2
∫

|s|>T

sup
|t|≤a

||G(t, s)|| ||b||∞ ds

≤ 2T
ε

12M1T
M1 + 2δNM1 + (4||b||∞ + 2)N

ε

6N(||b||∞ + 1)
< ε .

It remains to prove condition 3o. Take ε > 0 and T1 > 0 such that

||r(x, s)− b(s)|| ≤ εα

8N
for |s| > T1 and ||x|| ≤ M . Let M1 be given by (11) where T is replaced
by T1. We can find sufficiently large T such that, for |t| ≥ T and |s| ≤ T1,

||G(t, s)|| ≤ Ne−α(T−T1) <
ε

8M1T1
.

For |t| ≥ T and ||x||∞, ||y||∞ ≤M , we have

||Sx(t)− Sy(t)|| ≤ 2
∫

|s|>T1

||G(t, s)|| sup
||x||≤M

||r(x, s)− b(s)|| ds

+ 2
∫

|s|≤T1

||G(t, s)||M1 ds

≤ εα

4N

∫
R

Ne−α|t−s| ds+ 2M1
ε

8M1T1
2T1 = ε .
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We have verified a stronger condition than 3o, namely,

lim
t→±∞

sup
||x||∞,||y||∞≤M

||Sx(t)− Sy(t)|| = 0 .

This ends the proof.

R e m a r k. In fact, we have only needed the following properties of G:
the estimate (2), measurability with respect to the second variable, piecewise
continuity with respect to the first variable.

3. Condensing property of S. One can use many degree theories to
get the solvability of our integral equation. In the case of infinite-dimensional
space E, it is usually effective to apply some measures of noncompactness.

Let ψ be a real nonnegative function defined on the family of all bounded
subsets of a Banach space E having the following properties:

(a) ψ(convX) = ψ(X),
(b) X ⊂ Y ⇒ ψ(X) ≤ ψ(Y ),
(c) ψ(X ∪ Y ) = max(ψ(X), ψ(Y )),
(d) ψ(X + Y ) ≤ ψ(X) + ψ(Y ),
(e) for any ε > 0, there exists δ > 0 such that

diamX ≤ δ implies ψ(X) ≤ ε ,

(f) ψ(X) = 0 if and only if X is relatively compact,
(g) ψ(A(X)) ≤ ||A||ψ(X) for each bounded linear operator A ∈ L(E).

We shall say that ψ is a measure of noncompactness in E.

R e m a r k s. Sadovskĭı’s ([5]) measures of noncompactness have only
property (a) but all functions of this type used in practice are: mono-
tonic (b), semiadditive (c), algebraically subadditive (d), continuous with
respect to the Hausdorff distance at one-point sets (e) and regular (f). For
example, the Kuratowski measure of noncompactness ([3])

α(X) := inf{d > 0 : X = X1 ∪ . . . ∪Xn for some n ∈ N ,
diamXj ≤ d , j = 1, . . . , n} ,

and the Hausdorff measure of noncompactness

β(X) := inf{ε > 0 : X admits a finite ε-net}

have all properties (a)–(g). In the case of Hilbert space with a fixed complete
orthonormal system {en : n ∈ N} one can also consider the function

γ(X) := lim sup
n→∞

sup
x∈X

( ∞∑
k=n

|(x, ek)|2
)1/2

.
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It satisfies (a)–(f), and (g) only for operators A commuting with all pro-
jectors Rn onto Lin{ek : k ≥ n}, the closed linear subspace spanned by
ek, k ≥ n.

Every measure of noncompactness ψ in E induces a function Ψ defined
on the family of bounded subsets of BC(R, E) by

Ψ(D) := ψ{x(t) : x ∈ D, t ∈ R} .

It is easy to see that Ψ has properties (a)–(e) (see [5]; in fact we need
only (a)). Moreover, if Ψ(D) = 0, the functions in D are equicontinuous on
any compact interval and D is stable at ±∞, then D is a relatively compact
subset of BC(R, E).

Let Ω be an open bounded subset of a Banach space E and let S : Ω → E
be a continuous map. Define the following transfinite sequence:

Ω1 := convS(Ω),
Ωα := convS(Ω ∩Ωα−1) if α is a successor ordinal,

Ωα :=
⋂
β<α

Ωβ if α is a limit ordinal .

It is well known ([5]) that there is α such that Ωα = Ωα+1 = . . . The set
Ωα is then called the ultimate domain of S and denoted by Ω∞. When Ω∞
is compact, the map S is said to be ultimately compact. If the ultimately
compact mapping S has no fixed points on the boundary of Ω, then one
can define a topological degree of I − S (where I is the identity operator)
on the set Ω at the point 0. One restricts S to Ω∞, then extends S|Ω∞ to
a compact map S∗ : Ω → Ω∞ fixed point free on the boundary, and finally
one defines

deg(I − S,Ω, 0) := degLS(I − S∗, Ω, 0)

where degLS stands for the Leray–Schauder degree.
Consider a function ψ in E satisfying only (a), (b) and (f) and a

ψ-condensing operator S : Ω → E, i.e.

ψ(S(X)) < ψ(X) if X is not relatively compact in Ω .

It is easy to see that S is ultimately compact—the crucial point is prop-
erty (f). But we want to use this construction in the space BC(R, E) with
the function Ψ without property (f). In this case, we have to require that S
is not only Ψ -condensing on Ω but S(Ω) is stable at ±∞ and is composed
of functions which are equicontinuous on each bounded interval. Then the
ultimate domain is compact and the degree theory can be applied.

Theorem 3. Let G : R2 → L(E) be continuous for s 6= t, have finite
limits as s → t± and satisfy the estimate (2). Let r : E × R → E be
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continuous, bounded on bounded sets, and let it satisfy

(12) ψ(r(D, s)) ≤ k(s)ψ(D)

for any bounded set D ⊂ E and s ∈ R where ψ is a measure of noncom-
pactness in E having all properties (a)–(g) and k : R → [0,∞) is a locally
integrable function such that

(13) k(t) <
α

2N
, t ∈ R .

Suppose that r satisfies (9) and the limit function b : R→ E appearing in (9)
has the property that

(14)
{ ∞∫
−∞

G(t, s)b(s) ds : t ∈ R
}

is relatively compact in E. Then the integral operator S : BC(R, E) →
BC(R, E) given by (3) is ultimately compact on each bounded subset of
BC(R, E).

P r o o f. The second and the third parts of the proof of Theorem 2 are
based only on (9) and the properties of G, so the image of {x ∈ BC(R, E) :
||x||∞ ≤ M} under S is stable at ±∞ and its elements are equicontinuous
on bounded intervals. Hence, we should verify that S is Ψ -condensing.

Fix a bounded set X ⊂ BC(R, E) and fix x ∈ X. Then, for any T > 0,

Sx(t) =
∫

|s|≤T

G(t, s)r(x(s), s) ds+
∫

|s|>T

G(t, s)(r(x(s), s)− b(s))) ds

+
∫
R

G(t, s)b(s) ds−
∫

|s|≤T

G(t, s)b(s) ds .

The third summand takes values in the relatively compact set (14). By (2)
and (g), the same is true for the fourth summand. Applying properties (d)
and (f) of ψ, we get

(15) ψ{Sx(t) : x ∈ X, t ∈ R}

≤ ψ
{ ∫
|s|≤T

G(t, s)r(x(s), s) ds : x ∈ X, t ∈ R
}

+ ψ
{ ∫
|s|>T

G(t, s)(r(x(s), s)− b(s)) ds : x ∈ X , t ∈ R
}

=: a1 + a2

for every T > 0.
Take ε > 0. There exists T > 0 such that a2 ≤ ε/2 by (9), (2) and (e).
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We shall find a bound for a1. First, choose T1 > 0 such that

(16) ψ
{ ∫
|s|≤T

G(t, s)r(x(s), s) ds : x ∈ X , |t| > T1

}
≤ ε

4

(this is possible due to (2)). Now, divide [−T1, T1] into small intervals
−T1 = t0 < t1 < . . . < tn = T1 in such a way that

(17) ||G(t, s)−G(ti, s)|| ≤
ε

8MT

for |s| ≤ T and t ∈ [ti−1, ti], i = 1, . . . , n, where M is an upper bound for r
on X. Hence, by (c) and (d),

(18) ψ
{ ∫
|s|≤T

G(t, s)r(x(s), s) ds : |t| ≤ T1, x ∈ X
}

≤ max
1≤i≤n

ψ
{ ∫
|s|≤T

G(ti, s)r(x(s), s) ds : x ∈ X
}

+ max
1≤i≤n

ψ
{ ∫
|s|≤T

(G(t, s)−G(ti, s))r(x(s), s) ds :

x ∈ X, t ∈ [ti−1, ti]
}
.

Applying (17) and (g), we see that the second term is not greater than ε/4.
In order to estimate the first one, we divide [−T, T ] arbitrarily: −T = s0 <
s1 < . . . < sm = T , and fix i = 1, . . . , n. Since

(19)
b∫
a

f(t) dt ∈ (b− a) conv{f(t) : t ∈ [a, b]} ,

we can make the following calculations:

ψ
{ ∫
|s|≤T

G(ti, s)r(x(s), s) ds : x ∈ X
}

≤
m∑
j=1

ψ
{ sj∫
sj−1

G(ti, s)r(x(s), s) ds : x ∈ X
}

≤
m∑
j=1

(sj − sj−1)ψ[conv{G(ti, s)r(x(s), s) :

x ∈ X, s ∈ [sj−1, sj ]}]

≤
m∑
j=1

(sj − sj−1)Ne−α|ti−ξj | sup
sj−1≤s≤sj

k(s)Ψ(X)
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where we have applied, in turn, (d), (18), (a), (2), (g) and (12); here ξj =
sj−1 or sj , depending on which makes |t − ξj | smaller. Summing up (15),
(16), (18) and the last inequality, we obtain

Ψ(S(X)) ≤ Ψ(X)N max
1≤i≤n

∫
|s|≤T

e−α|ti−s|k(s) ds+ ε

(recall that k is locally integrable). We can let T →∞ and ε→ 0, therefore
it suffices to show that

(20)
∞∫
−∞

e−α|t−s|k(s) ds <
1
N

for any t ∈ R. Consider the functions

h1(t) := e−αt
t∫

−∞

eαsk(s) ds , h2(t) := eαt
∞∫
t

e−αsk(s) ds .

If h1 takes its maximum value at t1, then h′1(t1) = 0, hence h1(t1) =
k(t1)/α. If h1 tends to this maximum as t → ±∞, then this limit equals
limt→±∞ k(t)/α. The same argument works for h2, so condition (20) is
satisfied and this ends the proof.

R e m a r k s. The theorem is also true if the measure of noncompactness
ψ has property (g) only for G(t, s), t, s ∈ R, or if (g) is replaced by a weaker
condition:

ψ(A(X)) ≤ c||A||ψ(X)

where c > 0 is a constant.
The compactness of the set (14), in the case when G is the Main Green

Function for the equation x′ = A(t)x, means that the unique bounded so-
lution of the nonhomogeneous equation

x′ = A(t)x+ b(t)

has a relatively compact range. This happens, for example, when A and b
are almost periodic functions ([4]).

It is surprising that condition (12) has been assumed first in the work
of Goebel and Rzymowski ([2]) to get a local solution of the equation x′ =
r(x, t) with x(t0) = x0 in a Banach space.

Now, we are in a position to consider the nonlinear equation (1) assuming
that the linear equation x′ = A(t)x is exponentially dichotomic (see [1]) and
r satisfies the conditions of Section 2 or Section 3. Instead of (1), we deal
with the homotopical family of equations

(21) x′ = A(t)x+ ξr(x, t) , ξ ∈ [0, 1] .
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We shall add some assumptions on r (and A) which guarantee that all
bounded solutions of (21) are contained in a certain ball. Via the appropriate
degree theory, this will imply the existence of bounded solutions for (1).
From now on the Banach space E is replaced by a Hilbert space H.

4. The case of A constant. Let A ∈ L(H) and suppose SpA does not
meet the imaginary axis. Then we can define two projectors P+ and P− by

P± := − 1
2πi

∫
Γ±

(A− λI)−1 dλ

where Γ+ is a positively oriented Jordan closed curve encircling SpA ∩ {λ :
Reλ > 0}, and Γ− is a similar curve for SpA ∩ {λ : Reλ < 0}. We have

P+ + P− = I ,

i.e. the operators project onto complementary subspaces (not necessarily
orthogonal).

The so-called Main Green Function

GA(t) :=
{

expAt ◦ P− for t > 0,
− expAt ◦ P+ for t < 0,

has the property ||GA(t)|| ≤ N exp(−α|t|) for any t ∈ R, and putting
G(t, s) := GA(t− s) in (3) leads to bounded solutions of the equation

x′ = Ax+ r(x, t) .

It is known ([5]) that H± = P±(H) are A-invariant subspaces. Since
Sp(A|H−) is contained in the left open half-plane, then, by the General
Lyapunov Theorem, there exists a strictly positive operator W− ∈ L(H−)
such that

(22) Re(W−Ax−, x−) ≤ −λ−||x−||2

for each x− ∈ H− where λ− is a positive constant. Similarly, there exists a
strictly positive operator W+ ∈ L(H+) such that

(23) Re(W+Ax+, x+) ≥ λ+||x+||2

for x+ ∈ H+ where λ+ > 0.
Suppose that

(24) lim sup
||x||→∞

||P±r(x, t)||/||P±x|| = L±(t) <∞

uniformly with respect to t ∈ R and that

(25) sup
t
L+(t) < λ+/||W+|| , sup

t
L−(t) < λ−/||W−|| .

Theorem 4. Under the above assumptions, the equation x′ = Ax +
r(x, t) has a bounded solution.
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P r o o f. It is obvious that if we replace r by ξr, ξ ∈ [0, 1], then (25) also
holds. Hence, it suffices to find an a priori bound for bounded solutions of
our equation (ξ = 1).

Let φ : R→ H be a bounded solution and φ± := P±φ. Take ε > 0 such
that

(26) ε < min(λ+/||W+|| − sup
t
L+(t), λ−/||W−|| − sup

t
L−(t)) .

By (24), there exists M > 0 such that

(27) ||P±r(x, t)|| ≤ (L(t) + ε)||P±x||

for ||x|| ≥M and t ∈ R. Since W± is strictly positive, the norm

||x±||± :=
√

(W±x±, x±)

is equivalent to the original one on H±, i.e.

(28) a±||x±|| ≤ ||x±||± ≤ b±||x±||

for x+ ∈ H+ and x− ∈ H−. Define two differentiable functions g± : R→ R
by

g+(t) := ||φ+(t)||2+ , g−(t) := ||φ−(t)||2− .
There exists t1 ∈ R such that

(29)
g+(t) ≤ g+(t1) + 1 , t ∈ R ,

|g′+(t1)| ≤ δ , g+(t1) > 1
2 sup

t
g+(t) ,

where δ is a sufficiently small constant. In fact, this is evident if the lowest
upper bound of g+ belongs to the range g+(R) and if this bound is the limit
of a sequence g+(tn) where tn → ±∞. Otherwise, g+ is monotonic for t ≥ t0
(or t ≤ t0) and limt→∞ g′+(t) = 0. In the last case, t1 can also be found.
Similarly, there exists t2 ∈ R such that

(29′)
g−(t) ≤ g−(t2) + 1 , t ∈ R ,

|g′−(t2)| ≤ δ , g−(t2) > 1
2 sup

t
g−(t) ,

If ||φ(t1)|| ≤ M and ||φ(t2)|| ≤ M then ||φ+(t1)|| ≤ M and ||φ−(t2)|| ≤
M , hence ||φ+(t)||+ ≤ b+M + 1, ||φ−(t)||− ≤ b−M + 1 for each t ∈ R by
(28) and (29), (29′). Applying once more (28), we obtain

(30) ||φ(t)|| ≤ a−1
+ (b+M + 1) + a−1

− (b−M + 1) .

If, however, either ||φ(t1)|| > M or ||φ(t2)|| > M , then we get a contradic-
tion. In the first case,

||P+r(φ(t1), t1)|| ≤ (L(t1) + ε)||φ+(t1)||
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from (27) and we have

g′+(t1) = 2 Re(W+Aφ+(t1), φ+(t1)) + 2 Re(W+P+r(φ(t1), t1), φ+(t1))

≥ 2[λ+ − ||W+||(L+(t1) + ε)]||φ+(t1)||2 ≥ 2c+b−1
+ g+(t1) > c+b

−1
+ sup

t
g+(t)

where c+ = λ+ − ||W+||(supL+(t) + ε) > 0. It suffices to take δ =
c+b
−1
+ sup g+(t) in (29). The inequality ||φ(t2)|| > M leads to a contra-

diction in the same way.
Therefore, we have the a priori estimate (30).

5. A nonautonomous linear part. Let A depend on t ∈ R and
suppose the linear equation x′ = A(t)x is exponentially dichotomic (in the
sense of Daletskĭı and Krĕın [1]), i.e. H = H+ ⊕H− and solutions starting
at t = 0 from H+ satisfy

(31) ||x(t)|| ≤ N+e
−α+(s−t)||x(s)|| , t ≤ s ,

where the constants N+ and α+ > 0 are independent of the solution, and
similarly,

(32) ||x(t)|| ≤ N−e−α−(t−s)||x(s)|| , s ≤ t ,

for solutions starting from H− (N− and α− are positive again). The dif-
ference between the above case and the case of A constant consists in the
fact that, now, the subspaces H+ and H− rotate as t varies. More pre-
cisely, if P+ and P− are complementary projectors onto H+ and H−, then
P±U(t) 6= U(t)P± where U is the Cauchy operator of our equation. Let us
introduce the notations:

P+(t) = U(t)P+U
−1(t) , P−(t) = U(t)P−U−1(t)

for t ∈ R. Obviously, P+(t) and P−(t) are complementary projectors and
solutions passing at time t0 through P+(t0)H (resp. P−(t0)H) satisfy (31)
(resp. (32)). We assume additionally that

(33) sup
t
||P±(t)|| <∞ ,

which has a geometric meaning that the angle between P+(t)H and P−(t)H
cannot be arbitrarily small (see [1]).

Denote by U(t, s) = U(t)U−1(s) the evolution operator. It is easy to see
that U(t, s) transforms isomorphically P±(s)H onto P±(t)H and (31)–(33)
imply

(34)
||U(t, s)|P−(s)H|| ≤ N−1 e−α−(t−s) , s ≤ t ,
||U(t, s)|P+(s)H|| ≤ N+

1 e
−α+(s−t) , t ≤ s ,
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Suppose that similar estimates hold for the inverse operators:

(35)
||U(s, t)|P−(t)H|| ≤ 1

N−2
e+β−(t−s) , s ≤ t ,

||U(s, t)|P+(t)H|| ≤ 1
N+

2

e+β+(s−t) , t ≤ s ,

where β−, β+ are positive. Conditions (34) and (35) are equivalent to

(36) N−2 e
−β−(t−s)||x|| ≤ ||U(t)P−U−1(s)x|| ≤ N−1 e−α−(t−s)||x||

for s ≤ t and x ∈ P−(s)H, and

(37) N+
2 e
−β+(s−t)||x|| ≤ ||U(t)P+U

−1(s)x|| ≤ N+
1 e
−α+(s−t)||x||

for t ≤ s and x ∈ P+(s)H.
Recall that the Main Green Function is G(t, s) = U(t)P−U−1(s) for s < t

and G(t, s) = −U(t)P+U
−1(s) for t < s. This implies the estimate (2) with

N = max(N+
1 , N

−
1 ) and α = min(α+, α−). In order to prove the existence

of bounded solutions for (1), we should find an a priori bound for them.
Let

W+(t) :=
t∫

−∞

U∗−1(t)P ∗+U
∗(s)U(s)P+U

−1(t) ds

for t ∈ R (the convergence of this integral is a consequence of (37)). By the
second half of (37),

(W+(t)x, x) =
t∫

−∞

||U(s)P+U
−1(t)x||2 ds ≥ 1

2β+
(N+

2 )2||x||2

for x ∈ P+(t)H, and similarly,

(W+(t)x, x) ≤ 1
2α+

(N+
1 )2||x||2 ,

so the norms || ||+t defined on P+(t)H by the formula

||x||+t :=
√

(W+(t)x, x)

are equivalent to the norm || || uniformly with respect to t ∈ R. Analogously,
the operator

W−(t) :=
∞∫
t

U∗−1(t)P ∗−U
∗(s)U(s)P−U−1(t) ds

enables us to define on P−(t)H the norm

||x||−t :=
√

(W−(t)x, x)

equivalent to || || uniformly.
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Consider a bounded solution φ : R → H of equation (1) and its projec-
tions φ±(t) = P±(t)φ(t), t ∈ R. We have

||φ+(t)||2+t =
t∫

−∞

||U(s)P+U
−1(t)φ(t)||2 ds

and

(38)
d

dt
||φ+(t))||2+t = ||φ+(t)||2

− 2 Re
t∫

−∞

(U(s)P+U
−1(t)A(t)φ(t), U(s)P+U

−1(t)φ(t)) ds

+ 2 Re
t∫

−∞

(U(s)P+U
−1(t)φ′(t), U(s)P+U

−1(t)φ(t)) ds

= ||φ+(t)||2 + 2 Re(W+(t)r(φ(t), t), φ(t))

= ||φ+(t)||2 + 2 Re(W+(t)P+(t)r(φ(t), t), φ+(t)) ,

(39)
d

dt
||φ−(t)||2−t = −||φ(t)||2 + 2 Re(W−(t)P−(t)r(φ(t), t), φ−(t)) .

Theorem 5. Suppose that the estimates (36) and (37) hold and r : H×
R→ H satisfies the assumptions of Section 2 or Section 3. Let L± : R→ R+

be defined by (24), where we replace P± by P±(t), and

(40) max{sup
t
L+(t)||W+(t)|| , sup

t
L−(t)||W−(t)||} < 1/2 .

Then equation (1) has a bounded solution.

P r o o f. Take a positive ε less than

[1− 2 supL±(t)||W±(t)||]/2 sup ||W±(t)|| .

By (24), there exists M > 0 such that, for ||x|| > M and t ∈ R,

||P±(t)r(x, t)|| ≤ (L±(t) + ε)||P±x|| .

Now, take two bounded functions

g+(t) := ||φ+(t)||2+t , g−(t) := ||φ−(t)||2−t

and two numbers t1, t2 ∈ R satisfying (29) and (29′). If ||φ(t1)|| ≤ M and
||φ(t2)|| ≤ M , then the first inequalities of (29) and (29′) and the uniform
equivalence of the relevant norms lead to an a priori bound for ||φ(t)||. The
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inequality ||φ(t1)|| > M is impossible, since it implies (see (38))

g′+(t1) ≥ ||φ+(t)||2 − 2||W+(t)||(L+(t) + ε)||φ+(t)||2

≥ c+||φ+(t)||2 ≥ (2c+α+/(N+
1 )2)g+(t1)

> (c+α+/(N+
1 )2) sup g+(t)

and it suffices to take δ = (c+α+/(N+
1 )2) sup g+ in (29). The second in-

equality ||φ(t2)|| > M contradicts (39) after similar calculations.

R e m a r k. Condition (40) holds, for instance, if

L(N+
1 )2/α+ < 1 , L(N−1 )2/α− < 1 ,

where L = supL(t).

One can choose another way of finding bounded solutions. It is known
([1], p. 230) that if x′ = A(t)x is exponentially dichotomic then there ex-
ists an operator function Q : R → L(H) with invertible values such that
||Q(t)|| ≤ q, ||Q−1(t)|| ≤ q for t ∈ R, and it defines a change of variables
y = Q(t)x which transforms the linear equation to the form y′ = B(t)y
where all B(t) commute with P+ and P−. The last condition means that
the equation y′ = B(t)y splits into two independent equations:

y′+ = B+(t)y+ , y′− = B−(t)y−
where y± ∈ P±(H). Moreover, solutions of the “plus equation” satisfy the
estimate (31) and those of the “minus equation” the estimate (32). The
studied nonlinear equation (1) is equivalent (after changing variables) to
the following system:

(44)
y′+ = B+(t)y+ + P+Q(t)r(Q−1(t)y, t) ,

y′− = B−(t)y− + P−Q(t)r(Q−1(t)y, t) .

Theorem 6. Let the upper limits

lim sup
||x||→∞

||P±Q(t)r(x, t)||
||P±Q(t)x||

= L±(t)

be finite and suppose that

(42)
inf
t
{λmin(ReB+(t))− L+(t)} > 0 ,

sup
t
{λmax(ReB−(t)) + L−(t)} < 0 .

Here, ReC = 1
2 (C + C∗) is a Hermitian operator and [λmin(D), λmax(D)]

is the smallest interval containing the spectrum of a Hermitian operator D,

λmin(D) = inf{(Dx, x) : ||x|| ≤ 1} ,
λmax(D) = sup{(Dx, x) : ||x|| ≤ 1} .

Then equation (1) has a bounded solution.
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P r o o f. It suffices to find an a priori estimate for bounded solutions
of (41). Let φ = (φ+, φ−) be such a solution and let ε be a positive number
less than the infimum in (42) and less than the opposite of the supremum
in (42). Take M > 0 such that

(43) ||P±Q(t)r(x, t)|| ≤ (L±(t) + ε)||P±Q(t)x||

for ||x|| > M and t ∈ R, and consider two functions

g±(t) = ||φ±(t)||2 , t ∈ R .

They are bounded, so one can find t1, t2 ∈ R satisfying (29) and (29′). If
||φ+(t1)|| ≤Mq and ||φ−(t2)|| ≤Mq, then

||φ(t)|| ≤ 2
√
M2q2 + 1 , t ∈ R ,

which is an a priori bound we have looked for. In fact, the inequality
||φ+(t1)|| > Mq leads to

g′+(t1) = 2(ReB+(t1)φ+(t1), φ+(t1))

+ 2 Re(P+Q(t1)R(Q−1(t1)φ(t1), t1), φ+(t1))

≥ 2λmin(ReB+(t1))||φ+(t1)||2

− 2(L+(t1) + ε)||P+Q(t1)Q−1(t1)φ(t1)|| ||φ+(t1)||
= 2[λmin(ReB+(t1))− L+(t1)− ε]||φ+(t1)||2

> 2M2q2[λmin(ReB+(t1))− L+(t1)− ε] ,

where we can use (43) since

||Q−1(t1)φ(t1)|| ≥ 1
||Q(t1)||

||φ(t1)|| > M .

It suffices to take δ = 2M2q2 inft{λmin(ReB+(t)) − L+(t) − ε} in (29) in
order to get a contradiction. Similar arguments show that ||φ−(t2)|| cannot
be greater than Mq.

6. Another type of assumptions. We do not change the conditions
on r of Sections 2 and 3, but assumptions on A(t), t ∈ R, will be stronger
than above (or partially stronger) and the growth assumptions on r will be
replaced by angular ones.

Theorem 7. Suppose that one of the following conditions holds:

(i) supt λmax(ReA(t)) = −λ− < 0 and

lim sup
||x||→∞

Re(r(x, t), x)/||x|| ≤ 0

uniformly with respect to t ∈ R,
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(ii) inft λmin(ReA(t)) = λ+ > 0 and

lim inf
||x||→∞

Re(r(x, t), x)/||x|| ≥ 0

uniformly in t ∈ R,
(iii) λmax(ReA(t)) < 0 and

sup
t

[lim sup
||x||→∞

Re(r(x, t), x)/||x||2 − λmax(ReA(t))] < 0 ,

(iv) λmin(ReA(t)) > 0 and

inf
t

[ lim inf
||x||→∞

Re(r(x, t), x)/||x||2 − λmin(ReA(t))] > 0 .

Moreover , in (iii) assume that for

Λ(t) := −
t∫

0

λmax(ReA(s)) ds

the integral
∫ t
−∞ eΛ(s) ds is convergent and

(44) sup
t
e−Λ(t)

t∫
−∞

eΛ(s) ds = N0 <∞ .

Similarly in (iv), for Λ(t) :=
∫ t

0
λmin(ReA(s)) ds, assume the convergence

of
∫∞
t
e−Λ(s) ds and the boundedness of eΛ(t)

∫∞
t
e−Λ(s) ds.

Then equation (1) has a bounded solution. The last two assumptions on
Λ are satisfied , for example, if

−λmax(ReA(t)), λmin(ReA(t)) ≤ c|t|−γ

for each t ∈ R where c and γ are positive constants, γ < 1.

P r o o f. (i) The Ważewski–Wintner inequalities ([6]) imply that all so-
lutions of x′ = A(t)x satisfy

||x(t)|| ≤ Ne−λ−(t−s)||x(s)|| , s ≤ t ,
i.e. we have exponential dichotomy with P+ = 0, P− = I. Hence, we only
need an a priori bound. Let φ : R → H be a bounded solution of (1) and
ε ∈ (0, λ−). There exists M > 0 such that

Re(r(x, t), x) ≤ ε||x||2

for ||x|| > M and t ∈ R. We put

g−(t) := ||φ(t)||2

and δ = 2(λ− − ε)M2 in (29′). Let t2 be defined there. If ||φ(t2)|| ≤M , we
can estimate ||φ(t)|| on R. If ||φ(t2)|| > M , we have

d

dt
||φ(t2)||2 ≤ −2(λ− − ε)||φ(t2)||2 < −2(λ− − ε)M2 ,
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which contradicts (29′).
The proof of (ii) is quite similar.
(iii) Now, the evolution operator is the Green Function but condition (2)

is not satisfied, in general. However, by the Ważewski–Wintner inequalities,
we get

||U(t, s)|| = ||G(t, s)|| ≤ exp(Λ(s)− Λ(t))
for s ≤ t. It is easy to see that the above estimate suffices for the proof
of Theorems 2 and 3 (G(t, s) = 0 for s > t and one should replace (13) by
k(t) < N0, t ∈ R). The proof of a priori bounds is a simple repetition of
the above arguments.

The proof of (iv) is similar.
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