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Abstract. Let f be a continuous function from [0, a]× [0, β]× (Rn)4 into Rn. Given
u0, v0 ∈ C0([0, β],Rn), with

f

(
0, x,

x∫
0

u0(s) ds,

x∫
0

v0(s) ds, u0(x), v0(x)

)
= v0(x)

for every x ∈ [0, β], consider the problem

(P)



∂2z

∂t∂x
= f

(
t, x, z,

∂z

∂t
,
∂z

∂x
,
∂2z

∂t∂x

)
,

z(t, 0) = ϑRn ,

z(0, x) =

x∫
0

u0(s) ds,

∂2z(0, x)

∂t∂x
= v0(x).

In this paper we prove that, under suitable assumptions, problem (P) has at least
one classical solution that is local in the first variable and global in the other. As a
consequence, we obtain a generalization of a result by P. Hartman and A. Wintner ([4],
Theorem 1).

Introduction. Let a, β be two positive real numbers; n a positive inte-
ger; Rn the real Euclidean n-space, whose null element is denoted by ϑRn ;
f(t, x, z, z1, z2, z3) a continuous function from [0, a]× [0, β]× (Rn)4 into Rn.

Given u0, v0 ∈ C0([0, β],Rn), with

f
(

0, x,
x∫

0

u0(s) ds,
x∫

0

v0(s) ds, u0(x), v0(x)
)

= v0(x)
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for every x ∈ [0, β], consider the problem

(P)



∂2z

∂t∂x
= f

(
t, x, z,

∂z

∂t
,
∂z

∂x
,
∂2z

∂t∂x

)
,

z(t, 0) = ϑRn ,

z(0, x) =
x∫

0

u0(s) ds,

∂2z(0, x)
∂t∂x

= v0(x).

A function z : [0, a] × [0, β] → Rn is said to be a classical solution
of (P) if z, ∂z/∂t, ∂z/∂x, ∂2z/∂t∂x ∈ C0([0, a] × [0, β],Rn) and, for every
(t, x) ∈ [0, a] × [0, β], one has ∂2z(t, x)/∂t∂x = f(t, x, z(t, x), ∂z(t, x)/∂t,
∂z(t, x)/∂x, ∂2z(t, x)/∂t∂x), z(t, 0) = ϑRn , z(0, x) =

∫ x
0
u0(s) ds,

∂2z(0, x)/∂t∂x = v0(x).
In this paper we prove that, under suitable assumptions, problem (P)

has at least one classical solution that is local in the first variable and global
in the other (see Theorems 2.1 and 2.2). Further, as a simple consequence
of Theorem 2.2, we obtain a result (Theorem 2.3) which improves, in some
directions, the well-known result by P. Hartman and A. Wintner (see [4],
Theorem 1). For instance, it is worth noticing that the hypotheses of Theo-
rem 2.3 on f do not imply that the function (z1, z2, z3)→ f(t, x, z, z1, z2, z3)
is uniformly Lipschitzian, with Lipschitz constant strictly less than one with
respect to z3.

As far as we know, this seems to be the first contribution to the study
of hyperbolic partial differential equations, with implicit mixed derivative,
in this direction.

The main tool we use in order to get our results is a recent existence the-
orem for implicit ordinary differential equations in a Banach space, namely
Theorem 2.1 of [3].

1. Preliminaries. Let (X, d) be a metric space. For every x ∈ X and
every r > 0, we put B(x, r) = {z ∈ X : d(x, z) ≤ r} and B(x,+∞) = X.
Let V be a nonempty subset of X and let Ω be a bounded subset of V .
The Hausdorff measure of noncompactness of Ω with respect to V is the
following number:

γV (Ω) = inf
{
r > 0 : ∃x1, . . . , xk ∈ V, k ∈ N : Ω ⊆

k⋃
i=1

B(xi, r)
}
.

If V = X, we put γV (Ω) = γ(Ω). It is easy to verify that one has

(1) γ(Ω) ≤ γV (Ω) ≤ 2γ(Ω) .
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Let n be a positive integer and let Rn be the real Euclidean n-space, en-
dowed with the norm ‖z‖ = max1≤i≤n |zi|, where z = (z1, ..., zn) ∈ Rn. If
I is a compact real interval, we denote by C0(I,Rn) the space of all con-
tinuous functions from I into Rn, endowed with the norm ‖u‖C0(I,Rn) =
maxx∈I ‖u(x)‖, and by C1(I,Rn) the space of all functions u : I → Rn such
that u, du/dx ∈ C0(I,Rn).

On C1(I,Rn) we consider the norm ‖u‖C1(I,Rn) = ‖u‖C0(I,Rn) +
‖du/dx‖C0(I,Rn). Of course, the space (C1(I,Rn), ‖ · ‖C1(I,Rn)) is complete.

For every u ∈ C0(I,Rn), every nonempty subset U of C0(I,Rn) and
every σ > 0, we put

ω(u, σ) = sup{‖u(x′)− u(x′′)‖ : x′, x′′ ∈ I, |x′ − x′′| ≤ σ} ;
ω(U, σ) = sup

u∈U
ω(u, σ); ω0(U) = lim

σ→0+
ω(U, σ) .

If U is bounded then, thanks to Theorem 7.1.2 of [1], one has

(2) ω0(U) = 2γ(U) .

Let Q ⊆ R2 be a rectangle. We denote by C0(Q,Rn) the space of all con-
tinuous functions from Q into Rn and by E(Q,Rn) the space of all functions
z(t, x) : Q→ Rn such that z, ∂z/∂t, ∂z/∂x, ∂2z/∂t∂x ∈ C0(Q,Rn).

In the sequel, we will apply the following lemma, whose simple proof is
left to the reader.

Lemma 1.1. Let I be a compact real interval , J a real interval , and
C1(J,C1(I,Rn)) the space of all continuously differentiable functions from J
into C1(I,Rn). Then a function w : J → C1(I,Rn) belongs to
C1(J,C1(I,Rn)) if and only if the function w̃ : J × I → Rn defined by
putting , for every (t, x) ∈ J × I, w̃(t, x) = w(t)(x), belongs to E(J × I,Rn).

For the reader’s convenience, we report now the statement of Theorem
2.1 of [3], which will be used in the sequel.

Theorem 1.1. Let (B, ‖ · ‖) be a real or complex Banach space, whose
null element is denoted by ϑB ;u0, v0 ∈ B; t0 ∈ R; a, b, c ∈ R+ ∪ {+∞}; R
the set {(t, u, v) ∈ R×B ×B : t0 ≤ t ≤ t0 + a, ‖u− u0‖ ≤ b, ‖v− v0‖ ≤ c};
F (t, u, v) a function from R into B such that F (t0, u0, v0) = ϑB ; T (w) a
function from B into itself such that T (w) = ϑB if and only if w = ϑB ;
G(t, u, v) = v + T (F (t, u, v)) for every (t, u, v) ∈ R. Assume that :

1) A 6= ∅ where A is the set of all t̄ ∈ R∩ ]t0, t0 + a] for which there
exists a function d : R+ → R+, with lim infε→0+ d(ε) = 0, such that for
every ε > 0 there exists δ > 0 such that if t′, t′′ ∈ [t0, t̄ ], u′, u′′ ∈ B(u0, b),
v′, v′′ ∈ B(v0, c), and |t′ − t′′| < δ, ‖u′ − u′′‖ < δ, ‖v′ − v′′‖ ≤ d(ε) then

‖G(t′, u′, v′)−G(t′′, u′′, v′′)‖ ≤ d(ε) ;
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2) if c < +∞ one has ‖G(t, u, v) − v0‖ ≤ c for every (t, u, v) ∈ R
with t ∈ A ∪ {t0}, whereas if c = +∞ there exists a continuous function
M(t) : A ∪ {t0} → R+

0 such that ‖G(t, u, v)‖ ≤ M(t)(1 + λ‖u − u0‖) for
every (t, u, v) ∈ R with t ∈ A ∪ {t0}, where

λ =
{

0 if b < +∞,
1 if b = +∞;

3) if t∗ = supA or t∗ is a point of [t0, supA] such that t∗−t0 ≤ b/(‖v0‖+
c) or such that

∫ t∗
t0
M(t) dt ≤ b, according to whether b = +∞, or b, c < +∞

or b < +∞ and c = +∞, and if

A∗ =
{

[t0, t∗] if t∗ ∈ A,
[t0, t∗[ if t∗ 6∈ A,

then there exists a function w(t, u, v) : A∗ ×R+
0 ×R+

0 → R+
0 , nondecreasing

with respect to u, and a number % > 0 such that

(h1) for every t̄ ∈ A∗\{t0, t∗} the conditions v : [t0, t̄ ]→ R, v continuous,
0 ≤ v(t) < %, v(t) ≤ w(t,

∫ t
t0
v(τ) dτ, v(t)) for each t ∈ [t0, t̄ ], v(t0) = 0 imply

v(t) = 0 for every t ∈ [t0, t̄ ];
(h2) for every t ∈ A∗\{t0, t∗}, U ⊆ B(u0, b), V ⊆ B(v0, c), with γ(U) < %

and 0 < γ(V ) < %, one has

γB(v0,c)(G(t, U, V )) ≤ w(t, γ(U), γB(v0,c)(V )) .

Then there exists a continuously differentiable function ξ : A∗ → B such
that F (t, ξ(t), dξ(t)/dt) = ϑB for every t ∈ A∗ and ξ(t0) = u0, dξ(t0)/dt
= v0.

2. Results. Let a, β, b be three positive real numbers; c ∈ R+ ∪ {+∞};
u0, v0∈C0([0, β],Rn); ∆(a, β, b, c) the set {(t, x, z, z1, z2, z3)∈ [0, a]× [0, β]×
(Rn)4 : ‖z‖ ≤ β(‖u0‖C0([0,β],Rn) + b), ‖z1‖ ≤ β(‖v0‖C0([0,β],Rn) + c), ‖z2‖ ≤
β‖u0‖C0([0,β],Rn) + b, ‖z3‖ ≤ β‖v0‖C0([0,β],Rn) + c}; f a continuous function
from [0, a]× [0, β]× (Rn)4 into Rn such that

(3) f
(

0, x,
x∫

0

u0(s) ds,
x∫

0

v0(s) ds, u0(x), v0(x)
)

= v0(x)

for every x ∈ [0, β]. Our first result is the following:

Theorem 2.1. Assume that :

(i) there exists a function d : R+ → R+, with lim infε→0+ d(ε) = 0, such
that for every ε > 0 there is δ > 0 such that if t′, t′′ ∈ [0, a], z′, z′′, z′i, z

′′
i ∈

Rn, i = 1, 2, 3, and |t′ − t′′| < δ, ‖z′ − z′′‖ < βδ, ‖z′1 − z′′1 ‖ ≤ βd(ε),
‖z′2 − z′′2 ‖ < δ, ‖z′3 − z′′3 ‖ ≤ d(ε) then

‖f(t′, x, z′, z′1, z
′
2, z
′
3)− f(t′′, x, z′′, z′′1 , z

′′
2 , z
′′
3 )‖ ≤ d(ε)
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for every x ∈ [0, β];
(ii) if c < +∞ one has ‖f(t, x, z, z1, z2, z3) − v0(x)‖ ≤ c for every

(t, x, z, z1, z2, z3) ∈ ∆(a, β, b, c), whereas if c = +∞ the function f(t, x, z,
z1, z2, z3) is bounded on ∆(a, β, b, c);

(iii) if M is a positive constant such that ‖f(t, x, z, z1, z2, z3)‖ ≤ M for
every (t, x, z, z1, z2, z3) ∈ ∆(a, β, b, c) and δ∗ = min(a, b/M), there exist a
function w(t, u, v) : [0, δ∗[×R+

0 × R+
0 → R+

0 , nondecreasing with respect to
u, and a number % > 0 such that

1) for every t̄ ∈ ]0, δ∗[ the conditions v : [0, t̄ ] → R, v continuous, 0 ≤
v(t) < %, v(t) ≤ w(t,

∫ t
0
v(τ) dτ, v(t)) for each t ∈ [0, t̄ ], v(0) = 0 imply

v(t) = 0 for every t ∈ [0, t̄ ];
2) for every t ∈ ]0, δ∗[, U ⊆ B(u0, b), V ⊆ B(v0, c), with γ(U) < % and

0 < γ(V ) < %, one has

(4) µ lim
σ→0+

sup
(u,v)∈U×V

sup
{∥∥∥f(t, x′, x′∫

0

u(s) ds,
x′∫

0

v(s) ds, u(x′), v(x′)
)

−f
(
t, x′′,

x′′∫
0

u(s) ds,
x′′∫
0

v (s) ds, u(x′′), v(x′′)
)∥∥∥ :

x′, x′′ ∈ [0, β], |x′ − x′′| ≤ σ
}
≤ w(t, γ(U), γB(v0,c)(V )) ,

where

µ =
{

1 if c < +∞,
1/2 if c = +∞.

Then there exists at least one solution of the problem (P) in the class
E([0, δ∗]× [0, β],Rn).

P r o o f. Let B be the Banach space (C0([0, β],Rn), ‖ · ‖C0([0,β],Rn)).
To simplify notation, we write ‖ · ‖B for ‖ · ‖C0([0,β],Rn). For every

(t, u, v) ∈ [0, a]×B(u0, b)×B(v0, c) and every x ∈ [0, β], put

F (t, u, v)(x) = f
(
t, x,

x∫
0

u(s) ds,
x∫

0

v(s) ds, u(x), v(x)
)
− v(x) .

The function F so defined takes values in B and, thanks to (3), one has
F (0, u0, v0) = ϑB , where ϑB is the null element of B. Now, let T be the
identity operator on B. We prove that (i)⇒1) of Theorem 1.1, with A =
]0, a] and d = d for every t̄ ∈ ]0, a]. Fix ε > 0 and observe that from our
assumptions it follows that

(5) G(t, u, v)(x) = f
(
t, x,

x∫
0

u(s) ds,
x∫

0

v(s) ds, u(x), v(x)
)
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for every (t, u, v) ∈ [0, a] × B(u0, b) × B(v0, c) and every x ∈ [0, β]. If
(t′, u′, v′), (t′′, u′′, v′′) ∈ [0, a] × B(u0, b) × B(v0, c) and |t′ − t′′| < δ,
‖u′ − u′′‖B < δ, ‖v′ − v′′‖B ≤ d(ε) then, for every fixed x ∈ [0, β], one
has ∥∥∥ x∫

0

u′(s) ds−
x∫

0

u′′(s) ds
∥∥∥ ≤ β‖u′ − u′′‖B < βδ ,

∥∥∥ x∫
0

v′(s) ds−
x∫

0

v′′(s) ds
∥∥∥ ≤ β‖v′ − v′′‖B ≤ βd(ε) ,

‖u′(x)− u′′(x)‖ ≤ ‖u′ − u′′‖B < δ ,

‖v′(x)− v′′(x)‖ ≤ ‖v′ − v′′‖B ≤ d(ε) .

Hence, by (i) and (5),

‖G(t′, u′, v′)(x)−G(t′′, u′′, v′′)(x)‖ ≤ d(ε)

for every x ∈ [0, β]. This implies that

‖G(t′, u′, v′)−G(t′′, u′′, v′′)‖B ≤ d(ε) .

It is trivial to check that (ii)⇒2) of Theorem 1.1. Let us prove that
(iii)⇒3) of Theorem 1.1. To this end, it is enough to verify that (h2) of
Theorem 1.1 holds. Fix t ∈ ]0, δ∗[, U ⊆ B(u0, b), V ⊆ B(v0, c), with γ(U) <
% and 0 < γ(V ) < %. If c < +∞, then, by (1), (2) and 2), one has

γB(v0,c)(G(t, U, V )) ≤ 2γ(G(t, U, V ))

= lim
σ→0+

sup
(u,v)∈U×V

sup
{∥∥∥f(t, x′, x′∫

0

u(s) ds,
x′∫

0

v(s) ds, u(x′), v(x′)
)

−f
(
t, x′′,

x′′∫
0

u(s) ds,
x′′∫
0

v(s) ds, u(x′′), v(x′′)
)∥∥∥ :

x′, x′′ ∈ [0, β], |x′ − x′′| ≤ σ
}
≤ w(t, γ(U), γB(v0,c)(V )) .

If c = +∞ then, by (2) and 2), one has

γ(G(t, U, V )) =

1
2

lim
σ→0+

sup
(u,v)∈U×V

sup
{∥∥∥f(t, x′, x′∫

0

u(s) ds,
x′∫

0

v(s) ds, u(x′), v(x′)
)

−f
(
t, x′′,

x′′∫
0

u(s) ds,
x′′∫
0

v(s) ds, u(x′′), v(x′′)
)∥∥∥ :

x′, x′′ ∈ [0, β], |x′ − x′′| ≤ σ
}
≤ w(t, γ(U), γ(V )) .
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At this point, we are able to apply Theorem 1.1. By that result, there
exists ξ ∈ C1([0, δ∗], B) such that F (t, ξ(t), dξ(t)/dt) = ϑB for every t ∈
[0, δ∗], ξ(0) = u0, dξ(0)/dt = v0. Put, for every (t, x) ∈ [0, δ∗]× [0, β],

z(t, x) =
x∫

0

ξ(t)(s) ds .

Thanks to Lemma 1.1, the function z : [0, δ∗] × [0, β] → Rn so defined
belongs to E([0, δ∗]× [0, β],Rn) and, for each (t, x) ∈ [0, δ∗]× [0, β], one has

∂2z(t, x)
∂t∂x

=
dξ(t)
dt

(x)

= f

(
t, x,

x∫
0

ξ(t)(s) ds,
x∫

0

dξ(t)
dt

(s) ds, ξ(t)(x),
dξ(t)
dt

(x)
)

= f

(
t, x, z(t, x),

∂z(t, x)
∂t

,
∂z(t, x)
∂x

,
∂2z(t, x)
∂t∂x

)
,

z(t, 0) = ϑRn , z(0, x) =
x∫

0

ξ(0)(s) ds =
x∫

0

u0(s) ds ,

∂2z(0, x)
∂t∂x

= ξ(0)(x) = v0(x) .

This completes the proof.

R e m a r k 2.1. Let f satisfy the following assumption:

(j) for every t ∈ [0, a] the function (x, z, z1, z2, z3) → f(t, x, z, z1, z2, z3)
is uniformly continuous.

For every t ∈ [0, a] and every σ > 0, put

ωt(f, σ) = sup
{
‖f(t, x′, z′, z′1, z

′
2, z
′
3)− f(t, x′′, z′′, z′′1 , z

′′
2 , z
′′
3 )‖ :

x′, x′′ ∈ [0, β], z′, z′′, z′i, z
′′
i ∈ Rn , i = 1, 2, 3,(

(x′ − x′′)2 + ‖z′ − z′′‖2 +
3∑
i=1

‖z′i − z′′i ‖2
)1/2

< σ
}
.

It is easy to check that, for each t ∈ [0, a], the function ωt(f, ·) is nonde-
creasing, continuous on R+ and such that limσ→0+ ωt(f, σ) = 0. A simple
sufficient condition in order that 2) of (iii) of Theorem 2.1 holds is the fol-
lowing:

(jj) for every t ∈ ]0, δ∗[, U ⊆ B(u0, b), V ⊆ B(v0, c), with γ(U) < % and
0 < γ(V ) < %, one has

µωt(f, 2
√
γ(U)2 + γB(v0,c)(V )2) ≤ w(t, γ(U), γB(v0,c)(V )) ,
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where

µ =
{

1 if c < +∞,
1/2 if c = +∞.

P r o o f. Fix t ∈ ]0, δ∗[, U ⊆ B(u0, b), V ⊆ B(v0, c), with γ(U) < % and
0 < γ(V ) < %. If σ > 0, (u, v) ∈ U × V , x′, x′′ ∈ [0, β] and |x′ − x′′| ≤ σ,
then∥∥∥f(t, x′, x′∫

0

u(s) ds,
x′∫

0

v(s) ds, u(x′), v(x′)
)

− f
(
t, x′′,

x′′∫
0

u(s) ds,
x′′∫
0

v(s) ds, u(x′′), v(x′′)
)∥∥∥

≤ ωt(f,
√

(1 + ‖u‖2B + ‖v‖2B)σ2 + ω(u, σ)2 + ω(v, σ)2 ) .

(we still write B for C0([0, β],Rn)).
Taking into account that ωt(f, ·) is nondecreasing, this implies that

sup
(u,v)∈U×V

sup
{∥∥∥f(t, x′, x′∫

0

u(s) ds,
x′∫

0

v(s) ds, u(x′), v(x′)
)

−f
(
t, x′′,

x′′∫
0

u(s) ds,
x′′∫
0

v(s) ds, u(x′′), v(x′′)
)∥∥∥ :

x′, x′′ ∈ [0, β], |x′ − x′′| ≤ σ
}

≤ ωt(f,
√

(1 + sup
u∈U
‖u‖2B + sup

v∈V
‖v‖2B)σ2 + ω(U, σ)2 + ω(V, σ)2)

for every σ > 0. Hence, ωt(f, ·) being continuous,

lim
σ→0+

sup
(u,v)∈U×V

sup
{∥∥∥f(t, x′, x′∫

0

u(s) ds,
x′∫

0

v(s) ds, u(x′), v(x′)
)

−f
(
t, x′′,

x′′∫
0

u(s) ds,
x′′∫
0

v(s) ds, u(x′′), v(x′′)
)∥∥∥ :

x′, x′′ ∈ [0, β], |x′ − x′′| ≤ σ
}
≤ ωt(f,

√
ω0(U)2 + ω0(V )2) .

Now, the conclusion follows at once from (1), (2) and (jj).

Now, assume that a, b, c ∈ R+ ∪ {+∞} and put

A1 =
{

[0, a] if a < +∞,
[0, a[ if a = +∞.
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Let f be a continuous function from A1 × [0, β]× (Rn)4 into Rn and let
u0, v0 ∈ C0([0, β],Rn) such that (3) holds. Arguing as in the proof of the
previous theorem, it is possible to verify the following

Theorem 2.2. Suppose that :

(i1) A 6= ∅ where A is the set of all t̄ ∈ A1 \ {0} for which there exists a
function d : R+ → R+, with lim infε→0+ d(ε) = 0, such that for every ε > 0
there exists δ > 0 such that if t′, t′′ ∈ [0, t̄ ], z′, z′′, z′i, z

′′
i ∈ Rn, i = 1, 2, 3,

and |t′ − t′′| < δ, ‖z′ − z′′‖ < βδ, ‖z′1 − z′′1 ‖ ≤ βd(ε), ‖z′2 − z′′2 ‖ < δ,
‖z′3 − z′′3 ‖ ≤ d(ε) then

‖f(t′, x, z′, z′1, z
′
2, z
′
3)− f(t′′, x, z′′, z′′1 , z

′′
2 , z
′′
3 )‖ ≤ d(ε)

for every x ∈ [0, β];
(i2) if c < +∞ one has ‖f(t, x, z, z1, z2, z3) − v0(x)‖ ≤ c for every

(t, x, z, z1, z2, z3) ∈ ∆(a, β, b, c), with t ∈ A ∪ {0}, whereas if c = +∞ there
exists a continuous function M(t) : A ∪ {0} → R+

0 such that

‖f(t, x, z, z1, z2, z3)‖ ≤M(t)(1 + λ‖z2 − u0(x)‖)

for every (t, x, z, z1, z2, z3) ∈ ∆(a, β, b, c) with t ∈ A ∪ {0}, where

λ =
{

0 if b < +∞,
1 if b = +∞;

(i3) if t∗ = supA or t∗ is a point of [0, supA] such that t∗ ≤
b/(‖v0‖C0([0,β],Rn) + c) or such that

∫ t∗
0
M(t) dt ≤ b, according to whether

b = +∞, or b, c < +∞ or b < +∞ and c = +∞, and if

A∗ =
{

[0, t∗] if t∗ ∈ A,
[0, t∗[ if t∗ 6∈ A,

then there exist a function w(t, u, v) : A∗ × R+
0 × R+

0 → R+
0 , nondecreasing

with respect to u, and a number % > 0 such that (h1) of Theorem 1.1 holds
(with t0 = 0) and for every t ∈ ]0, t∗[, U ⊆ B(u0, b), V ⊆ B(v0, c), with
γ(U) < % and 0 < γ(V ) < %, (4) holds.

Then there exists at least one solution of the problem (P) in the class
E(A∗ × [0, β],Rn).

A remarkable particular case of Theorem 2.2 is the following.

Theorem 2.3. Assume that a < +∞, b = +∞ and (i) of Theorem 2.1
holds. Moreover , suppose that :

(j1) if c < +∞ one has ‖f(t, x, z, z1, z2, z3) − v0(x)‖ ≤ c for every
(t, x, z, z1, z2, z3) ∈ ∆(a, β,+∞, c), if c = +∞ there exists a continuous
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function M(t) : [0, a]→ R+
0 such that ‖f(t, x, z, z1, z2, z3)‖ ≤M(t)(1+‖z2−

u0(x)‖) for every (t, x, z, z1, z2, z3) ∈ ∆(a, β,+∞,+∞);
(j2) there exist a function w(t, u, v) : [0, a]×R+

0 ×R+
0 →R+

0 , nondecreas-
ing with respect to u, and a number % > 0 such that

1) for every t̄ ∈ ]0, a[ the conditions v : [0, t̄ ] → R, v continuous, 0 ≤
v(t) < %, v(t) ≤ w(t,

∫ t
0
v(τ) dτ, v(t)) for each t ∈ [0, t̄ ], v(0) = 0 imply

v(t) = 0 for every t ∈ [0, t̄ ];
2) for every t ∈ ]0, a[, U ⊆ C0([0, β],Rn), V ⊆ B(v0, c), with γ(U) < %

and 0 < γ(V ) < %, (4) holds.

Then there exists at least one solution of the problem (P) in the class
E([0, a]× [0, β],Rn).

Theorem 2.3 contains, as a particular case, the following well-known
result by P. Hartman and A. Wintner (see [4], Theorem 1):

Theorem A. Let f(t, x, z, z1, z2) be a continuous function from [0, a]×
[0, β] × (Rn)3 into Rn and let ϕ ∈ C1([0, a],Rn), ψ ∈ C1([0, β],Rn) such
that ϕ(0) = ψ(0). Assume that :

(a1) there exists a positive constant r such that ‖f(t, x, z, z1, z2)‖ ≤ r for
every (t, x) ∈ [0, a]× [0, β] and every z, z1, z2 ∈ Rn;

(a2) there exist L1, L2 ≥ 0 such that , for every (t, x) ∈ [0, a]× [0, β] and
every z, z′i, z

′′
i ∈ Rn, i = 1, 2, one has

‖f(t, x, z, z′1, z
′
2)− f(t, x, z, z′′1 , z

′′
2 )‖ ≤ L1‖z′1 − z′′1 ‖+ L2‖z′2 − z′′2 ‖ .

Then the Darboux problem

(DP)


∂2z

∂t∂x
= f

(
t, x, z,

∂z

∂t
,
∂z

∂x

)
,

z(t, 0) = ϕ(t),
z(0, x) = ψ(x),

has at least one solution in the class E([0, a]× [0, β],Rn).

To verify our assertion, observe first that a function z ∈ E([0, a] ×
[0, β],Rn) is a solution of (DP) if and only if there exists a solution w ∈
E([0, a]× [0, β],Rn) of the problem

∂2w

∂t∂x
= f1

(
t, x, w,

∂w

∂t
,
∂w

∂x

)
,

w(t, 0) = ϑRn ,

w(0, x) = ϑRn ,

where f1(t, x, w,w1, w2) = f(t, x, w + ϕ(t) + ψ(x)− ϕ(0), w1 + dϕ(t)/dt,
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w2 + dψ(x)/dx), (t, x) ∈ [0, a] × [0, β], w, w1, w2 ∈ Rn, such that z(t, x) =
ϕ(t) +ψ(x)−ϕ(0) +w(t, x) for every (t, x) ∈ [0, a]× [0, β]. Since f1 satisfies
(a1) and (a2), we may assume that ϕ(t) = ϑRn , ψ(x) = ϑRn for every
(t, x) ∈ [0, a]× [0, β]. Moreover, it is easy to check that (3) holds.

Now, observe that, thanks to our assumptions, the problem (DP) is
equivalent to the following integral equation:

y(t, x) = f
(
t, x,

t∫
0

x∫
0

y(τ, s) dτ ds,
x∫

0

y(t, s) ds,
t∫

0

y(τ, x)dτ
)
,

(t, x) ∈ [0, a]× [0, β] .

Therefore, by Lemma 3.4 of [2], we may suppose that f is uniformly contin-
uous.

Finally, there is no loss of generality in supposing L1β < 1, for otherwise
the rectangle [0, a]× [0, β] can be divided into a finite number of sufficiently
small rectangles, and Theorem 2.3 applied successively to each of these sub-
rectangles (in a suitable order) (see [4], p. 839, lines 26–29). Let us prove
that (i) of Theorem 2.1 holds. Put, for every ε > 0, d(ε) = ε and fix
ε > 0. There exists δ∗ > 0 such that if t′, t′′ ∈ [0, a], z′, z′′, z′2, z

′′
2 ∈ Rn, and

|t′ − t′′| < δ∗, ‖z′ − z′′‖ < δ∗, ‖z′2 − z′′2 ‖ < δ∗, then

(6) ‖f(t′, x, z′, z1, z
′
2)− f(t′′, x, z′′, z1, z

′′
2 )‖ < (1− L1β) d(ε)

for every x ∈ [0, β], z1 ∈ Rn. Let δ = min(δ∗, δ∗/β) and let t′, t′′ ∈ [0, a],
z′, z′′, z′i, z

′′
i ∈ Rn, i = 1, 2, such that |t′−t′′| < δ, ‖z′−z′′‖ < βδ, ‖z′1−z′′1 ‖ ≤

βd(ε), ‖z′2 − z′′2 ‖ < δ.
Thanks to (a2) and (6), one has

‖f(t′, x, z′, z′1, z
′
2)− f(t′′, x, z′′, z′′1 , z

′′
2 )‖

≤ ‖f(t′, x, z′, z′1, z
′
2)− f(t′, x, z′, z′′1 , z

′
2)‖

+ ‖f(t′, x, z′, z′′1 , z
′
2)− f(t′′, x, z′′, z′′1 , z

′′
2 )‖

< L1βd(ε) + (1− L1β)d(ε) = d(ε)

for every x ∈ [0, β]. Now, let us take c = +∞. Since (j1) of Theorem 2.3
follows at once from (a1), to complete the proof we must only verify that (j2)
of Theorem 2.3 holds. Fix % > 0 and, for every (t, u, v) ∈ [0, a]× R+

0 × R+
0 ,

put w(t, u, v) = 2L2u. Of course, the function w is nondecreasing with
respect to u and, thanks to Gronwall’s Lemma, 1) of (j2) of Theorem 2.3
holds. Let t ∈ ]0, a[, U ⊆ C0([0, β],Rn), V ⊆ B(v0, c), with γ(U) < % and
0 < γ(V ) < %. If σ > 0, (u, v) ∈ U × V , x′, x′′ ∈ [0, β] and |x′ − x′′| ≤ σ,
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then∥∥∥f(t, x′, x′∫
0

u(s) ds,
x′∫

0

v(s) ds, u(x′)
)

− f
(
t, x′′,

x′′∫
0

u(s) ds,
x′′∫
0

v(s) ds, u(x′′)
)∥∥∥

≤ L1‖v‖C0([0,β],Rn)|x′ − x′′|+ L2‖u(x′)− u(x′′)‖

+ ω(f,
√

(1 + ‖u‖2C0([0,β],Rn))(x
′ − x′′)2 ) .

Taking into account that f is uniformly continuous, this implies that

lim
σ→0+

sup
(u,v)∈U×V

sup
{∥∥∥f(t, x′, x′∫

0

u(s) ds,
x′∫

0

v(s) ds, u(x′)
)

− f
(
t, x′′,

x′′∫
0

u(s) ds,
x′′∫
0

v(s) ds, u(x′′)
)∥∥∥ :

x′, x′′ ∈ [0, β], |x′ − x′′| ≤ σ
}

≤ lim
σ→0+

[σL1 sup
v∈V
‖v‖C0([0,β],Rn) + L2ω(U, σ)

+ ω(f,
√

(1 + sup
u∈U
‖u‖2C0([0,β],Rn))σ

2 )]

= L2ω0(U) = 2L2γ(U) = w(t, γ(U), γ(V )) .

This shows 2) of (j2) of Theorem 2.3 and completes the proof.

To give an idea of the nature of the previous existence theorems of clas-
sical solutions for a Darboux problem for an hyperbolic partial differential
equation with implicit mixed derivative, we recall here the following result
(see [1], p. 85, and [2], p. 114), which is a simple consequence of Theorem A.

Theorem B. Let f be a continuous function from [0, a]× [0, β]× (Rn)4

into Rn and let ϕ ∈ C1([0, a]Rn), ψ ∈ C1([0, β],Rn) such that ϕ(0) = ψ(0).
Assume that :

(b1) there exists a positive constant r such that ‖f(t, x, z, z1, z2, z3)‖ ≤ r
for every (t, x) ∈ [0, a]× [0, β] and every z, zi ∈ Rn, i = 1, 2, 3;

(b2) there exist L1, L2 ≥ 0, N ∈ [0, 1[ such that , for every (t, x) ∈
[0, a]× [0, β] and every z, z′i, z

′′
i ∈ Rn, i = 1, 2, 3, one has

‖f(t, x, z, z′1, z
′
2, z
′
3)− f(t, x, z, z′′1 , z

′′
2 , z
′′
3 )‖

≤ L1‖z′1 − z′′1 ‖+ L2‖z′2 − z′′2 ‖+N‖z′3 − z′′3 ‖ .
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Then the Darboux problem
∂2z

∂t∂x
= f

(
t, x, z,

∂z

∂t
,
∂z

∂x
,
∂2z

∂t∂x

)
,

z(t, 0) = ϕ(t),
z(0, x) = ψ(x),

has at least one solution in the class E([0, a]× [0, β],Rn).

P r o o f. Thanks to (b2), for every fixed (t, x, z, z1, z2) ∈ [0, a] × [0, β] ×
(Rn)3 there exists a unique point f0(t, x, z, z1, z2) ∈ Rn such that

(7) f(t, x, z, z1, z2, f0(t, x, z, z1, z2)) = f0(t, x, z, z1, z2) .

Hence, to prove our assertion, it suffices to verify that the function f0 :
[0, a]×[0, β]×(Rn)3 → Rn so defined satisfies the assumptions of Theorem A.

Let ξ, ξ1, ξ2, . . . be a sequence in [0, a]×[0, β]×(Rn)3 such that limk→∞ ξk
= ξ. The functions f(ξ, ·), f(ξk, ·) (k ∈ N) are contractions on Rn with
the same constant N and, for every η ∈ Rn, one has limk→∞ f(ξk, η) =
f(ξ, η). This implies that limk→∞ f0(ξk) = f0(ξ). Hence, the function f0 is
continuous.

Assumption (a1) of Theorem A follows at once from (7) and (b1). Let
us prove (a2). Fix (t, x) ∈ [0, a] × [0, β], z, z′i, z

′′
i ∈ Rn, i = 1, 2. Thanks to

(7) and (b2), one has

‖f0(t, x, z, z′1, z
′
2)− f0(t, x, z, z′′1 , z

′′
2 )‖ ≤ L1‖z′1 − z′′1 ‖+ L2‖z′2 − z′′2 ‖

+N‖f0(t, x, z, z′1, z
′
2)− f0(t, x, z, z′′1 , z

′′
2 )‖ .

Taking into account that N < 1, we get

‖f0(t, x, z, z′1, z
′
2)− f0(t, x, z, z′′1 , z

′′
2 )‖ ≤ L1

1−N
‖z′1 − z′′1 ‖+

L2

1−N
‖z′2 − z′′2 ‖ .

This completes the proof.

Finally, we give an example of application of Theorem 2.3, where it is
impossible to apply Theorem B, since (b2) does not hold.

Example 2.1. Let g(t, x, z, z2) : [0, a] × [0, β] × R2 → R be a uniformly
continuous function such that :

(g1) there exists a positive constant r such that |g(t, x, z, z2)| ≤ r for
every (t, x) ∈ [0, a]× [0, β] and every z, z2 ∈ R;

(g2) there exists L2 ≥ 0 such that , for every (t, x) ∈ [0, a] × [0, β] and
every z, z′2, z

′′
2 ∈ R, one has

|g(t, x, z, z′2)− g(t, x, z, z′′2 )| ≤ L2|z′2 − z′′2 | .
Let h : [0, a]× [0, β]→ R be a continuous function such that

(h) |h(t, x)| ≤ 1
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for every (t, x) ∈ [0, a]× [0, β] and let k : R→ R be a Lipschitzian function,
with Lipschitz constant 1, such that k(0) = 0 and

(k) there exists ϑ ∈ [0, 1/2[ such that |k(z′3) − k(z′′3 )| ≤ ϑ|z′3 − z′′3 | for
every z′3, z

′′
3 ∈ [−(1 + r), (1 + r)].

Finally , let u0 ∈ C0([0, β]R) such that

(8) g
(

0, x,
x∫

0

u0(s) ds, u0(x)
)

= 0

for all x ∈ [0, β].
Then the Darboux problem

∂2z

∂t∂x
= g

(
t, x, z,

∂z

∂x

)
+ h(t, x) sin k

(
∂2z

∂t∂x

)
,

z(t, 0) = 0,

z(0, x) =
x∫

0

u0(s) ds,

has at least one solution in the class E([0, a]× [0, β],R).

P r o o f. For every (t, x) ∈ [0, a]× [0, β], z, z2, z3 ∈ R, put

f(t, x, z, z2, z3) = g(t, x, z, z2) + h(t, x) sin k(z3) .

The function f : [0, a] × [0, β] × R3 → R so defined is continuous and,
if we take v0 = ϑB , thanks to (8), (3) holds. Now, fix ε ∈ ]0, π] and take
ε1, ε2 ∈ ]0, π] such that

ε1 + ε2 + 2 sin(ε/2) ≤ ε .
There exists δ∗ > 0 such that if t′, t′′ ∈ [0, a], z′, z′′, z′2, z

′′
2 ∈ R and |t′−t′′| <

δ∗, |z′ − z′′| < δ∗, |z′2 − z′′2 | < δ∗ then

(9) |g(t′, x, z′, z′2)− g(t′′, x, z′′, z′′2 )| < ε1, |h(t′, x)− h(t′′, x)| < ε2

for every x ∈ [0, β]. Let δ = min(δ∗, δ∗/β) and let t′, t′′ ∈ [0, a], z′, z′′, z′i, z
′′
i

∈ R, i = 2, 3, such that |t′−t′′| < δ, |z′−z′′| < βδ, |z′2−z′′2 | < δ, |z′3−z′′3 | ≤ ε.
Taking into account (9) and (k), we obtain

|f(t′, x, z′, z′2, z
′
3)− f(t′′, x, z′′, z′′2 , z

′′
3 )|

≤ |g(t′, x, z′, z′2)− g(t′′, x, z′′, z′′2 )|+ |h(t′, x)− h(t′′, x)|

+ | sin k(z′3)− sin k(z′′3 )| < ε1 + ε2 + 2 sin(|k(z′3)− k(z′′3 )|/2)

≤ ε1 + ε2 + 2 sin(ε/2) ≤ ε
for every x ∈ [0, β]. Hence,

|f(t′, x, z′, z′2, z
′
3)− f(t′′, x, z′′, z′′2 , z

′′
3 )| ≤ d(ε)
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for all x ∈ [0, β], where

d(ε) =
{
ε if ε ∈ ]0, π],
2 + ε if ε ∈ ]π,+∞[.

This shows (i) of Theorem 2.1.
Next, take c = 1 + r and observe that (j1) of Theorem 2.3 follows at

once from (g1) and (h). Let us prove that (j2) of Theorem 2.3 holds. To
this end, assume % = 1 + r and, for every (t, u, v) ∈ [0, a] × R+

0 × R+
0 , put

w(t, u, v) = 2L2u + 2ϑv. Of course, the function w is nondecreasing with
respect to u and since ϑ < 1/2, thanks to Gronwall’s Lemma, 1) holds.
Now, fix t ∈ ]0, a[, U ⊆ C0([0, β],R), V ⊆ B(ϑB , c), with γ(U) < % and
0 < γ(V ) < %. Let σ > 0, (u, v) ∈ U × V , x′, x′′ ∈ [0, β] such that
|x′ − x′′| ≤ σ. Taking account of (g2) and (k), we get∣∣∣f(t, x′, x′∫

0

u(s) ds, u(x′), v(x′)
)
− f

(
t, x′′,

x′′∫
0

u(s) ds, u(x′′), v(x′′)
)∣∣∣

≤ L2|u(x′)− u(x′′)|+ ω(g,
√

(1 + ‖u‖2C0([0,β],R)σ
2 )

+ ω(h, σ) + ϑ|v(x′)− v(x′′)| .

From this, by means of the usual reasoning, it follows that

lim
σ→0+

sup
(u,v)∈U×V

sup
{∣∣∣f(t, x′, x′∫

0

u(s) ds, u(x′), v(x′)
)

−f
(
t, x′′,

x′′∫
0

u(s) ds, u(x′′), v(x′′)
)∣∣∣ : x′, x′′ ∈ [0, β], |x′ − x′′| ≤ σ

}
≤ 2L2γ(U) + 2ϑγ(V ) ≤ w(t, γ(U), γB(ϑB ,c)(V )) .

This shows 2) and we can apply Theorem 2.3. It yields that there exists at
least one solution of (DP)1 in the class E([0, a]× [0, β],R), as desired.
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