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Singular sets of separately analytic functions

by Zbigniew B Locki (Kraków)

Abstract. We complete the characterization of singular sets of separately analytic
functions. In the case of functions of two variables this was earlier done by J. Saint
Raymond and J. Siciak.

1. Introduction. If Ω is an open subset of Rn1 × . . . × Rns , then we
say that a function f : Ω → C is p-separately analytic (1 ≤ p < s) if for
every x0 = (x0

1, . . . , x
0
s) ∈ Ω and for every sequence 1 ≤ i1 < . . . < ip ≤ s

the function

(xi1 , . . . , xip)→ f(x0
1, . . . , xi1 , . . . , xip , . . . , x

0
s)

is analytic in a neighbourhood of (x0
i1
, . . . , x0

ip
). For a p-separately analytic

function f in Ω let

A(f) := {x ∈ Ω : f is analytic in a neighbourhood of x}
denote its set of analyticity , and S(f) := Ω \A(f) its singular set.

If X and Y are any sets, S ⊂ X × Y and (x0, y0) ∈ X × Y , then we
define S(x0, · ) := {y ∈ Y : (x0, y) ∈ S}, S(· , y0) := {x ∈ X : (x, y0) ∈ S}.

The following theorems characterize singular sets of separately analytic
functions.

Theorem A. If f is p-separately analytic in Ω, then for every sequence
1 ≤ j1 < . . . < jq ≤ s, where q := s − p, the projection of S(f) on Rnj1 ×
. . .× Rnjq is pluripolar (in Cnj1 × . . .× Cnjq ).

Theorem B. Let S be a closed subset of Ω such that for every sequence
1 ≤ j1 < . . . < jq ≤ s, where q := s− p, the projection of S on Rnj1 × . . .×
Rnjq is pluripolar. Then there exists a p-separately analytic function f in
Ω such that S = S(f).

Theorem C. Let f be p-separately analytic in Ω. If 1 ≤ k < s, then for
quasi-almost all x ∈ Rn1 × . . .× Rnk (that is, for x ∈ Rn1 × . . .× Rnk \ P ,
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where P is pluripolar), S(f(x, · )) = S(f)(x, · ).

Theorems A and B in case s = 2, p = n1 = n2 = 1 were proved by
Saint Raymond [2]. This result was generalized by Siciak [5], who proved
Theorem A for p ≥ s/2 and Theorem B. The aim of this paper is to give a
proof of Theorem C; then, as a trivial consequence, we get Theorem A.

2. Preliminaries. We need the following two theorems:

Siciak’s theorem ([3]; see also [4], Theorem 9.7). For j = 1, . . . , s let
Dj = D1

j × . . .×D
nj

j , where the Dt
j are open sets in C, symmetric about the

xt-axis (t = 1, . . . , nj), and Kj = K1
j × . . .×K

nj

j , where the Kt
j are closed

intervals in Dt
j ∩ R. Let f be a separately holomorphic function in

X :=
s⋃
j=1

K1 × . . .×Dj × . . .×Ks

(that is, for every (x1, . . . , xs) ∈ K1 × . . . ×Ks and for every j = 1, . . . , s
the function f(x1, . . . , xj−1, · , xj+1, . . . , xs) is holomorphic in Dj). Then f
can be extended to a holomorphic function in a neighbourhood of X (1).

Bedford–Taylor theorem on negligible sets [1]. If {uj}j∈J is
a family of plurisubharmonic functions locally bounded from above then the
set

{z ∈ D : u(z) := sup
j∈J

uj(z) < u∗(z)}

is pluripolar (u∗ denotes the upper regularization of u).

3. Proofs

T h e o r e m C ⇒ T h e o r e m A: We may assume that (j1, . . . , jq) =
(1, . . . , q). Then it is enough to take k = q and see that for x ∈ Rn1 × . . .×
Rnk , S(f(x, · )) = ∅.

P r o o f o f T h e o r e m C. We can write
Rn1 × . . .× Rns = (Rn1 × . . .× Rnp)× . . .× (Rnap+1 × . . .× Rnk)

×(Rnk+1 × . . .× Rnk+p)× . . .× (Rnk+bp+1 × . . .× Rns),

where a = [k/p], b = [(s − k)/p]. Then f is separately analytic (that is,
1-separately analytic) with respect to such variables. Therefore it is enough
to prove Theorem C for p = 1. Let {Xν × Yν}ν∈N be a countable family

(1) In fact we use Siciak’s theorem under the additional assumption that f is bounded.
In this case the proof is much simpler—it can be deduced from Theorem 2a in [3].
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of closed intervals in (Rn1 × . . . × Rnk) × (Rnk+1 × . . . × Rns) such that⋃∞
ν=1Xν × Yν = Ω. It is clear that

{x ∈ Rn1 × . . .× Rnk : S(f(x, · ))  S(f)(x, · )}

⊂
∞⋃
ν=1

{x ∈ Xν : S(f(x, · )) ∩ Yν  S(f)(x, · ) ∩ Yν} .

Hence we may assume that f is separately analytic in a closed interval
I1× . . .×Is ⊂ Rn1× . . .×Rns (that is, analytic in some open neighbourhood
of this interval).

To prove Theorem C we have to show that the set

Zf,k := {x ∈ I1 × . . .× Ik : S(f(x, · ))  S(f)(x, · )}
is pluripolar.

For (x, y) ∈ (I1 × . . . × Ik) × (Ik+1 × . . . × Is) such that y ∈ A(f(x, · ))
define

Qf,k(x, y) := sup
|α|≥1

∣∣∣∣ 1
α!
∂|α|f

∂yα
(x, y)

∣∣∣∣1/|α|
(of course Qf,k(x, y) < ∞ and f(x, · ) is holomorphic in the polydisc P (y,
1/Qf,k(x, y))).

For y ∈ Ik+1 × . . .× Is let

Ff,k(y) := {x ∈ A(f)(· , y) : Qf,k(· , y) is not upper semicontinuous at x} .

Theorem C is proved by induction on k. First assume that k = 1.

1o The projection of S(f) on I2 × . . . × Is is nowhere dense in Rn2 ×
. . .×Rns , that is, there exists an open, dense subset U of I2 × . . .× Is such
that I1 × U ⊂ A(f). In particular , A(f) is dense in I1 × . . .× Is.

P r o o f (induction on s). The same proof applies to the case s = 2 and
to the step s− 1⇒ s. We have

I1 = [a1, b1]× . . .× [an1 , bn1 ] .

Define for m ∈ N
Im1 := {z ∈ Cn1 : max

1≤t≤s
dist(zt, [at, bt]) < 1/m} ,

Em := {y1 ∈ I2 × . . .× Is : f(·, y1) is holomorphic in Im1 ,

sup
z∈Im

1

|f(z, y1)| ≤ m} .

We have Em ⊂ Em+1,
⋃∞
m=1Em = I2 × . . . × Is. First we want to show

that the set U1 :=
⋃∞
m=1 intEm is dense in I2 × . . .× Is. Let Y ′ be a closed

interval in I2 × . . . × Is, and H a family of closed intervals which form a
countable base of the topology in Y ′. For x1 ∈ I1 the set A(f(x1, · )) is
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dense: this is trivial if s = 2 and follows from the inductive assumption if
s ≥ 3. Therefore, if for H ∈ H we set

AH := {x1 ∈ I1 : f(x1, · ) is analytic in H} ,

it follows that
⋃
H∈HAH = I1. We claim that there exists H0 ∈ H such

that the set AH0 is determining for functions holomorphic in a complex
neighbourhood of I1. Indeed, suppose not. Then all the sets AH (H ∈ H)
are nowhere dense in I1 and by the Baire theorem we get a contradiction.
Hence, by Montel’s lemma, the sets Em∩H0 (m ∈ N) are closed, and, again
by the Baire theorem, U1 ∩ H0 6= ∅. Therefore U1 is open and dense in
I2 × . . .× Is. Analogously to Im1 and U1 we define Imj and Uj (j = 2, . . . , s,
m ∈ N). Take a closed interval K2 × . . .×Ks ⊂ U1. Since the Uj are dense
we can find closed intervals K̃1 ⊂ I1, K̃j ⊂ Kj (j = 2, . . . , s) and m ∈ N
such that for j = 1, . . . , s

K̃1 × . . .× K̃j−1 × K̃j+1 × . . .× K̃s ⊂ Uj ,

and f is separately holomorphic and bounded by m in
s⋃
j=1

K̃1 × . . .× Imj × . . .× K̃s .

Hence, by Siciak’s theorem, I1 × K̃2 × . . .× K̃s ⊂ A(f).

2o For y1 ∈ U the set Ff,1(y1) is pluripolar.

P r o o f. Since I1 × {y1} ⊂ A(f) we see that there exist a complex
neighbourhood D of I1 and a complex neighbourhood B of y1 such that f
is holomorphic in D ×B. By the Bedford–Taylor theorem

N :=
{
z ∈ D : ϕ(z) := sup

|α|≥1

∣∣∣∣ 1
α!
∂|α|f

∂yα1
(z, y1)

∣∣∣∣1/|α| < ϕ∗(z)
}

is pluripolar, and of course Ff,1(y1) ⊂ N .

3o If V is a countable and dense subset of U then Zf,1 ⊂
⋃
y1∈V Ff,1(y1).

P r o o f. Take x0
1 ∈ Zf,1. We can find y0

1 ∈ I2 × . . . × Is such that
(x0

1, y
0
1) ∈ S(f), but y0

1 ∈ A(f(x0
1, · )). Hence f(x0

1, · ) is holomorphic in
the polydisc P (y0

1 , 1/Qf,1(x0
1, y

0
1)) ⊂ CN , where N := n2 + . . . + ns. Let

λ be such that 0 < λ ≤ 1/4 and (1 − λ)−1−N < 2 and let r := min{1,
1/Qf,1(x0

1, y
0
1)}. For y1 ∈ ϑ := P (y0

1 , λr) ⊂ CN we have

f(x0
1, y1) =

∑
α

1
α!
∂|α|f

∂yα
(x0

1, y
0
1)(y1 − y0

1)α .
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We deduce that∣∣∣∣ 1
β!
∂|β|f

∂yβ1
(x0

1, y1)
∣∣∣∣ ≤ Qf,1(x0

1, y
0
1)|β|

∑
α

(α+ β)!
α!β!

λ|α|

= Qf,1(x0
1, y

0
1)|β| (1− λ)−|β|−N ,

hence
Qf,1(x0

1, y1) ≤ (1− λ)−1−NQf,1(x0
1, y

0
1) < 2/r .

By 1o there exists ỹ1 ∈ ϑ ∩ V . It is enough to show that x0
1 ∈ Ff,1(ỹ1).

Assume this is not so, that is, Qf,1(· , ỹ) is upper semicontinuous at x0
1.

Therefore there exists a closed interval K, a neighbourhood of x0
1 in I1 such

that for x1 ∈ K
Qf,1(x1, ỹ) < 2/r .

The function f(x1, · ) is holomorphic in a neighbourhood of ỹ1 (because
ỹ1 ∈ U , hence (x1, ỹ1) ∈ A(f)) and so it is holomorphic in the polydisc
P (ỹ1, 1/Qf,1(x1, ỹ1)). We have

P (ỹ1, 1/Qf,1(x1, ỹ1)) ⊃ P (ỹ1, r/2) ⊃ ϑ ,
hence for x1 ∈ K, f(x1, · ) is holomorphic in ϑ. Moreover, for y1 ∈ ϑ we
have

|f(x1, y1)| ≤
∑
α

Qf,1(x1, y1)|α|(λr)|α| ≤
∑
α

2−|α| = 2N .

Let U1 and Im1 be as in the proof of 1o. Take a closed interval H ⊂ ϑ ∩ U1.
We can find m such that f is separately holomorphic (as a function of two
variables: x1 ∈ I1 and y1 ∈ I2×. . .×Is) and bounded by m in K×ϑ∪Im1 ×H.
By Siciak’s theorem (x0

1, y
0
1) ∈ A(f), a contradiction.

By 2o and 3o we deduce that Zf,1 is pluripolar. Thus we have proved
the first inductive step: we have shown that Theorem C is true for k = 1
and any s ≥ 2. Now let k ≥ 2 and assume that Theorem C is true for k− 1
and any s ≥ k.

4o The set

W := {y ∈ Ik+1 × . . .× Is : S(f(· , y)) = S(f)(· , y)}
is dense in Ik+1 × . . .× Is.

P r o o f. As we have just shown Theorem C is true for k = 1. Using
this k times for any k > 1 we see that for quasi-almost all xs ∈ Is,. . . , for
quasi-almost all xk+1 ∈ Ik+1 we have

S(f(· , xk+1, . . . , xs)) = S(f)(· , xk+1, . . . , xs) .

In particular, W is dense.

5o For y ∈W the set Ff,k(y) is pluripolar.
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P r o o f. If L b A(f)(· , y), then in the same way as in the proof of 2o we
show that Ff,k(y) ∩ L is pluripolar.

6o If W ′ is a countable and dense subset of W , then the set

R := Zf,k \
⋃
y∈W ′

(S(f(· , y)) ∪ Ff,k(y))

is pluripolar.

P r o o f. Take any x0 ∈ R. By the definition of Zf,k we can find y0 ∈
Ik+1 × . . . × Is such that (x0, y0) ∈ S(f), but y0 ∈ A(f(x0, · )). Define
g := f(x0

1, . . . , x
0
k−1, · ). First we want to show that (x0

k, y
0) ∈ A(g). Assume

(x0
k, y

0) ∈ S(g). We have y0 ∈ A(g(x0
k, · )), therefore x0

k ∈ Zg,1. By 3o we
can find y ∈ W ′ such that x0

k ∈ Fg,1(y), that is, Qg,1(· , y) is not upper
semicontinuous at x0

k. By the definition of R and W we have

x0 ∈ A(f(· , y)) \ Ff,k(y) = A(f)(· , y) \ Ff,k(y) ,

whence Qf,k(· , y) is upper semicontinuous at x0
k. In particular, Qf,k(x0

1, . . .
. . . , x0

k−1, · , y) = Qg,1(· , y) is upper semicontinuous at x0, a contradiction.
Thus (x0

k, y
0) ∈ A(g), hence

(x0
k, y

0) ∈ S(f)(x0
1, . . . , x

0
k−1, · ) \ S(f(x0

1, . . . , x
0
k−1, · )) ,

and so (x0
1, . . . , x

0
k−1) ∈ Zf,k−1. We have shown that the projection of R on

I1× . . .×Ik−1 is contained in Zf,k−1, which is, by the inductive assumption,
pluripolar. In particular, R is pluripolar.

By the inductive assumption Theorem C is true for any separately ana-
lytic function of k variables, hence for such functions Theorem A is true as
well. In particular, for y ∈ Ik+1 × . . . × Is the set S(f(· , y)) is pluripolar.
Therefore, by 4o, 5o and 6o, Zf,k is pluripolar. The proof of Theorem C is
complete.
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