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Singular sets of separately analytic functions

by ZBIGNIEW Brocki (Krakéw)

Abstract. We complete the characterization of singular sets of separately analytic
functions. In the case of functions of two variables this was earlier done by J. Saint
Raymond and J. Siciak.

1. Introduction. If {2 is an open subset of R™* x ... x R"=, then we
say that a function f : 2 — C is p-separately analytic (1 < p < s) if for
every 29 = (29,...,2%) € 2 and for every sequence 1 <i; < ... <1, <s

the function

(Tiy,y v, ) —>f(m(l],...,xil,...,@p,...,xg)
0

is analytic in a neighbourhood of (z7,,..

function f in {2 let
A(f) :={z € 2 : f is analytic in a neighbourhood of z}

denote its set of analyticity, and S(f) := 2\ A(f) its singular set.
If X and Y are any sets, S C X x Y and (2°,9°) € X x Y, then we
define S(2°,-):={y e Y : (2% y) € S}, S(-,9y°) :={z € X : (z,y°) € S}.
The following theorems characterize singular sets of separately analytic
functions.

., x?p). For a p-separately analytic

THEOREM A. If f is p-separately analytic in (2, then for every sequence
1 <ji1 <...<jq <s, where q == s — p, the projection of S(f) on R™1 x
... X R"%a gs pluripolar (in C"1 x ... x C™a).

THEOREM B. Let S be a closed subset of 2 such that for every sequence
1<j1<...<jq<s, where q := s — p, the projection of S on R™1 x ... x
R"™a s pluripolar. Then there exists a p-separately analytic function f in
2 such that S = S(f).

THEOREM C. Let f be p-separately analytic in 2. If 1 < k < s, then for
quasi-almost all x € R™ x ... x R™ (that is, for x € R™ x ... x R" \ P,
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where P is pluripolar), S(f(z,-)) = S(f)(x, ).

Theorems A and B in case s = 2, p = n; = no = 1 were proved by
Saint Raymond [2]. This result was generalized by Siciak [5], who proved
Theorem A for p > s/2 and Theorem B. The aim of this paper is to give a
proof of Theorem C; then, as a trivial consequence, we get Theorem A.

2. Preliminaries. We need the following two theorems:

SICIAK’S THEOREM ([3]; see also [4], Theorem 9.7). For j =1,...,s let
D; = Djl» XX D;”, where the D;: are open sets in C, symmetric about the
x-azis (t=1,...,n;), and K; = KJ1 X ... X K]T-”, where the K; are closed

intervals in D; NR. Let f be a separately holomorphic function in

X:=|JKix...xDjx...xK,
j=1
(that is, for every (x1,...,x5) € K1 X ... x Kq and for every j = 1,...,s
the function f(z1,...,2;-1,,%j41,...,%s) is holomorphic in D;). Then f
can be extended to a holomorphic function in a neighbourhood of X (1).

BEDFORD-TAYLOR THEOREM ON NEGLIGIBLE SETS [1]. If {u;};cs is

a family of plurisubharmonic functions locally bounded from above then the
set

{z€D:u(z):= 5,1611; uj(z) <u*(2)}

is pluripolar (u* denotes the upper reqularization of u).

3. Proofs

Theorem C = Theorem A: We may assume that (ji,...,J,) =
(1,...,q). Then it is enough to take k = ¢ and see that for x € R™ x ... x
R, S(f(x,-)) = 0.

Proof of Theorem C. We can write
R™ x ... xR™ = (R™ x...x R"™) x ... x (R"»+1 x ... x R"™)

X (R™EH1 % oo x R™47) x oo x (R0 0 x R™),
where a = [k/p], b = [(s — k)/p]. Then f is separately analytic (that is,

1-separately analytic) with respect to such variables. Therefore it is enough
to prove Theorem C for p = 1. Let {X, x Y, },en be a countable family

(1) In fact we use Siciak’s theorem under the additional assumption that f is bounded.
In this case the proof is much simpler—it can be deduced from Theorem 2a in [3].
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of closed intervals in (R™ x ... x R™) x (R™+! x ... x R™) such that
Uo—, X, x Y, = 2. Tt is clear that

{z € R™ x ... x R™ :S(f(z,)) & S(f)(z,)}
c Ulz e X :S(fa.))NY, €S )Y}

v=1
Hence we may assume that f is separately analytic in a closed interval
I x...xI; CR™ x...xR™ (that is, analytic in some open neighbourhood
of this interval).
To prove Theorem C we have to show that the set

Zig ={x el x...x I : S(f(z,-)) & S(f)(x, )}
is pluripolar.
For (z,y) € (I1 x ... x I;) X (Ix41 X ... x I5) such that y € A(f(z,-))
define
1 a|a|f 1/|Oé|

| Dy (,y)

(of course Q¢ i(x,y) < oo and f(z,-) is holomorphic in the polydisc P(y,

1/Qrk(z,y)))-
Fory € Ipyq x ... x I let

Qyr(z,y) := sup
|a]>1

Frr(y) ={z € A(f)(-,y) : Q¢x(-,y) is not upper semicontinuous at x}.
Theorem C is proved by induction on k. First assume that k = 1.

1° The projection of S(f) on Iy X ... x I is nowhere dense in R™ X
... X R"s that is, there exists an open, dense subset U of Is x ... x I such
that Iy x U C A(f). In particular, A(f) is dense in Iy X ... x I.

Proof (induction on s). The same proof applies to the case s = 2 and
to the step s — 1 = s. We have

Il = [al,bl] X ... X [anl,bnl].
Define for m € N

Im={zeC™: Jax dist(zy, [ag, b)) < 1/m},

E, ={y1 € I x ... x Is: f(-,y1) is holomorphic in I7",

sup [f(z,y1)] < m}.
zel™
We have E,, C Eyi1, Upo—y Em = Io X ... x I,. First we want to show
that the set Uy := Jo-_, int By, is dense in I x ... x I,. Let Y’ be a closed
interval in Iy x ... X I, and H a family of closed intervals which form a
countable base of the topology in Y’. For x; € I; the set A(f(xq1,-)) is
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dense: this is trivial if s = 2 and follows from the inductive assumption if
s > 3. Therefore, if for H € ‘H we set

Ag :={x1 € I, : f(z1,-) is analytic in H},

it follows that UHGH Apg = I;. We claim that there exists Hy € H such
that the set Ay, is determining for functions holomorphic in a complex
neighbourhood of I;. Indeed, suppose not. Then all the sets Ay (H € H)
are nowhere dense in I; and by the Baire theorem we get a contradiction.
Hence, by Montel’s lemma, the sets E,, N Hy (m € N) are closed, and, again
by the Baire theorem, U; N Hy # (). Therefore U; is open and dense in
Iy x ... x I5. Analogously to I7" and U; we define I7" and U; (j =2,...,s,
m € N). Take a closed interval Ky x ... x Ky C U;. Since the U; are dense
we can find closed intervals K; C Iy, IN(j CK;j(j=2,...,s)and m € N
such that for j =1,...,s

I~(1><...><I~(j_1><I~(j+1><...><f~(5CUj,

and f is separately holomorphic and bounded by m in

Ulz'lx...xljmx...xfz’s.
j=1

Hence, by Siciak’s theorem, I; x Ky x ... x K, C A(f). m
2° For y; € U the set Fy1(y1) is pluripolar.

Proof. Since I1 x {y1} C A(f) we see that there exist a complex
neighbourhood D of I; and a complex neighbourhood B of y; such that f
is holomorphic in D x B. By the Bedford—Taylor theorem

1 a|a|f 1/]ef
al Oy

N = {z €D :yp(z):= sup (z,91)

jal>1

)
is pluripolar, and of course Fy1(y1) C N. m
3° If V'is a countable and dense subset of U then Zg1 C U, cv Fra1(y1)-

Proof. Take 33(1) € Zg1. We can find y(l) € I, x ... x I, such that
(29,99) € S(f), but y? € A(f(2?,-)). Hence f(z9,-) is holomorphic in
the polydisc P(y?,1/Qs1(29,y?)) € CV, where N := ny + ... + ns. Let
A be such that 0 < A < 1/4 and (1 — A\)7'™" < 2 and let r := min{1,
1/Qs1(29,40)}. For yy € 9 := P(y?,Ar) C CV we have

|
fat gy =S L2

- (ﬂfga y?)(yl - y?)a :
|
— a oy“
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We deduce that

'1 olbl ¥

(o + B)!
@@@?7%)

0 ,0y8 AR N (7
Snyl(xlvyl) Za: OJ'B' /\

= Qya(2d,yN)Pl (1 — NI

hence

Qra(al,yn) <A =N)""NQpa(al, o) < 2/r.
By 1° there exists g1 € 9 N V. It is enough to show that 29 € Fy1(y1).
Assume this is not so, that is, Qf1(-,y) is upper semicontinuous at :1:?.
Therefore there exists a closed interval K, a neighbourhood of 2! in I such
that for z; € K

Qf,1(371,@ < 2/7"
The function f(z1,-) is holomorphic in a neighbourhood of 3; (because
y1 € U, hence (z1,91) € A(f)) and so it is holomorphic in the polydisc
P(y1,1/Qy1(x1,91)). We have
P(y1,1/Qg1(x1,91)) D P(y1,7/2) D9,

hence for x; € K, f(z1,-) is holomorphic in ¥. Moreover, for y; € 9 we
have

[f@,u)] <0 Qpa(wy,yn) (M)l <3 27lel = 2N,

Let U; and IT" be as in the proof of 1°. Take a closed interval H C 9 N Uj.
We can find m such that f is separately holomorphic (as a function of two
variables: z1 € I1 and y; € Iox...xI) and bounded by m in K xJUI]" x H.
By Siciak’s theorem (z9,4?) € A(f), a contradiction. m

By 2° and 3° we deduce that Z;; is pluripolar. Thus we have proved
the first inductive step: we have shown that Theorem C is true for k£ = 1
and any s > 2. Now let £ > 2 and assume that Theorem C is true for k — 1
and any s > k.

4° The set
Wi={y € Iy1 x ... x Iy : S(f(-,9)) = S(f) (-, v)}
is dense in Ipyq X ... % Is.

Proof. As we have just shown Theorem C is true for £ = 1. Using
this k times for any £ > 1 we see that for quasi-almost all x5 € Ig,..., for
quasi-almost all xg41 € I we have

S(f(- g1y xs)) =Sy Thg1s. -, Ts) -
In particular, W is dense. m

5° Fory € W the set Fy (y) is pluripolar.
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Proof. If L € A(f)(-,y), then in the same way as in the proof of 2° we
show that Ff;(y) N L is pluripolar. =

6° If W' is a countable and dense subset of W, then the set
R:=Zs \ U )U Fri(y))

yeWw’

is pluripolar.

Proof. Take any 2° € R. By the definition of Zy; we can find ¢y° €
Iit1 % ... x I, such that (29 4°) € S(f), but y° € A(f(2°-)). Define
g = f(m(l], eIy ). First we want to show that (z9,4°) € A(g). Assume
(29,9°) € S( ). We have 3° E A(g(z%,-)), therefore 2{ € Z,1. By 3° we
can find y € W’ such that =9 € F,1(y), that is, Qg1(-,y) is not upper
semicontinuous at xk By the definition of R and W we have

2’ € A(fC, )\ Fra(y) = AN C )\ Fre(),

Whence Qy.x(-,y) is upper semicontinuous at z?. In particular, Q (29, ..
29, ,y) = Qg1(-,y) is upper semicontinuous at z°, a contradiction.
Thus (29,4°) € A(g), hence

(xlw )QS(f)(l’l, xk: 1 )\S( (371,”-7«@2_1,‘)),

and so (29,...,2% ) € Zsx—1. We have shown that the projection of R on
Iy x...x1Ij;_q is contained in Z; ;,_1, which is, by the inductive assumption,
pluripolar. In particular, R is pluripolar. =

By the inductive assumption Theorem C is true for any separately ana-
lytic function of k variables, hence for such functions Theorem A is true as
well. In particular, for y € 41 X ... x I the set S(f(-,y)) is pluripolar.
Therefore, by 4°, 5° and 6°, Zy, is pluripolar. The proof of Theorem C is
complete.
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