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On branches at infinity of a pencil of
polynomials in two complex variables

by T. KrRASINSKI (L6dZ)

Abstract. Let F' € C[z,y]. Some theorems on the dependence of branches at infinity
of the pencil of polynomials f(z,y) — A, A € C, on the parameter \ are given.

1. Introduction. W. Engel [2] took the following fact for granted: “For
a special member of the pencil f(z,y) — A\, A € C, the number of branches
at infinity cannot be greater than the corresponding number for the general
one” and used it in a proof of Keller’s Jacobian Conjecture. T. T. Moh [3]
claims the falsehood of the above statement, quoting a counterexample (un-
published) given to him by S. S. Abhyankar. T. T. Moh proves there that
if f(x,y) has only one branch at infinity, then so does each element of the
pencil f(z,y) — A\, A € C.

We obtain some results on branches of the pencil of polynomials f(z,y)—
A, A € C, without any additional assumptions. Namely, we prove that the
number of branches at infinity of polynomials of this pencil is constant in
the plane of the variable A, excluding a finite set which is effectively defined
(see Theorem 1). Moreover, outside these “bad” points, the branches at
infinity have parametrizations analytically depending on A (see Theorem 2).

In the last section we give examples which show that the above number
of branches at infinity (even counted with multiplicities) is neither lower
nor upper semicontinuous. The first of these examples disproves Engel’s
statement. Both examples contradict a proposition of S. S. Abhyankar given
by T. T. Moh [3].

2. Branches at infinity. For every R > 0 and t; € C, we put
K(tg,R)={teC:|t—to| < R}, K(R) ={t € C: |t| > R}. Further, for an
open set U C C", we denote by O(U) the ring of holomorphic functions in U.
We shall consider the space C? as being imbedded in the complex projective
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space P2 in the following way: C? > (z,y) — (z:y:1) € P2. Denote by Uy,
Us, Us the canonical affine subspaces of P2, i.e. Uy = {(z:y:2) € P? : x # 0}
and similarly for Us, Us; 01, 02, 03 are the canonical maps of these subspaces
onto C?,i.e. o1 : Uy — C?, 01((z:y:2)) = (y/, z/x) and similarly for o2, 3.

Let F € Clz,y], f # const. Let V be the set of zeros of f in C?
and V its closure in P?. As is known, V is the set of zeros in P? of the
homogenization f* of f. Let fi, fo. f3 denote the canonical holomorphic
functions generated by f* in Uy, Uy, Us, respectively, i.e. fi : U3 — C,
fil(z:y:2)) = f*(1,y/z, z/z) and similarly for fo and fs.

Let Py, ..., P, be the points of f at infinity, i.e. the common points of V'
and the line at infinity Ho, = {(z:y:2) : 2 = 0}. Take one of these points, say
P;. There exists j such that P; € U;. Consider the germ (f;)p, of f; in the
ring Op, of germs of holomorphic functions at P;. Let (f;)p, = & ... &k be
a factorization into irreducible and non-associated factors in Op,. Then the
germ V p, of the set V at P; has a decomposition Vp, = V(&) U...UV (&)
into the union of irreducible germs. Obviously, the germs V(&) and the
exponents [; do not depend on the choice of the set U; which contains P;
because in each intersection U;, N Uj,, ji1 # j2, the holomorphic functions
f;, and f;, differ by a holomorphic nowhere vanishing factor. Thus the
following definition makes sense.

DEFINITION. Each of the germs V(&5), s = 1,...,m, is called a branch
of f at infinity at P; (or shortly, a branch of f at P;), whereas the exponent
ls of the factor & in the factorization of (f;)p, is called the multiplicity of
the branch V (§s). The number of branches of f at P; is denoted by rp,(f),
and when counted with multiplicities, by 7p,(f). The set of branches of
f at infinity at all points P;, i = 1,...,k, is called the set of branches of
f at infinity, their number being denoted by r(f), and when counted with
multiplicities, by 7(f).

Note that the number of branches of f at infinity and their multiplicities
do not depend on the choice of a linear coordinate system in C? because
any linear change of coordinates in C? extends to a biholomorphism of P?
preserving the line at infinity. So, in the sequel, we shall assume that the
polynomial f has the form

1) fly) =y" +a(@)y" "+ +an(@),
a; € Clz], dega; <i,i=1,...,n, n>1.

This implies that the points of f at infinity lie in Uy, and that deg f = n.
Moreover, if f has the form (1), then the branches of f at infinity and their
multiplicities can be characterized in the ring M[y] where M is the field of
germs of meromorphic functions in z at the point co € C. Namely, we have
the following more or less known
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PROPOSITION. Let ]? be the element in M[y| generated by a polynomial
f of the form (1). Let f: ﬁlll . ﬁjr be a factorization offz'nto irreducible,
non-associated and monic factors in M[y]. Then there exists a canonical
bijection between the factors ﬁl, e ,l:"\r of the factorization of f and the
branches of f at infinity. Moreover, the exponents of these factors are equal
to the multiplicities of the corresponding branches.

Sketch of the proof. Since Py,..., P, € Uy, we put Q; = 01(F;) and
g1 = fio 91_1. It suffices to show that there exists a canonical bijection
between the factors I Tyeons ,ﬁr and the non-associated factors of the factor-
izations of the germs (g1)q,, ¢ = 1,...,k, and that the exponents of the
factors ﬁz are equal to the exponents of the corresponding factors.

Let ﬁz(y) =y +atyni! +...+&fw a;i eM,n;>1,1=1,...,r.
Take representatives oz; of the germs &;, defined in some K (R), R > 0, such
that f = F!* ... F' in K(R) x C where F;(z,y) = y™ + o (z)y™ ' +...+
o, (x). Since there exists a canonical parametrization of the zero-set of F;
in K(R') x C for some R’ > R (see [1]), we easily deduce that the closure of
this set on the line H., is exactly one of the points P;. Denote it by P;).

In the coordinates (y, z) of the map p; we have in the set {(y,2) : 0 <
2 < /R, 01(y,2) = Froor (5:2) = 2" f(1/2,y/2) = G2 (3, 2) ... Gl (3, 2)
where G;(y,2z) = 2" F;(1/z,y/z) = y"i +zai (1/2)y™ F +.. .+ 2"al, (1/2).
From (1) and the equality f = Fi* ... F! it easily follows that each of the
functions 27’ (1/z) has a removable singularity at 0. Hence each G; extends
to a holomorphic function on {(y, z) : |z| < 1/R}. From the definition of G;
it easily follows that it vanishes only at one point on the line z = 0, namely
at Q;i)-

Next, one can easily check that the germ (G;)q,, is irreducible and
different from any other germ (Gi)q,,, | # . Thus the correspondence

F (Gi)q,, is the required bijection.

3. Analytic dependence of branches at infinity on a parameter.
Let f € Clz,y] have the form (1). Put f* = f — A\, A € C. Denote by
D(\, z) the discriminant of f*. By the definition, we have

(2)  D(\z)==R(f*0f*/0y)

1 ay(z) e an(z) + A
......... Lom@ e
_ 1 ai(x) an(z) + A
n (n—1)a(z) ap—1(x)
el @
n (n—1)ai(x) ap—1(x)
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where R(f*,0f*/0y) is the resultant of f* and 9f*/dy. From (2) we obtain
D\ ) = coN)2™ + cr(MN)aN "t + ... + en(A) where N > 0, ¢; € C[A].
Obviously, dege; <n —1,i=0,1,...,N, and cy(A) = (£1)n" A"~ 1 + ...
By the last equality, D(\, x) does not vanish identically. So, we can assume
that ¢g #Z 0. Define A(f) = {\ € C: co(N) = 0}.

LEMMA 1. The set A(f) is finite and #A(f) < n — 1. Moreover, for
each Ao & A(f), there exist a neighbourhood Uy, of Ao and R > 0 such that
D\, z) # 0 for any (N, z) € Uy, x K(R).

Proof. The first assertion is obvious. Take \g & A(f). By an ele-
mentary inequality for the zeros of a polynomial in one variable, all roots
of D(Ag,z) = 0 lie in the closed disc centred at 0 and with radius R’ =
2sup; |ci(Xo)/co(Xo)|'/?. Take R > R’. From the continuity of ¢;(\)/co(N),
t=1,...,N, at Ao it follows that there exists a neighbourhood U}, of g
such that 2sup; |¢;(A)/co(N)|/* < R for A € Uy,. So, by the same elemen-
tary inequality, D(\, z) # 0 for (A, z) € Uy, X K(R).

We shall now prove the main lemma on the analytic dependence of factors
of the factorizations of f* in M[y] on the parameter A. The idea of the proof
is taken from the local result given in [4].

LEMMA 2. Let f be a polynomial in two variables x and y whose coef-
ficients are analytic functions of the parameter A\, A\ € K(X\o,d), Ao € C,
6 >0, and let f have the form

(3) fzy) =y"+a(Xa)y" 4. +a,(N\z), n>1

If there ezists R > 0 such that the discriminant D(\, x) of the polynomial (3)
does not vanish at any point of K(\g,0) x K(R), then

(i) there exist r,nq,...,n, € N and monic polynomials F; € O(K (Ao, 9)
x K(R))[y] of degree n;, i =1,...,r, such that ny + ...+ n, =n and

(4) f=Fi...F, in O(K(\,8) x K(R))ly]

and, for any fized X € K(X\o,0), the factors F;(\,-,-) generate irreducible
elements in M|y,

(ii) there exist r holomorphic mappings ®; : K(),6) x K(RY™) —
K(R)xC,i=1,...,r, of the form ®;(\,t) = (t",¢i(A, 1)), such that, for
any fired X € K(Xo,9) and i € {1,...,r}, the mapping ®;(A,-) parametrizes
the zero-set of Fi(\,-,) in K(R)xC (i.e. (), ) is a holomorphic bijection)
and @;(A,-) is meromorphic at co.

Proof. Let 6 € R be such that R = exp(—2n#). Consider the polyno-
mial p(A\, w,y) = f(\ exp(2miw),y) € O(A)[y] where A = {(\,w) : Imw <
0, A € K(X\o,6)}. The discriminant of p is equal to D(\, exp(2miw)) and
thus it vanishes nowhere in A. So, if p(A, w,y) = 0 for some (A, w) € A and
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y € C, then (9p/dy)(\,w,y) # 0. Since p is a polynomial of degree n and A
is a simply connected domain, therefore by the monodromy theorem there
exist n holomorphic functions py,...,p, in A with different values at each
point (A, w) € A such that
(5) A w,y) = [ —pi(\w) in OA)y).

i=1

Note that p(A,w + 1,y) = p(A, w,y). Consequently, (5) implies that for
each i, 1 < i <mn, there exist j, 1 < j <n, such that p;(A\,w+1) = p;(\, w).
Hence for each i, 1 < i < n, there exists k(i), 1 < k(i) < n, such that
pi(Aw + k(i) = pi(A\,w). So, by a suitable renumbering of the p; we can
divide the sequence p1,...,p, into cycles, i.e. there exist r,n1,...,n, such
that ny + ...+ n, = n and the first ny functions form a cycle (which means
that p1(A\,w + 1) = pa(A, w), p2(A,w+ 1) = ps(A,w),...,pp, (A, w+1) =
p1(A, w)), the next ny functions form a cycle, etc.

Consider the first cycle py,...,pn,. Put X = K(RY™) and define ¢} :
K(X,0) x X — C, i =1,...,n1, by pl(\,t) = pi(A\,njw), where w =
(27i)~1logt. Obviously, ¢! is well-defined, holomorphic (because locally
there exists a branch of logt in X) and for any (\,t) € K(Xg,d) x X the
values p!(\,t), i = 1,...,nq, are different. Moreover, the functions ¢},
1=1,...,n1, form a Puiseux cycle, i.e. for each primitive n;-root of unity ¢
we can renumber the ¢! in such a way that ! (\,t) = p1(\,ei71t) for each
1= 1, ey ng.

Note that for any fixed (A, t) € K()\g,d) x X the values (), t), i =
1,...,n1, are roots of the equation f(\,t"*,y) = 0 because for any w
such that t = exp(2miw) we have f(A\ "1, o1 (\t)) = f(\ exp(2miniw),
(A, exp(2miw))) = p(\, nyw, p;(\, nqw)) = 0. Hence

(6) FOt™ ) = (¥ — 01N 8) ... (y — on (L) F(N L),

where f € O(K (Ao, ) x X)[y] is monic of degree n — n;. Since the ¢!
form a Puiseux cycle, therefore [T/, (y — @i (N, 1)) = y™ +ai (A, t")y™ 1 +
.4 ap, (A, t"), for some holomorphic a}. Hence and from (6) we find that
the coefficients of f also depend on ¢". So, putting Fy N x,y) = y™ +
at(\,z)y™t+ .. +ah (A z) we have f = FyF in O(K (X, 0) x K(R))[y],
where F is monic of degree n — n;.

Fix A € K(\g,9). Since p}(\,+) € O(X), i =1,...,n;, satisfy the alge-
braic equation f(\,t",y) = 0, therefore they are meromorphic at oo (see
Th. 14.2 in [5]). Hence the coefficients a} (), ) € O(K(R)), i =1,...,n4, of
F} are also meromorphic at co. So, Fy (), -, ) defines an element F} € M[y\]

It is an irreducible element. In fact, otherwise we would have ﬁf‘ = ang
in M[y], where the G; are monic and 0 < degG; < ny, i = 1,2. Taking
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representatives Gy, Go of @1, G\Q with coefficients holomorphic in a K (é),
R > R, such that Fy(),-,-) = G1G2 in O(K(R))[y], we would casily check
that for any t € K (R!/™) the equation G1(¢™,y) = 0 has n; different roots
©r(\,t), i =1,...,n1, which is impossible.

For (\,t) € K(\g, ) x K (RY™) we put ¢1(\,t) = o} (A, t) and &1 (), t) =
(t™, p1(A,t)). From the above it follows that for any fixed A € K (Ao, d) the
mapping ®; (A, -) parametrizes the zero-set of Fy(A,-,-) in K(R) x C.

Proceeding analogously with the remaining cycles in the sequence
Pi,-..,Pn We obtain r polynomials F, ..., F,. € O(K()\g,0) x K(R))[y] and
the mappings @1, ..., ®,, which satisfy (4) and the remaining assertions of
the lemma.

THEOREM 1. Let f € C[z,y] be of the form (1). Then, for any X\ ¢ A(f),
each branch at infinity of the polynomial f* = f — X has multiplicity 1 and
the number r(f) of branches at infinity is a constant independent of .

Proof. Fix Ao ¢ A(f). Then, by Lemma 1, there exist 6 > 0 and R > 0
such that D(\, x) vanishes nowhere in K (\g, §) x K(R). Hence, from the first
equality in (2) and a property of the resultant, and from the characterization
of the branches at infinity given in our proposition, we obtain the first part
of the theorem. Next, from Lemma 2 it follows that there exists » € N such
that, for any fixed A € K (Ao, ), the element ]ﬁ € M[y] generated by f* is
a product of r irreducible factors in M[y]. Hence, from the first part of the
theorem and the proposition it follows that r(f*) = r for A € K (A, d). So,
the number of branches at infinity of f* for A € C\ A(f) is locally constant,
and hence constant, since C \ A(f) is connected.

From Lemma 2 it also follows that the branches at infinity of the poly-
nomials of the pencil f*, A ¢ A(f), and their parametrizations depend
analytically on the parameter X\. Namely, we have

THEOREM 2. Let f € Clxz,y] be of the form (1) and let r be the constant
number of branches at infinity of the polynomials f*, X\ ¢ A(f).Then, for
any Ao ¢ A(f), there exist 6 > 0, R > 0, ny,...,n, € N and monic polyno-
mials F; € O(K(X\,d) x K(R))[y] of degree n; such that f> = Fy ... F, in
this ring and, for any fired X € K (Ao, 0), the polynomials F;(\,-,-) generate
irreducible non-associated elements in M[y|. Moreover, there ezist r holo-
morphic mappings ®; : K(X\g,0) x K(RY/™) — K(R) x C,i=1,...,7, of
the form @;(\,t) = (t™, p;(\t)) such that, for any fized A € K(\o,0) and
i€ {1,...,r}, the mapping ®;(A,-) parametrizes the zero-set of F;(X,-,) in
K(R) x C, and ¢;(),-) is meromorphic at co.

Proof. By Lemma 1, there exist § > 0, R > 0 such that D(\, x)
vanishes nowhere in K(\p,d) x K(R). Hence, by Lemma 2, we obtain a
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factorization of f» into factors F; and parametrizations ®; satisfying the
assertion of the theorem.

3. Examples. In this section we shall give examples complementing the
above considerations. The first example contradicts Engel’s claim and shows
that the numbers 7(f*) and 7(f*) of branches at infinity are not lower semi-
continuous. Moreover, it also shows that Abhyankar’s statement, annouced
by T. T. Moh (see Remark in [3]), is not true.

EXAMPLE 1. Put f(x,y) = zy? + y. The points at infinity of each
polynomial fA, X € C, are P; = (1:0:0) and P, = (0:1:0). It is not hard to
show that

re,(f) =7 () = {; igiiigz

TPQ(fA) = ?PQ(f’\) =1 foreach A €C.
Hence we obtain

AN _reay [ 2 for AF#0,
r(f)—r(f)—{3 for A = 0.
The second example, which was kindly indicated to me by Z. Jelonek,

shows that r(f*) and 7(f*) are not, in general, upper semicontinuous.

EXAMPLE 2. Put f(z,y) = y — (xy — 1)2. The points at infinity of each
polynomial f*, A\ € C, are P, = (1:0:0) and P, = (0:1:0). It can be shown
that

~ f
== {3 320

rp,(fN) =7p,(f}) =1 for each X € C.
Hence we obtain

== (3 3L
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