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On the dependence of the Bergman
function on deformations of the Hartogs domain

by Zbigniew Pasternak-Winiarski (Warszawa)

Abstract. We apply the Rudin idea to represent the Bergman kernel of the Hartogs
domain as the sum of a series of weighted Bergman functions in the study of the depen-
dence of this kernel on deformations of the domain. We prove that the Bergman function
depends smoothly on the function defining the Hartogs domain.

1. Introduction. The problem of the dependence of the Bergman
function on deformations of the domain has been considered by Greene and
Krantz in the papers [3] and [4]. In [4] it is proved that for any % > 0
the restriction KD|D×D\∆% of the Bergman function KD of a C∞ strongly
pseudoconvex domain D in Cn to the set D×D\∆%, where ∆% := {(z, w) ∈
D×D : |z−w|+ dis(z, ∂D) + dis(w, ∂D) < %}, depends continuously on D
in the C∞ topology. In this paper we suppose that D = Ω(ϕ,m) ⊂ Cn+m

is a Hartogs domain defined by a fixed open bounded set Ω ⊂ Cn, a natural
number m and a lower semicontinuous positive bounded function ϕ : Ω → R
(see Section 3). In Section 4 we show (see Theorem 2) that for any compact
set Z ⊂ Ω(ϕ,m)×Ω(ϕ,m) the restriction KΩ(ϕ,m)|Z depends smoothly on
ϕ. Here we consider KΩ(ϕ,m)|Z as an element of the Banach space C(Z) of
all continuous complex-valued functions on Z. In the proof of Theorem 2
we use the Rudin idea to represent the Bergman function on the Hartogs
domain Ω(ϕ,m) as the sum of some series of weighted Bergman functions
on Ω (see [2], [6], [7] or [13]). This approach allows us to make the most of
the results on weighted Bergman functions obtained in [11]. The necessary
definitions and facts concerned weighted Bergman functions are collected in
Section 2. The properties of the Bergman function on a Hartogs domain
as well as a suitable differentiable structure on the set LSP(Ω) of all lower
semicontinuous positive bounded functions on Ω and on the range space for
the transform LSP(Ω) 3 ϕ 7→ KΩ(ϕ,m) are described in Section 3.
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Without any further explanations we use the following symbols: N—the
set of natural numbers; Z+ := N∪{0}; R—the set of reals; C—the complex
plane; Xm—the mth Cartesian power of the set X.

2. Admissible weights and weighted Bergman functions. Let
W (Ω) be the set of all weights (of integration) on an open nonempty set
Ω ⊂ Cn, i.e., of all Lebesgue measurable real-valued positive functions de-
fined on Ω. If µ ∈W (Ω) then L2H(Ω,µ) denotes the space of all µ-square
integrable holomorphic functions on Ω. For any z ∈ Ω we define the evalu-
ation functional Ez on L2H(Ω,µ) as follows:

Ezf := f(z), f ∈ L2H(Ω,µ) .

A weight µ on Ω is called admissible if L2H(Ω,µ) is a closed subspace of
the Hilbert space L2(Ω,µ) of all µ-square integrable functions on Ω and if
for any z ∈ Ω the evaluation functional Ez is continuous on L2H(Ω,µ).
The set of all admissible weights on Ω will be denoted by AW (Ω) (see [11]
and [12]). It is proved in [11] (see also [12]) that if µ ∈ W (Ω) and 1/µ is
locally integrable then µ is an admissible.

Let Ũ(Ω) := {g ∈ L∞R (Ω) : ess infz∈Ω g(z) > 0}. We will consider W (Ω)
as a differentiable (analytic) Banach manifold with the differential structure
given by the atlas {(Φ̃−1

µ , Φ̃µ(Ũ(Ω))), µ ∈W (Ω)}, where for each µ ∈W (Ω)
the map Φ̃µ : Ũ(Ω)→W (Ω) is defined by

(1) [Φ̃µ(g)](z) := g(z)µ(z), g ∈ Ũ(Ω), z ∈ Ω .

It turns out that AW (Ω) is an open submanifold of W (Ω) (see [11]).
For µ ∈ AW (Ω) the evaluation functional Ez is uniquely represented by

a function ez,µ ∈ L2H(Ω,µ) in the sense of the Riesz theorem. The function
K(µ) : Ω ×Ω → C given by

[K(µ)](z, w) := ez,µ(w), z, w ∈ Ω ,

is called the µ-Bergman function of Ω (see [1], [11] or [12]). The following
facts are basic for our study.

Theorem 1. For any µ ∈ AW (Ω) the function K(µ) has the following
properties:

(i) [K(µ)](z, w) = [K(µ)](w, z), z, w ∈ Ω;
(ii) [K(µ)](z, w) is real-analytic, holomorphic in z and antiholomorphic

in w;
(iii) if Pµ is the 〈·|·〉µ-orthogonal projection of L2(Ω,µ) onto L2H(Ω,µ)

then for any z ∈ Ω and each f ∈ L2(Ω,µ)

(2) [Pµf ](z) =
∫
Ω

[K(µ)](z, w)f(w)µ(w) dw2n ,
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i.e., K(µ) is the µ-integral kernel of the operator Pµ;
(iv) for any z, w ∈ Ω

(3) 〈[K(µ)](·, z)|[K(µ)](·, w)〉µ = [K(µ)](z, w) ,

and

(4) ‖[K(µ)](·, z)‖µ = ‖[K(µ)](z, ·)‖µ = [K(µ)]1/2(z, z) .

P r o o f. For the proof of (i)–(iii) we refer to [12, Theorem 2.1]. The
statement (iv) is an immediate consequence of (iii).

Let HA(Ω) be the real vector space of all complex-valued functions on
Ω ×Ω which are real-analytic, holomorphic with respect to the first n vari-
ables and antiholomorphic with respect to the last n variables. We endow
HA(Ω) with the Fréchet space topology given by the family of seminorms
{‖ · ‖X : X ⊂ Ω,Xcompact}, where

‖F‖X := sup
(z,w)∈X×X

|F (z, w)|, F ∈ HA(Ω) .

It now follows from Theorem 1 that the definition of a weighted Bergman
function can be interpreted as the definition of a functional (nonlinear) trans-
form K : AW (Ω) → HA(Ω). It is proved in [11, Theorem 5.1] that K is
analytic. Here we only need the formula for the kth total derivative of the
superposition K ◦ Φ̃µ, where µ ∈ AW (Ω) (see (1)). We have

(5) [D(k)
g K(gµ)h(k)](z, w) = (−1)kk! [K(k)

g,µh
(k)](z, w) ,

where

[K(k)
g,µ(h1, . . . , hk)](z, w) :=

∫
Ω

[K(gµ)](u1, w)h1(u1)µ(u1) du2n
1(6)

×
∫
Ω

[K(gµ)](u2, u1)h2(u2)µ(u2) du2n
2

. . .
∫
Ω

[K(gµ)](uk, uk−1)hk(uk)[K(gµ)](z, uk)µ(uk) du2n
k ,

g ∈ Ũ(Ω), h1, . . . , hk ∈ L∞R (Ω), z, w ∈ Ω ,

and the integral on the right hand side is an iterated integral (see [11,
Theorem 5.1, Corollary 5.1].

Proposition 1. Let µ ∈ AW (Ω), g ∈ Ũ(Ω) and let e1, . . . , ek ∈ L∞R (Ω).
Then for any (z, w) ∈ Ω ×Ω

(7) |[K(k)
g,µ((e1g), . . . , (ekg))](z, w)|

≤ [K(gµ)]1/2(z, z)[K(gµ)]1/2(w,w)‖e1‖ . . . ‖ek‖ .
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P r o o f. Since

[K(k)
g,µ((e1g), . . . , (ekg))](z, w)

=
∫
Ω

[K(gµ)](w, u1)e1(u1)g(u1)µ(u1) du2n
1

×
∫
Ω

[K(gµ)](u1, u2)e2(u2)g(u2)µ(u2) du2n
2

. . .
∫
Ω

[K(gµ)](uk−1, uk)ek(uk)[K(gµ)](uk, z)g(uk)µ(uk) du2n
k

= {[Pgµ ◦A(e1)] ◦ . . . ◦ [Pgµ ◦A(ek)][K(gµ)](·, z)}(w), z, w ∈ Ω ,

where

[A(e)f ](z) = e(z)f(z), e ∈ L∞R (Ω), z ∈ Ω, f ∈ L2(Ω, gµ) ,

we obtain (by Theorem 1(iv))

‖[K(k)
g,µ((e1g), . . . , (ekg))](z, ·)‖gµ

≤
k∏
i=1

‖A(ei)‖gµ‖[K(gµ)](·, z)‖gµ =
k∏
i=1

‖ei‖[K(gµ)]1/2(z, z) .

Applying to the above inequality the formula for the norm of the evaluation
functional Ew, i.e.,

‖Ew‖gµ = ‖ew,µ‖gµ = ‖[K(gµ)](w, ·)‖gµ = [K(gµ)]1/2(w,w)

we obtain (7).

Corollary 1. Under the assumptions of Proposition 1, if X1 and X2

are compact subsets of Ω and e = h/g, where h ∈ L∞R (Ω), then for each
(z, w) ∈ X1 ×X2

|[K(k)
g,µh

(k)](z, w)| =
∣∣∣∣[K(k)

g,µ

(
h

g
g

)(k)]
(z, w)

∣∣∣∣(8)

≤ Cx1Cx2‖h/g‖k ≤ Cx1Cx2

(
‖h‖
i(g)

)k
,

where i(g) = ess infz∈Ω g(z) and for any compact X ⊂ Ω
CX := sup

z∈X
[K(gµ)]1/2(z, z) .

The classical Bergman space and the classical Bergman function for the
set Ω ⊂ Cn will be denoted by L2H(Ω) and KΩ respectively.

3. The Bergman function of the bounded Hartogs domain.
From now on we will assume that Ω is bounded.
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Let LSP(Ω) denote the set of all lower semicontinuous positive bounded
functions on Ω. It is clear that if ϕ ∈ LSP(Ω) then 1/ϕ is locally integrable
on Ω. Consequently, LSP(Ω) ⊂ AW (Ω).

Similarly to AW (Ω) the set LSP(Ω) can be endowed with the struc-
ture of a differentiable (analytic) Banach manifold. Namely, let U(Ω) :=
{g ∈ CbR(Ω) : infz∈Ω g(z) > 0}, where CbR(Ω) is the Banach space of all
real-valued bounded continuous functions on Ω (with the norm ‖g‖ =
supz∈Ω |g(z)|, g ∈ CbR(Ω)). Analogously to (1) we define Φϕ : U(Ω) →
LSP(Ω) by

(9) [Φϕ(g)](z) := g(z)ϕ(z), ϕ ∈ LSP(Ω), g ∈ U(Ω), z ∈ Ω .

The family {(Φ−1
ϕ , Φ(U(Ω)) : ϕ ∈ LSP(Ω)} is an atlas for a differentiable

(analytic) Banach manifold structure on LSP(Ω). Since LSP(Ω) ⊂ AW (Ω)
and CbR(Ω) is a closed subspace of L∞R (Ω) and for any ϕ ∈ LSP(Ω)

Φ̃ϕ|U(Ω) = Φϕ

we can apply the results of the previous section to the transform K restricted
to LSP(Ω). In particular, K is analytic on LSP(Ω) and the formulas (5)
and (6) for the total derivative as well as Proposition 1 and Corollary 1 hold
in this case.

For any ϕ ∈ LSP(Ω) and any m ∈ N define

Ω(ϕ,m) := {(z, ξ) ∈ Cn+m : z ∈ Ω, ξ ∈ Cm, |ξ| < ϕ(z)} .
This is the Hartogs domain defined by m and ϕ (and Ω). Since ϕ is lower
semicontinuous and positive, Ω(ϕ,m) is nonempty and open in Cn+m.

Let

(10) UHA(Ω,m) :=
⋃

ϕ∈LSP (Ω)

HA(Ω(ϕ,m)) .

The main purpose of this paper is to investigate the map

(11) LSP(Ω) 3 ϕ 7→ Bm(ϕ) := KΩ(ϕ,m) ∈ UHA(Ω,m) ,

where KΩ(ϕ,m) is the classical Bergman function of Ω(ϕ,m). We first endow
the set UHA(Ω,m) with a suitable topological and differentiable structure.
Namely, if F ∈ UHA(Ω,m) then we denote by ϕ(F ) an element of LSP(Ω)
such that F ∈ HA(Ω(ϕ(F ),m)). It is clear that ϕ(F ) is uniquely determined
by F . For any F0 ∈ UHA(Ω,m), any compact set Z ⊂ Ω(ϕ(F0),m)2 and
any ε > 0 we define the set O(F0, Z, ε) as follows: F ∈ O(F0, Z, ε) iff
Z ⊂ Ω(ϕ(F ),m)2 and for any (z, w) ∈ Z

|F (z, w)− F0(z, w)| < ε .

It is easy to verify that the family {O(F0, Z, ε) : F0 ∈ UHA(Ω,m), Z ⊂
Ω(ϕ(F0),m)2, Z compact, ε > 0} forms a basis of some topology τ on
UHA(Ω,m) (see [9], XII, 1).
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If Z is a compact subset of (Ω × Cm)2 then the set O(Z) := {F ∈
UHA(Ω,m) : Z ⊂ Ω(ϕ(F ),m)2} is open in UHA(Ω,m). We define the map
ψZ : O(Z) 7→ C(Z) as the restriction

(12) ψZ(F ) = F|Z , F ∈ O(Z) ,

where C(Z) is the Banach space of all complex-valued continuous functions
on Z with the standard norm

‖H‖Z = sup
(z,w)∈Z

|H(z, w)|, H ∈ C(Z) .

Proposition 2. Let M be a topological space. A map F : M →
UHA(Ω,m) is continuous iff for any compact set Z ⊂ (Ω × Cm)2 the set
F−1[O(Z)] is open in M and the superposition

ψZ ◦ F : F−1[O(Z)]→ C(Z)

is continuous.

We leave the proof to the reader.
The above considerations suggest the following definition of differentia-

bility.

Definition 1. Let M be a differentiable manifold (finite-dimensional
or Banach). A map F : M → UHA(Ω,m) is said to be differentiable of
class Ck, k = 0, 1, 2, . . . , ∞ or ω, if for any compact set Z ⊂ (Ω×Cm)2 the
set F−1[O(Z)] is open in M and the superposition ψZ ◦ F is differentiable
of class Ck on F−1[O(Z)].

It follows from Proposition 2 that any Ck map F : M → UHA(Ω,m) is
continuous.

R e m a r k 1. In the present paper we do not consider the problem
whether or not UHA(Ω,m) is a differentiable manifold.

In the remaining part of this section we describe the Rudin idea of rep-
resenting the classical Bergman function of the Hartogs domain as the sum
of an infinite series of weighted Bergman functions (see [6] or [7]).

Let ϕ ∈ LSP(Ω). If f is a holomorphic function on Ω(ϕ,m) then

(13) f(z, ξ) =
∞∑
|α|=0

fα(z)ξα, z ∈ Ω, (z, ξ) ∈ Ω(ϕ,m) ,

where fα is holomorphic on Ω for any multiindex α ∈ (Z+)m and the series
converges uniformly on any compact subset of Ω(ϕ,m). This series is called
the Hartogs series of f (see [5] or [14]).

Proposition 3. Let ϕ ∈ LSP(Ω) and m ∈ N.

(i) A function f holomorphic on Ω(ϕ,m) is square integrable iff for any
multiindex α ∈ (Z+)m the α-coefficient fα of f in the Hartogs series is in
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L2H(Ω, cαϕ2|α|+2m) and

(14)
∞∑
|α|=0

‖fα‖2cαϕ2|α|+2m <∞ ,

where cα > 0 is a suitable constant. Moreover ,

(15) ‖f‖2L2 =
∞∑
|α|=0

‖fα‖2cαϕ2|α|+2m .

(ii) If KΩ(ϕ,m) is the Bergman function of Ω(ϕ,m) then for any (z, ξ),
(w, η) ∈ Ω(ϕ,m)

(16) KΩ(ϕ,m)((z, ξ), (w, η)) =
∞∑
|α|=0

ξαKα(z, w)ηα ,

where Kα = K(cαϕ2|α|+2m) is the (cαϕ2|α|+2m)-Bergman function on Ω×Ω.
The series on the right hand side converges uniformly on any compact subset
of Ω(ϕ,m)×Ω(ϕ,m).

For the proof we refer to [7].

R e m a r k 2. If ϕ ∈ LSP(Ω) then for any c > 0 and any p ∈ N the
function cϕp is in LSP(Ω) and therefore cϕp ∈ AW (Ω).

4. Smoothness of the map LSP(Ω) 3 ϕ 7→ Bm(ϕ) := KΩ(ϕ,m) ∈
UHA(Ω,m). Fix ϕ ∈ LSP(Ω) and consider the superposition Bm ◦ Φϕ
(see (9)), i.e., the transform

(17) U(Ω) 3 g 7→ Bm(gϕ) ∈ UHA(Ω,m) .

For any α ∈ (Z+)m define Hα(g) := K(cα(gϕ)2|α|+2m). Then by Proposi-
tion 3

(18) [Bm(gϕ)]((z, ξ), (w, η)) =
∞∑
|α|=0

ξα[Hα(g)](z, w)ηα ,

(z, ξ), (w, η) ∈ Ω(gϕ,m) .

It follows from (5) and (6) that

[DHα(g)h](z, w)(19)
= {[(DfK(cαϕ2|α|+2mf)|f=g2|α|+2m)Dgg

2|α|+2m]h}(z, w)

= − (2|α|+ 2m)
∫
Ω

[Hα(g)](u,w)
h(u)
g(u)

× [Hα(g)](z, u)(g(u)ϕ(u))2|α|+2m du2n ,

α ∈ (Z+)m, h ∈ CbR(Ω), (z, w) ∈ Ω ×Ω .
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We want to show that the transform (17) is differentiable and

(20) [DgBm(gϕ)h]((z, ξ), (w, η)) =
∞∑
|α|=0

ξα[DHα(g)h](z, w)ηα ,

h ∈ CbR(Ω), (z, ξ), (w, η) ∈ Ω(gϕ,m) .

Proposition 4. The series on the right hand side of (20) converges
uniformly on any compact subset of Ω(gϕ,m)2.

P r o o f. Using Proposition 1 and the Schwarz inequality in the space l2

we get
∞∑
|α|=k

(2|α|+ 2m)
∣∣∣∣ξαηα ∫

Ω

[Hα(g)](u,w)
h(u)
g(u)

[Hα(g)](z, u)(21)

× (g(u)ϕ(u))2|α|+2m du2n

∣∣∣∣
≤

∞∑
|α|=k

2(|α|+m)|ξα|[Hα(g)]1/2(z, z)|ηα|[Hα(g)]1/2(w,w)‖h/g‖

≤
( ∞∑
|α|=k

2(|α|+m)|ξα|2[Hα(g)](z, z)
)1/2

×
( ∞∑
|α|=k

2(|α|+m)|ηα|[Hα(g)](w,w)
)1/2

‖h/g‖ ,

(z, ξ), (w, η) ∈ Ω(gϕ,m), k ∈ N .

Note that by (18)
∞∑
|α|=0

2(|α|+m)|ξα|2[Hα(g)](z, z)(22)

= 2
m∑
j=1

ξj
∂[Bm(gϕ)]((z, ξ), (w, η))

∂ξj

∣∣∣∣
z=w
ξ=η

+ 2m[Bm(gϕ)]((z, ξ), (z, ξ)) <∞ .

Analogously
∑∞
|α|=0 2(|α|+m)|ξα|2[Hα(g)](w,w) <∞ and consequently, by

(19), the considered series converges for any (z, ξ), (w, η) ∈ Ω(gϕ,m). It now
follows from the Dini theorem that the series in (22) converges uniformly
on any compact subset of Ω(gϕ,m)2. Hence using once more (19) and the
inequality (21) for k → ∞ we obtain the uniform convergence of the series
in (20) on compact subsets of Ω(gϕ,m)2.
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Lemma 1. Let ϕ ∈ LSP(Ω), g ∈ U(Ω) and let h ∈ CbR(Ω) be such that
‖h‖ < i(g)/2, where i(g) := infz∈Ω g(z). Then for any z ∈ Ω

[Hα(g)](z, z)e−4(|α|+m)‖h‖/i(g) ≤ [Hα(g + h)](z, z)(23)
≤ [Hα(g)](z, z)e4(|α|+m)‖h‖/i(g) .

P r o o f. Fix z ∈ Ω and α ∈ (Z+)m. Let x(t) := [Hα(g + th)](z, z),
t ∈ [0, 1]. Then x is differentiable and by (19)

dx(t)
dt

= [DHα(g + th)h](z, z)

= − 2(|α|+m)
∫
Ω

[Hα(g + th)](u, z)
h(u)

g(u) + th(u)

× [Hα(g + th)](z, u)(g(u) + th(u))2(|α|+m) du2m .

Applying Proposition 1 to the above equality we obtain∣∣∣∣dx(t)
dt

∣∣∣∣ ≤ 2(|α|+m)[Hα(g + th)](z, z)
‖h‖

i(g + th)
(24)

≤ 4(|α|+m)
‖h‖
i(g)

x(t) ,

where we have used the inequality i(g + th) > i(g)/2, which follows from
the assumptions of the lemma. Since Ω, h and ϕ are bounded we see that
for any w ∈ Ω there exists f ∈ L2H(Ω, cα((g + th)ϕ)2|α|+2m) such that
f(w) 6= 0. For example, we can take f = χΩ , the characteristic function of
Ω. Then, by [10], x(t) = [Hα(g + th)](z, z) > 0 for each t ∈ [0, 1]. Dividing
now all members of (24) by x(t) and integrating over [0, s], s ∈ [0, 1], we get

−4(|α|+m)
‖h‖
i(g)

s ≤ ln
x(s)
x(0)

≤ 4(|α|+m)
‖h‖
i(g)

s .

Putting s = 1 and passing to exponential functions we obtain (23).

Now we are in a position to prove the main result of the present paper.

Theorem 2. For each m ∈ N the map

LSP(Ω) 3 ϕ 7→ Bm(ϕ) = KΩ(ϕ,m) ∈ UHA(Ω,m)

is smooth, i.e., it is of class C∞.

P r o o f. It follows from the definition of the differential structures on
LSP(Ω) and UHA(Ω,m) that we should show the smoothness of the maps

(25) (Bm ◦ Φϕ)−1[O(Z)] 3 g 7→ (Ψz ◦ Bm ◦ Φϕ)(g) = Bm(gϕ)|Z ∈ C(Z) ,

where ϕ ∈ LSP(Ω) and Z is an arbitrary compact subset of (Ω × Cm)2. It
is clear that (Bm ◦ Φϕ)−1[O(Z)] = {g ∈ U(Ω) : Z ⊂ (Ω(gϕ,m))2} is open
in U(Ω), which implies that B−1

m [O(Z)] is open in LSP(Ω).
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To avoid tedious considerations we will only prove rigorously the fact that
Bm is of class C1. Moreover, note that any compact subset Z of (Ω×Cm)2

can be covered by a finite sum
⋃p
i,j=1 Zi,j of compact sets which have the

form

(26) Zi,j = (Yi ×B(0, Ri))× (Yj ×B(0, Rj)) ,

where Yi ⊂ Ω is compact and B(0, Ri) = {ξ ∈ Cm : |ξ| ≤ Ri} is a closed ball
in Cm for i = 1, . . . , p. Moreover, if Z ⊂ Ω(Ψ,m)2 for some Ψ ∈ LSP(Ω) one
can choose Yj and Rj in such a way that Zi,j ⊂ Ω(Ψ,m)2 for i, j = 1, . . . , p.
Hence it is enough to assume that Z = Z1,2 (see (26)).

Consider the second derivative of Hα, where α ∈ (Z+)m. By direct
calculations (using (5) and the chain rule) we obtain

[D(2)Hα(g)(h1, h2)](z, w)

= (2|α|+ 2m)2
{ ∫
Ω

[H(g)](u1, w)
h1(u1)
g(u1)

cα[g(u1)ϕ(u1)]2|α|+2m du2n
1

×
∫
Ω

[Hα(g)](u2, u1)
h2(u2)
g(u2)

[Hα(g)](z, u2)cα[g(u2)ϕ(u2)]2|α|+2m du2n
2

+
∫
Ω

[Hα(g)](u1, w)
h2(u1)
g(u1)

cα[g(u1)ϕ(u1)]2|α|+2m du2n
1

×
∫
Ω

[Hα(g)](u2, u1)
h1(u2)
g(u2)

[Hα(g)](z, u2)cα[g(u2)ϕ(u2)]2|α|+2m] du2n
2

}
− (2|α|+ 2m)(2|α|+ 2m− 1)

∫
Ω

[Hα(g)](u,w)
h1(u)h2(u)
g(u)2

[Hα(g)](z, u)

× cα[g(u)ϕ(u)]2|α|+2m du2n, g ∈ U(Ω), h1, h2 ∈ CbR(Ω), z, w ∈ Ω .

Hence, by Proposition 1,

|[D(2)Hα(g)(h1, h2)](z, w)|(27)
≤ [2(2|α|+ 2m)2 + (2|α|+ 2m)(2|α|+ 2m− 1)]
× [Hα(g)]1/2(z, z)[Hα(g)]1/2(w,w)‖h1/g‖ · ‖h2/g‖

≤ a(α,m)[Hα(g)]1/2(z, z)[Hα(g)]1/2(w,w)
‖h1‖ · ‖h2‖

i(g)2
,

g ∈ U(Ω) , h1, h2 ∈ CbR(Ω) , z, w ∈ Ω , α ∈ (Z+)m ,

where
a(α,m) := 12|α|2 + (24m− 2)|α|+ 12m2 − 2m.

Let

(28) [D(2)Bm(gϕ)(h1, h2)]((z, ξ), (w, η))
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:=
∞∑
|α|=0

ξα[D(2)Hα(g)(h1, h2)](z, w)ηα, (z, ξ), (w, η) ∈ Ω(gϕ,m) .

Using (27) and the Schwarz inequality we get
∞∑
|α|=k

|ξα[D(2)Hα(g)(h1, h2)](z, w)ηα|(29)

≤
( ∞∑
|α|=k

a(α,m)[Hα(g)](z, z)|ξα|2
)1/2

×
( ∞∑
|α|=k

a(α,m)[Hα(g)](w,w)|ηα|2
)1/2 ‖h1‖ · ‖h2‖

i(g)2
,

(z, ξ), (w, η) ∈ Ω(gϕ,m), k ∈ N .

Note that for a given (z, ξ) ∈ Ω(gϕ,m),
∞∑
|α|=0

|α|2[Hα(g)](z, z)|ξα|2(30)

=
m∑

i,j=1

ξiηj
∂2[Bm(gϕ)]((z, ξ), (w, η))

∂ξi∂ηj

∣∣∣∣
z=w
ξ=η

<∞ .

Similarly
∞∑
|α|=0

|α|[Hα(g)](z, z)|ξα|2(31)

=
m∑
j=1

ξj
∂[Bm(gϕ)]((z, ξ), (w, η))

∂ξj

∣∣∣∣
z=w
ξ=η

<∞ ,

and

(32)
∞∑
|α|=0

m[Hα(g)](z, z)|ξα|2 = m[Bm(gϕ)]((z, ξ), (w, η)) <∞ .

This means that the series on the right hand side of (28) converges absolutely
on Ω(gϕ,m)2. Analogously to the proof of Proposition 4 one can show that
it converges uniformly on any compact subset of Ω(gϕ,m)2.

By (29) and (23), if ‖h1‖, ‖h2‖ < i(g)/2 then
∞∑
|α|=0

|ξα[D(2)Hα(g + th2)(h1, h2)](z, w)ηα|(33)
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≤
( ∞∑
|α|=0

a(α,m)[Hα(g)](z, z)e4(|α|+m)‖h2‖/i(g)|ξα|2
)1/2

×
( ∞∑
|α|=0

a(α,m)[Hα(g)](w,w)e4(|α|+m)‖h2‖/i(g)|ηα|2
)1/2

× 4‖h1‖ · ‖h2‖
i(g)2

, t ∈ [0, 1] .

Let Z = Z1,2 (see (26)) be a compact subset of Ω(gϕ,m)2. There exists
r > 0 such that for any (z, ξ) = (z; ξ1, . . . , ξm) ∈ Yi ×B(0, Ri)

(z; |ξ1|+ r, |ξ2|+ r, . . . , |ξm|+ r) ∈ Ω(gϕ,m), i = 1, 2 .

Write ξ u r := (|ξ1| + r, . . . , |ξm| + r) for ξ = (ξ1, . . . , ξm) ∈ Cm and Zr :=
{(z, ξ u r), (w, η u r)) ∈ (Cn × Cm)2 : ((z, ξ), (w, η)) ∈ Z}. It is clear that
Zr is a compact subset of Ω(gϕ,m)2. Let σ > 0 be such that

σ ≤
(

1− m

m+ 1

)
i(g)

2
ln
(

1 +
r

Ri

)
, i = 1, 2 .

Then for any α ∈ (Z+)m

σ ≤
(

1− m

|α|+m

)
i(g)

2
ln
(

1 +
r

Ri

)
,

which implies

e2(|α|+m)σ/i(g) ≤ (1 + r/Ri)|α|, i = 1, 2 .

Since for any (z, ξ) ∈ Yi ×B(0, Ri)(
1 +

r

Ri

)|α|
≤
(
|ξ1|+ r

|ξ1|

)α1

. . .

(
|ξm|+ r

|ξm|

)αm
, α = (α1, . . . , αm) ,

we obtain

e4(|α|+m)σ/i(g)|ξα|2 ≤ (|ξ1|+ r)2α1 . . . (|ξm|+ r)2αm .

Hence, for ‖h2‖ < σ,
∞∑
|α|=0

a(α,m)[Hα(g)](z, z)e4(|α|+m)‖h2‖/i(g)|ξα|2(34)

≤
∞∑
|α|=0

a(α,m)[Hα(g)](z, z)(|ξ1|+ r)2α1 . . . (|ξm|+ r)2αm ≤ Cir ,

(z, ξ) ∈ Xi := Yi ×B(0, Ri) , i = 1, 2 ,
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where

Cir := sup
(v,κ)∈Xr

i

[
12

m∑
k,j=1

ξkηj
∂2[Bm(gϕ)]((z, ξ), (w, η))

∂ξk∂ηj

∣∣∣∣
z=w=v
ξ=η=κ

+ (24m− 2)
m∑
j=1

ξj
∂[Bm(gϕ)]((z, ξ), (w, η))

∂ξj

∣∣∣∣
z=w=v
ξ=η=κ

+ (12m2 − 2m)[Bm(gϕ)]((v, κ), (v, κ))
]

and Xr
i = {(z, ξ u r) ∈ Ω(gϕ,m) : (z, ξ) ∈ Xi} for i = 1, 2 (see (30)–(32)

and (27)). Consequently, the series on the left hand side of (33) converges
absolutely on [0, 1]×Z. Using arguments similar to the proof of Proposition 4
we conclude that this series converges uniformly on [0, 1]× Z.

Now let δ > 0 be such that δ < min{i(g)/2, σ} and for any h ∈ CbR(Ω)
the condition ‖h‖ < δ implies Z,Zr ⊂ Ω((g + h)ϕ,m)2. If ‖h‖ < δ and
((z, ξ), (w, η)) ∈ Z then by the Taylor formula (see [8])∣∣∣[Bm((g + h)ϕ)]((z, ξ), (w, η))− [Bm(gϕ)]((z, ξ), (w, η))

−
∞∑
|α|=0

ξα[DHα(g)h](z, w)ηα
∣∣∣

≤
∞∑
|α|=0

|[Hα(g + h)](z, w)− [Hα(g)](z, w)− [DHα(g)h](z, w)| · |ξαηα|

≤
∞∑
|α|=0

1∫
0

(1− t)|[D(2)Hα(g + th)h(2)](z, w)ξαηα| dt ≤ 4C1
rC

2
r

‖h‖2

i(g)2

(see (33)), which means that (20) is true.
In order to prove the continuity of the map

U(Ω) 3 g 7→ Dg[Bm(gϕ)]|Z ∈ L(CbR(Ω), C(Z))

note that

|[DgBm((g + h2)ϕ)h1]((z, ξ), (w, η))− [DgBm(gϕ)h1]((z, ξ), (w, η))|

≤
∞∑
|α|=0

|ξα([DHα(g + h2)h1](z, w)− [DHα(g)h1](z, w))ηα|

=
∞∑
|α|=0

∣∣∣ξαηα 1∫
0

[D(2)Hα(g + th2)(h1, h2)](z, w) dt
∣∣∣ ≤ 4C1

rC
2
r

‖h1‖ · ‖h2‖
i(g)2
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(see (33) and (34)). Passing to the operator norms we get

‖DgBm((g + h2)ϕ)−DgBm(gϕ)‖ ≤ 4C1
rC

2
r‖h2‖/i(g)2 ,

which means that DgBm(gϕ) is a continuous function of g. Using analogous
methods and applying induction one can prove that Bm is differentiable of
any order. We leave the details to the reader.

R e m a r k 3. The question whether or not Bm is an analytic map will
be considered in another paper.
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