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Continuous transformation groups on spaces

by K. SPALLEK (Bochum)
To my parents

Abstract. A differentiable group is a group in the category of (reduced and nonre-
duced) differentiable spaces. Special cases are the rationals Q, Lie groups, formal groups
over R or C; in general there is some mixture of those types, the general structure, however,
is not yet completely determined. The following gives as a corollary a first essential an-
swer. It is shown, more generally,that a locally compact topological transformation group,
operating effectively on a differentiable space X (which satisfies some mild geometric prop-
erty) is in fact a Lie group and operates differentiably on X. Special cases have already
been known: X a manifold (Montgomery—Zippin), X a reduced (Kerner) or nonreduced
(W. Kaup) complex space. The proof requires some analysis on arbitrary differentiable
spaces. There one has for example in general no finitely generated ideals as in the case
of complex spaces. As a corollary one obtains: The reduction of a locally compact differ-
entiable group is a Lie group (by different methods also proved by Pasternak-Winiarski).
It was already proved before that any differentiable group can be uniquely extended to
a smallest locally compact differentiable group (as a dense subgroup). The study of the
nonreduced parts of differentiable groups remains to be completed.

N-differentiable spaces ([3], [28], [29]—reduced or not—generalize in case
N = w* (i.e. of holomorphic functions) complex spaces (reduced or not), in
case N = w (i.e. of real analytic functions) real-analytic, semi-analytic, or
subanalytic spaces (reduced or not); and in all cases N = 1,2,...,00 (i.e. of
functions of class CV) they generalize manifolds of class CV (by admitting
arbitrary singularities), or Whitney spaces ([36], [42]), in particular algebras
of formal power series. Such spaces arise for example in a natural way as
leaf spaces of foliated manifolds ([14], [35]), the foliations being induced for
example by group operations ([22]-[24]).

N-differentiable groups ([33]) are groups in the category of N-differen-
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tiable spaces. They generalize Lie groups and formal groups. As a special
consequence of more general results in this paper we deduce (4.2), that any
connected reduced locally compact N-differentiable group is a Lie group of
class CV. Thus, even in the category of reduced spaces a group has at most
one differentiable structure (for complex spaces this result is quite obvious).
By different methods this theorem was also obtained as a main result by
Pasternak-Winiarski in his thesis [19] (Warsaw 1981). See [20] for a short
survey of this unpublished work [19]. We have announced our results already
in [33], indicating there how to continue the classification of N-differentiable
groups in terms of Lie groups and of formal groups, which we started in [33]
and took up recently again ([36]). In [36] we show, for example, that the
nonreduced parts, which one looses by passing to reductions, lead to formal
groups (i.e. groups of formal power series).

The above mentioned result is obtained from more general results on
continuous transformation groups operating on spaces. Under mild (and
necessary) conditions on the distribution of singularities of spaces we show
that locally compact topological transformation groups operating effectively
on spaces are in fact Lie groups (Main Theorem 3.4) and that they operate
differentiably (Theorem 4.1). To simplify proofs, we in general restrict our
considerations to N = oco,w*. The category of w-differentiable spaces can
be considered as a full subcategory of w*-differentiable spaces and is thus
covered as well. Also complex spaces form a full subcategory of all w*-
differentiable spaces.

The special cases of reduced spaces generalize the corresponding results
for manifolds ([17]), in particular the case N = w* extends the results of
[11], [10] for reduced (respectively nonreduced) complex spaces. The new
proofs, which are necessary in our general setting, are more involved than in
the classical situations (for example: ideals in the case N = oo are almost
never finitely generated). Besides some constructions in the category of
N-differentiable spaces we need and develop some additional “nonreduced
analysis”, to which we extend the methods and results of “reduced analysis”
from [17], [41]. Together with 4.2 and [33], [36] we show in particular that
any CN-differentiable group G' (N > oo, G reduced or not) can be uniquely

“extended” to a “complete” CN differentiable group G such that red G is a
Lie group, that G is “dense” in G and that G i is somehow a family of formal
groups parametrized along the Lie group red G. Those parts of our results
which deal with reduced groups, were—Dby different methods—also obtained
n [16], [19]-[21]; [16] gives for this special case a simpler proof; however, it
should be possible to simplify it even more.

§1. The category R"* of mixed (I, k)-differentiable spaces. Mixed
spaces of a special type were introduced and used by M. Jurchescu in his
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theory of mixed spaces (for example [9]). We give a short introduction to
the more general situations which we need here.

A sheaf G of vector spaces on a topological space X will be identified
with its canonical sheaf datum {H®(U,G)|[U C X open }. G is called a
topological sheaf if each H°(U,G) is in addition a topological vector space
in such a way that the canonical restriction operators H°(U,G) — H®(V,G)
for V.C U are continuous. G is a Fréchet sheaf if each HO(U, G) is a Fréchet
space. Topological spaces are assumed to have countable topology.

Differentiable and mixed differentiable spaces are special cases of ringed
spaces. We explain their local models:

Let K, K’ denote C if N = w* is involved, and R in all cases N # w*,
and let K also denote an arbitrary locally compact topological space in case
N = 0. Write = (z1,...,2,) € K™ For I,k € {0,1,...,00,w*} let Dk
denote the sheaf of germs of functions of class C¥ on K™ (real-valued if
k # w*). Let DY* denote the sheaf of germs of functions on K™ x K'™ of
mixed class CH*: For U ¢ K™, V. C K'™ open a function

f:UxV — K"

is of class CbF iff all those partial derivatives of f exist and are continuous
where only derivatives up to order [ in the first variable x of K™ and up
to order k in the second variable y of K'™ appear. Here K" = C iff at
least one of [,k is w*. And if for example | = w*, hence K = C, then
differentiability up to order w* just means holomorphy. By formal reasons
let D=1k = DL=1 = D=L~1 denote the sheaf of zero-functions. For any
open U let H°(U, D*) carry the topology of uniform convergence on compact
subsets of U of sequences in H°(U, D¥), together with their derivatives up
to order k (in case k # 0, w*). With this topology DF is a Fréchet sheaf.
In a similar way D* is a Fréchet sheaf. Each f € HY(U x V, D"*) can also
be considered as a mapping U — H°(V,D*) of class C'. Note that DLF
is always a sheaf on a specific decomposition K™ x K’ which one has to
bear in mind. In case of different n’s, m’s, K’s we may use the same symbol
DLF or others, for example DY*, to distinguish in case of need. We have
Dhl = Dlif | = 0,00,w*; also D% = D! if m = 0, hence K™ = {0}. Let
[+1=1forl=o0,w".

DEFINITION 1.1. (a) An I, k-differentiable space in K™ x K™ is a ringed
space D% = (D, DV*/T) ¢ K™ x K™. Here D C K™ x K™ is an arbitrary
subset and Z C D'*|D is an ideal subsheaf with Z,, # Dﬁ;k for each stalk,
peD.

(b) For W C K" x K™, W' C K* x K' open, a morphism

¥ = () : (W.DYHW) — (W, D" W)
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of ringed spaces (¢ : W — W', ¢ : W ®, DI'* — DR shorter P
DV'K' — DY) s called differentiable if 1(f) = f o4 for any f € DV'¥ and
if 4 thus induces continuous mappings of sheaves DUK DLk DU-LE
pl-1.k 51’,k’—1 _, plk—1

(¢) A morphism of ringed spaces 1 : DF — DU is called differentiable
if for each (z,y) € D there exist neighbourhoods U(z,y) € K™ x K™,
V(¢(z,y)) € K* x K with differentiable ¢ : (U, D*F|U) — (V,D"*'|V) so
that the following diagram is commutative:

DMUND £ DU |y D

(U, DM (v, DUV

Here ¢ denotes natural embeddings.
(d) DY* is called reduced if T is the sheaf of all germs of D* vanishing
on D. We say that D* satisfies
Ay if D is locally compact;
Ay if T C DYF|D is closed in the topology of DY* (see also [32], symbolically:
I=1)
Az if T = Z(Z - D'=VF + 7. DHE=1) N DLF (here Z - D+ denotes the sheaf
generated by Z over D-);
Ay if T = (T -DI-Lk4+T . DLk=1)NDLF (here the bars denote the topological
closures in D!~%* resp. in DL,
As if Ay, Ay are satisfied; DYF is then called a standard space.
It is not important at this place to know precisely all differentiable mor-
phisms. In the following only two cases will appear, where (b) will be quite
obvious.

Remark 1.2. The composition of differentiable morphisms is differen-
tiable. In number spaces embedded mixed (I, k)-differentiable spaces and
their differentiable morphisms form a category. The diffeomorphisms in this
category keep invariant each of the properties A;. By “glueing together” em-
bedded spaces we obtain in the category of ringed spaces the subcategories
REF of abstract (I, k)-differentiable spaces and Rik of spaces, satisfying in
“local charts” the property A;. All this is similar to the unmixed cases in
[29]. In a natural way we have from [29] for the category R' of I-differentiable
spaces (resp. R! of those satisfying A;): R! ¢ RVF, RL C Ré’k, for any k
(see §2). Each point p is in a natural way an [-differentiable space (p, R) for
[ # w* (resp. (p,C) for | = w*) and therefore

RFs X =px X eRM,
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Note. A space X is a pair (X, X) with an underlying topological space
X and a certain sheaf X on X.

§2. Products and pseudoproducts of spaces. We extend the notion
of products x and pseudoproducts x for N-differentiable spaces from [31],
[33] to the case of mixed differentiable spaces. We consider the following
data:

D':=(D,D'/T)cR™, D"*.=(D,D*/T') cR™,
I+I/ — (I . Dl—l,k +I . Dl,k—l
+I/ . Dl—l,k} +z‘/ . Dl,k—l) e Dl,k|D % D/ 7
I+7 C Dl’k|D x D’ with stalks
T+T") g0 40y :={f eD* | has a representative
— (=°,99) (z9,y9)

F:U@% xV(y°) - R with F(z,—), € Z,, F(—,y)e € Ly
foreachx €e DNU, ye D'NV},

IT7)=T+7.
In case [ = 0 (respectively k = 0) D° (resp. D) stands as before for an
arbitrary given topological space D (resp. D’) with its reduced structure of
continuous functions: Z = 0 (resp. Z' = 0). In case | = w* (resp. k = w*)
R stands for C (hence R™ for C™, resp. R™ for C™). Now, set

D' x D'* := (D x D',D"*/T+1T') (product space),
D' x D'* .= (D x D'\D"* /T +1')  (pseudoproduct space),
D'X D"* .= (D x D', D"*JTFTI') (closed product space),
D' x, D'* :=red(D' x D'%) (reduced product space).
With e denoting one of these products one has the natural projections
m1,mo : D' @ D'* — (D! D'*), and if D', D'* satisfy Ajs, the natural em-
beddings
D'x, D" — D' x D" — D'x D'* | D'XD'* — D'x D'*;
in addition, if also A, is satisfied,
D' x D'* — D' D%
Additional spaces D', ¢ R, D’* ¢ R with differentiable morphisms ¢ :

D! — D!+ : D'* — D! induce in a natural way (see [31] for the cases
| = k) differentiable morphisms

pet:D'eD* — Dl eD* — ec{x,x,x,,x},

which are compatible with our projections ;. Indeed, if @ (resp. ¥) is a
local representative of ¢ in R™ (resp. of ¢ in R™), then @ x ¥ is a local
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representative of ¢ @ 1 in R™ x R™. One shows (as in [31]) that this con-
struction of ¢ e 1) does not depend on the choice of the representatives of ¢
and ¢. The mappings (D', D'*) ~ D' e« D'*, (¢,1) ~» ¢ e 1), extend now
in a natural unique way to mappings (X!, X’¥) — X' e X'* on not neces-
sarily embedded spaces X' e X’*, which are functorial on the corresponding
categories:
o (R, RF) ~ RUF,
The projections m; above also extend to projections
T, X e X' — (XU XK,

If properties Ao, A3 are satisfied, one has natural embeddings

Xl XTX/k C—>Xl§X/k c_})(l;)(/k ‘—’Xl XX/k.

Note 2.1. Let p be a point, considered as a reduced j-differentiable
space. Then

() px X ~¥px X ~X,and px X ~ X if X is closed.
(B) Let T denote a topological space. Then two morphisms f,g :
T x X — Y are equal iff the compositions

foir X —px X —Tx X1V, g X —pxX —Tx X2y
are equal for each p € T.

Also, for the special cases | = k = 0o, w,w™, note that: x,. is the product
in the category of reduced spaces; X is the product in the category of closed
spaces; X, = X in the category of reduced spaces; X, = X = X = X in the
category of topological spaces or differentiable manifolds.

Fortunately there are still some other identities between the different
products in important special cases. To see this we first define:

DEFINITION. An embedded space D' = (D, D'/Z) C R™ is called locally
finitely generated if T as a sheaf in D'|D is locally finitely generated over
D!|D. An abstract space X' is locally finitely generated if each of its local
models D' (given by charts) is locally finitely generated. We abbreviate 1.f.g.
for “locally finitely generated”.

Note. The property “l.f.g.” of D' does not depend on a given embedding
of D'. Therefore X! is already 1.f.g. if this holds only for the models of the
charts of some atlas of X'.

THEOREM 2.2. (a) X X, Y = X XY for reduced spaces X,Y .

(B) X xY =X xY if X is a locally compact topological space or a
C'-manifold and Y is a k-differentiable standard space with k = 00, w,w*
which is l.f.g. (for example: manifold, complex space).

(7)) X xY = X XY if X is a C'-manifold, Y a closed C'-space, | €
{o0,w,w*}.
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(0) X xY =X xY if X is a Cl-manifold, Y a C'-space, | € {w,w*}.

Proof. («) is obvious.

(B) is of local nature. We therefore may assume: X = D! = (D, D!), Y =
D'* = (D', D'* /') C R™. Hence 0+Z' =7'-D"* and f € (04+7")(z0,40) <
f has a representative F' € H°(U(2°) x V(y°),D"*) with F(x,—), € I,
F(—,y): =0,V € U@x") N D, y € V(y’) N D’ & f has a representative
F € HY(U x V,D"*) with F(x,—), € I,,Vx € U,y e VN D' & f has
a representative ' € HO(U x V,D'F) which can be considered as a C'-
differentiable mapping U — H°(V,Z’) (here, without loss of generality Z’
is considered as a locally finitely generated closed sheaf on V) < f has
a representative ' € HO(U,D') ®. H°(V,Z’) (see [41], part IIT). Since Z'
is 1.f.g. we have for a small enough neighbourhood V = V(3°) c R™ a
surjection H(V,D'*)* — H°(V,Z’). Then the following induced mapping
is also surjective:

HY(U x V,D"*)* — (H°(U,D") ®. H*(V,D'*))* - H°(U, D) &. H*(V,T').
This implies, however, 0 +Z' = 0 + Z’, hence (3).

(7) Let first | = co. Assume, without loss of generality, X = U C R"
open, Y = D'' = (D', D"/T') c R™, T' C D"|V for some open V C R™.
Let Z:=0+7Z C DU XV DZ:=0+7. Forany f € HO(U x V,1),
x = (x1,...,2,) € U, y €V we obtain

0 0
gi(xo’y) :}E)% f(l' +t 627ty) f(ZL' ay) ,
which converges in the C*°-topology of H°(V, D). But this implies that
(0f /0x;)(2°, —) € T’ for any 2° € U, because Z’ is closed and f(z',—) € 7’
for any fixed 2’ € U. If T}, denotes the mapping which associates to each C'*°-
function its Taylor series at p, we obtain by induction for any (2%, y°) € UxV

Tiwoyorf =Y (x—2°)*Po(y —¢°) with Pa(y—1y°) € Tyo(Zpo).

Tyo (I;O) is finitely generated, we therefore obtain

T(moyyO)f S T(xOVyO)(I(moyyO))

for each (2°,y°) € U x V. B

Whitney’s spectral theorem ([43], V) implies f € Z = 0+ Z’. Hence
0+Z' CcO0+Z'. But 0+Z' C 0+ 7' is obvious. Therefore 0 +Z' =0+ 7Z'.

Assume now | = w. Again consider X = U C R" open, Y = D'l =
(D', D''/T") C R™. Let " := I’ - D>=. The first part gives 0+Z" = 0+ Z".
This implies

0+Z' =(04+Z")ND*=(0+Z")NDY=0+7Z", even
=0+7
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because analytic ideals are always closed (standard). The case | = w* follows
similarly. In particular, (¢) is also proved.

Note. () is due to K. Reichard ([23], Satz 2.5, ¢). We shall need even
three times mixed spaces. To avoid their introduction we proceed directly
as follows: Let [ € {0,00,w,w*}, X,Y C!-differentiable spaces, Z a C*-
differentiable space. We have projections (for e € {x, x, x})

(my,m2,m3) 1 (X eY)eZ — (XY, Z)— (X,Y,2).

Note. Let f: X - X' e R!, g:Y o Z — Z' € R™* be differentiable.
Then f,g induce in a natural way a differentiable morphism f e g so that
the following diagram commutes:

(XeY)ez 1% X'ez

(Wl,ﬂz'ﬂa)l l(m,ﬂz)

(X,Yez) L% (x 2V

Proof (see [29]). We pass to local representatives, for example F,G of
f,9. Then F x G is a local representative of f e g. This construction does
not depend on the choice of the representatives F, G of f,g.

For a given reduced [-differentiable group (for [ = 0 a topological group;
l € {0,00,w,w*}) G = (G,m,e,i) with m = multiplication in G, e =
identity, ¢ = inversion ([33]) and for k > [ we define:

DEFINITION. G is called a transformation group on a closed k-differen-
tiable space X by means of a differentiable f : G x X — X if fo(m xid) =
fo(id xf), and the composition of the natural mappings X — e x X —

GKXLX is the identity. G operates effectively if f, : X — p x X —
GxX 1, X is different from the identity for each p € G\ {e}.

Note. f, is always a diffeomorphism. In situations appearing above x
is the product X in the category of closed spaces according to 2.1, or it is the
product x in the subcategory of closed, locally finitely generated spaces.

The reader may extend the notion of transformation groups also to
nonreduced groups.

§3. Topological transformation groups on spaces. We show that,
in general, topological transformation groups on differentiable spaces are
necessarily Lie groups. The proof requires several preparations. Let | €
{1,2,...,00,w*}. Recall that “X € RL” means “X is a standard space”,
i.e. X is locally of the form (D,D!/T) C R", where D is locally compact
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and Z satisfies T = (Z - D'=1) N D!, in particular Z =7, Z = (Z - D'~1) N D!
(see [29], [32]), which is just assumption Aj.

ASSUMPTION. G = (G, m,e,1) is a topological group which operates as
a transformation group on a standard space X by means of a morphism
f:GxX—X.

With the help of A3 we observe first (see [29]):
Note. (a) For each p* € X there exist open sets
ecUCG, preWycX, WoCcW, CWyCR",

W; convex and relatively compact in W; 1, such that: X|W3 ~ (D,D!/T) C
Wo,p* ~p € DN Wy,D closed in Wy, the ideal sheaf Z C D'|D extends
to an ideal sheaf T C D!|W, satisfying A4 and having D as its set of zeros.
Moreover, f(U x (Wi N D)) C D, flU x (W7 N D) is generated by a (0,1)-
differentiable mapping F : U x Wy — R™ with F(e,id)|W, = id, F(U, Wy) C
Wy, F(U, Wl) C Ws.

(8) The product m : G x G — G will be denoted (as usual) by “”, and
g™ =g-g...g denotes the m-fold product of g.

With these notations, in particular with p* € X fixed, id;(z) = z;,
F = (F,...,F,) :U x Wy — R"™ we generalize a lemma of H. Cartan:

LEMMA 3.1(a). For fized ¢ € N, g € G with g,¢°,...,9 € U, id: v —
x € Wa, yi(g,2) :== F;(g,x) — x; we have

Fi(g%,id) —id; = Y di;(g,9,1d) - q - y;(g,1d) € H* (W, T),

J

1
dij(q,g,x) = f (5ZJ —I—Fij(g,ZL‘—Ft-y) 4+ ... —i—Fi-(gq_l,x—i—t-y)) dt .
0

1
q
Proof. Set Gi(g9,2) := x; + Fi(g,z) + ... + Fi(¢7 ', 2),Gyj = Gi;-
Then
1
(1) Gilg.x+y) —Gilg.x) =Y y; [ Gijlg,+ty)dt,
J 0

Gi(g,l‘ +y) = Gz(.%F(g?x)) = Fz(gax) +...+ Fi(gqax) —q- Hi(qag7x)7

where H;(q,g,id) € H°(Wy,Z); since f o (m x id) = f o (id x f) implies
F(g®, F(g,id)); — F(g**!,id); € H°(Wp,Z), hence

(2) Gi(g,x+vy) — Gi(g9,z) = Fi(¢%,z) —z; —q- Hi(q,9,7),

therefore

(3)  Fi(¢",z) —xi=q- Hi(q,9,7)
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1 _

+Z§ [ Gij+Fij(g,a+t-y)+...+F(g" +ty)) dt-q-(Fj(g,2)—x;)) .

j 0

LEMMA 3.1(b). Let in addition G be locally compact. Then for each p* €
X there exists a compact neighbourhood U(e) C G of e € G, W; as above,
such that whenever g7 € U, Vq € N, then even F(g,id); —id; € H°(Wy,T)
for each component.

Proof. In the following we may always assume U, ¢, ¢;; to be “small
enough”. F(e,id) = id then implies: Fj;(-) = &;; + €45(-) in U x Wy,
hence F(g%x) —x = q- A- (F(g,2) —2) + q- H(qg,g,2) (by (3)) where

A = Alq,9,7) = E+¢(),Vz € Wo,q € N (E the unit matrix). Thus
JATL =E+6()), Vo € Wy, g €N, and so

LA (F(g%,1d) — id) — (F(g,id) — id) € HO(Wp, T - D)
q

for fixed ¢, g. In the topology of H°(Wy, D!~1) we have

q—0

1
;AT e g1) - (F(g"id) —id) =50,

hence F(g,id) —id € H°(Wy,T) because (Z - DI=1) N D! = T (by As, resp.
Ayl).

In particular, F'(g,id) and id induce the same differentiable mapping
X|(Won D) — X ([29], [31]). Hence by 2.1(/3) we obtain
COROLLARY 3.2. With U, W; as above, and g? € U, Vg€ U, q € N,
fIUx (WonD):U x (X|(Won D)) — X|(WoN D)
is the projection onto the second component of the product.

THEOREM 3.3. Let G be a compact topological transformation group
operating on an l-differentiable standard space X by means of f : GxX — X

and having p € X as a fized point (the composition G — GX p — GxX J, X

is just the projection G — p). Then there exists a chart (V,¢) of X with
p € V such that the diagram

Gxxv L xw

x| s

G x D! EAN D! ¢ W C R™ open

commutes and f* is generated by a (0,1)-differentiable mapping F : GXxW —
R™ with F(g,id) linear for each fized g € G.

Proof. There are arbitrarily small G-invariant neighbourhoods of p €
V C X such that X|V ~ D! = (D,D'/I) C R™ with n = embdim, X,
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p=0¢€cR" W CR" open, D C W closed, and Z C D'|D extends to an
ideal sheaf (also denoted by) Z C D!|/W, which satisfies A4 and has as zero
set exactly D. In the following we may assume that V, W are sufficiently
small neighbourhoods of p = 0 € R"; we identify X with D!. Since G
is compact, there are finitely many open U; C G with the property (W
being sufficiently small!): (JU; = G and f : U; x D! — D! is generated
by a (0,1)-differentiable mapping F; : U; x W — R™. With the help of a
continuous partition of unity on G one finds a (0, !)-differentiable mapping
F:G x W — R" generating f : G x D' — D' (using Ay = A3 and [29]).

After these preparations we proceed as follows : For fixed g € G the
morphism f, : X - gx X — G x X T Xisa diffeomorphism, the differ-
ential L(g) := dfy(p) : Tp,X — T,X (= R™) on the tangent spaces is thus a
linear isomorphism ([29]).

ASSERTION 1. L : G— AutR" is a continuous homomorphism of groups.
Therefore L can be considered as a continuous mapping L : G x R® — R"”,
which is linear in the second variable.

Proof. L is continuous, because L(g) = dfy(p) = d.F(9,p) (n =
embdim, X') depends continuously on ¢! (d,F' is the differential of F' with
respect to the second variable). L is a homomorphism, because fo(idx f) =
f o (m x id) implies for the representative F' of f and for fixed g,h € G,
(*) F(g,F(h,ld))—F(gh,ld)EHO(VV,I)n
Since n = embdim, X, p = fixed point, this gives

L(g) o L(h) = d. F(g, F(h,p)) 0 dzF'(h,p) = dzF(g - h,p) = L(g - h).

For the next partial result we remark first that F': G x W — R" above
can be considered as a continuous mapping F : G — H°(W,D')". Defin-
ing H(g) := L(g~') o F(g) we obtain a continuous mapping H : G —
HO(W,DH™. Integrating with respect to a right invariant normalized Haar
measure on (G, we obtain

R:= [ H(g)dg € H(W,D")".
G
ASSERTION 2. dR(p) : R™ — R" is bijective. R: W — R(W) is therefore
a diffeomorphism of class C' if W is chosen small enough.
Proof. d.H(g)(p) = E, Vg € G.

ASSERTION 3. For a € G we have

L@oR=L(ao [ Lig™")oF(g)dg= [ Llag™')o F(g)dg
G G

= [L(h)oF(h-a)dh, whereh=g-a™"
G
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= [ L) o (F(h) o F(a) + K(h))dh,  K(h) € H(W,T)"

G
=( [ L(h™")o F(h)dh)o F(a) modH"(W,T)"
G

because of Ay, hence As. Here we have a continuous mapping K : G —
HO(W, )", given for fixed a € G by

K(h):= F(h-a,id) — F(h, F(a,id)) € H*(W,T)".
Thus
(%) L(a)oR— Ro F(a) € H(W,T)".

R induces a diffeomorphism o : D' — D*! for some space D*' ¢ R(W) C R".
By Aj equation (%) implies ([29]) that Lo(id X R) and RoF induce the same
morphism. The following diagram, where L is induced by L, is therefore

commutative:
axp L. p

axo] Jo

G X D*l i) D*l

MAIN THEOREM 3.4. Let G be a locally compact topological group, op-
erating effectively as a transformation group on a C'-differentiable stan-
dard space X,1 € {1,2,...,w,w*}. Assume that there are connected subsets
V;CcX,j=1,...,s such that|JV; = X and embdim, X = const., Vp € V;.
Then G is a Lie group (of class C¥).

Proof. We show that G has no small subgroups. Then G is a Lie group
by Montgomery-Zippin [17]. Fix x; € V; and choose a sufficiently small
neighbourghood U; C G of e € G according to 3.1(b). Let U := U,
without loss of generality assumed to be compact. We assume, indirectly,
that G has small subgroups. Hence in each U there exists a closed subgroup
e # G* CU. G* is compact, and by 3.2 for some neighbourhood W;(z;) C
X the morphism G* x X|W,; — G x X|W;—LX|W; is the projection ;.
Therefore there exists a maximal open subset W C X such that the following
composition is just the projection:

G* x X|W — G x X|W-Lx|w .
The following assertion will finish the proof of 3.4.
ASSERTION. W = X.

We already know that W NV; # 0, Vj. Choose any z € W NV, NV; and
represent X near z as some D! C R%  where c¢; = embdim, X. Since z is a
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limit of fixed points z, € V; N W, it is also a fixed point. Using 3.3 we may
choose the local representation D' in such a way that for each g € G*

fgiDngéDl‘—)G*éDlL)Dl

is generated by a linear map L, : R% — R%. Since ¢; = embdim, D!
Vz € V; N D, we have

dfg(2) = Ly, dfy(zy) =id Vz, € V;NW

(f is a projection there) = L, = id = f, is the identity Vg € G* = G* x
D'L.Dl s the projection (definition of x!) = ze WNV; =WnNV; =V,
because V; is connected = W = X.

Note. An w*-differentiable group is a group in the category of w*-
differentiable spaces, which includes the category of w-differentiable spaces
as a full subcategory, as well as the category of complex spaces. So one
may say that G is an w*-differentiable group. But this formulation is not
very precise, in particular because it does not necessarily imply that G is
a complex Lie group. The same care has to be taken for transformation
groups.

§4. Differentiability of continuous Lie group operations. A Lie
group G can be considered as a topological or as a differentiable group (of
any class C!,. .. ,C’“*). G may operate on an [-differentiable space X as
a continuous or a C'-differentiable transformation group by means of some
f:GxX — X, where G x X is to be taken either as a (0, {)-differentiable
or an [-differentiable space. If G operates on X C'-differentiably, then
also continuously. The converse also holds in general, as will be proved
now. For simplification we restrict our considerations here to the cases
l € {oo,w*}.

AssUMPTION. We fix a connected Lie group G with product m : G x
G — @G. In some properly chosen neighbourhood V*(e) C G of the unit
e € G we use a normal coordinate system: We consider V* as an open
subset V* C R™ with e = 0 € R™; and choosing properly some other
neighbourhood V(e) € V* with m(V x V) C V* we have m(a,b) = a+b
whenever a,b are linearly dependent. V,V* may also be assumed to be
symmetric, convex and “sufficiently small” for all what follows.

Now let G operate continuously on a given C!-differentiable standard
space X, | € {co,w"}, by means of some (0,/)-morphism f: G x X — X.
We show that f is C!-differentiable. Since fo (m xid) = fo(id x f) we only
have to prove that for each p € X there exist neighbourhoods U(p) C X,
V(e) C G such that the restriction f: V(e) x X|U(p) — X is differentiable.
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Therefore fix p € X. In some neighbourhood W5 (p) € X we may

consider X|W5 as an embedded space

X|Wy =D'=(D,D'/T) cR"
with p = 0 € R®, Wy C R™ open and D C W, relatively closed, and
moreover, with Z C D!|D being the restriction of a closed ideal Z C D!|W;
which has D as its set of zeros.

For properly chosen V* = V*(e) C G there exist convex neighbourhoods
p=0eW=W_; C Wy C Wy C Wy C R"such that f: V*x X|W1ND —
X |W5 is generated by some (0, [)-differentiable mapping F': V* x Wy — R™
satisfying F(V*, W;) C W41 for each i € {—1,0,1} and F|0 x W5 = id. We
define

Fl-rz) forveV* ze Wy 0<r<1,
1

y =
H(v,x) := fF(v-t,:r)dt forve V' zeWs,.
0

H is continuous in the v-variable, differentiable in the z-variable. The dif-
ferential d, H of H with respect to x exists and is continuous in v, differen-
tiable in . We consider d, H as an (n x n)-matrix. Then we have for v € V,
xz,y € WO

[ deH(v,z+ (y—2)-5)ds- = ~(H(v,y) - H(v,2))
0

(Fv-t,Flv-r,x)) — F(v-t,z))dt

S|
L O o

+

(F(lv-t4+v-rx)— F(v-t,x))dt mod0XxZ

S|

T

1 1
:;<IF(U't7$)dt— OfF(v-t,a:)dt) mod 0 x T,
hence
1 1
() ;(F(U.r,x)—x):Afl.;.K(r’v’x) mod 0 x 7

Here “mod 0 xZ” means that the identities above hold up to some mapping
G(r,v,x), which is continuous in r, v, differentiable in = and for fixed r, v is a
section in Z. This holds because Z is closed and F(v-t, F(v-r,z))— F(v-t+
v-r,z) is in Z for fixed v, ¢,r. Next, A(r,v,z) := fol d.H(v,z+(y—x)-s)ds
is continuous in r,v, differentiable in x and as (n x n)-matrix everywhere
invertible (d, F'(0, —) = id; V, W5 sufficiently small!). Finally, K denotes the
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last difference of integrals and is also continuous in 7, v and differentiable in
x. Substituting = by F(a,z) we obtain

1 1
(xx) ;(F(v -r,F(a,x)) — F(a,z)) = AL . K*(r,v,a,z) mod0xT,

1
() lim — . K*(r,v,a,id) = F(«°, F(a°,id)) — F(a°,id).

(r,v,a)—(0,09,a0) T
The left side of (xx) is considered as a continuous mapping
B:IxV xV — H (W, D)™,

where I := {r | 0 < |r| < 1}. Let B* be the composition of B with
HO(Wy, DY) — HO(Wo, DY /H®(Wy,I)". B* can be continuously ex-
tended onto I x V x V (by (¥xx)). With Q(r,v,a) := m(a +v-7,a"!)
one obtains

Q(O,v,a) = 07 Q(T,U,CL) :U)(T‘,U,CL) T,
which implies

F(w-r F(a,z)) = F(Q(r,v,a),F(a,z)) = Fla4+v-r,z) mod0Xx7Z,

and

() %(F(a +o-rz) - Fla,2))
:%-(F(w'r,F(a,:L‘))—F(a,:E)) mod 0 x 7
:A*_l-%-K*(r,w,a,x) mod 0 x 7.

We consider F' as a continuous mapping F : V — HO(Wy, D). Let F* de-
note the composition of F' with HY(Wy, D')"* — H°(Wy, DY) /H° (W, T)".
(+#xx) implies that F* : V — H°(Wy, D")"/H(Wy,Z)" is continuously
differentiable. Consider the differential d,F™* as an (n x m)-matrix, the co-
efficients being continuous mappings V — H®(Wy, D!)/H°(Wy, ). For each
fixed a € V' we have

dyF*(a) € (H°(Wo, D")/H"(Wo, T))"™ ™,
d,F*(a) -v € HO(Wy, DY /H(Wy, I)" Vv € R™.
F generates f, and so for fixed a € V a morphism D!'|[W — D!|W,, and
by “substitution with F*(a)” also a mapping H®(Wy, D!)/H*(Wy,I) —
HO(W,DY)/H°(W,Z). In particular, we have (d,F*(0) - v) o F*(a) €
(H°(W,D")/H°(W,I))"; furthermore, the resulting mapping V —
(HO(W, DY) /H°(W,ZI))" is continuous. With a = v -t we obtain

%(F(v-t—&—vm,m)—F(v-t,x)) = %(F(v-r,F(v-t,m))—F(v-t,x)) mod 0xZ .
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Letting r — 0 we therefore obtain in W for fixed v,t
dgF*(v-t)-v=(dgF*(0)-v)o F*(v-t).

With B € HO(Wy, D!)™™ as a representative of d, F'*(0) and with A(v,z) :=
B(x) - v we obtain by integration

t
Flv-t,x)—z= f A(v,F(v-t,z))dt mod0xT.
0
On the other hand, there exists a solution Gy(t,v,z) = A(v,G(t,v,x))
with G(0,v,2) = =z, which is differentiable in all variables. Therefore,
as in the usual theory of ordinary differential equations, F' and G are

mod 0 + 7 fixed points of the same contracting operator on the Fréchet
space (H°(W,D')/H®(W,Z))"™. This implies

G(t,v,z) = F(v-t,z) mod0xTZ.

But this means that G(1, —) and F' generate the same morphism f of spaces
([29]). Therefore f is I-differentiable in some neighbourhood of (e,p) €
G x X. So we have proved for | € {oo,w,w*}:

THEOREM 4.1. Let G be a Lie group of class C' operating continuously
on a C'-differentiable standard space X. Then G operates l-differentiably.

Note. Locally compact w-, w*-differentiable spaces are always standard
spaces.

COROLLARY 4.2. Let G be a locally compact, connected l-differentiable
group, | € {oo,w,w*}. Then red G is a Lie group (in general of class C¥
only, see the note at the end of Section 3).

Proof. Let G be already reduced. By means of the multiplication
m : G X G — G the group G operates on G. We consider G as a continuous
transformation group G which operates effectively on the differentiable
space G (which is reduced and locally compact, hence even a standard
space). Now embdim, G = embdim, G, Vp € G. By 3.4 the topological
group GG arises from a Lie group G2, and with respect to this structure
the operation m : Gy X G — G is differentiable by 4.1. In particular,
m: Gy X e = G2 X G — @ is differentiable, even a diffeomorphism. There-
fore Gy = G.

Remarks. («) Continuous group operations G x X — X on a space X
induce a foliation F¢ on X and the leaf space X/F¢ as quotient space. Un-
der weak assumptions G operates already differentiably on X as a Lie group
(3.4 and 4.1), and moreover the leaf space is a differentiable space, being a
quotient space ([22]-[24]), G operating properly). Note that in general the
quotient space is a differentiable space with singularities, even if the original
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space X is a differentiable manifold. However, certain other properties of
a space X are maintained in the quotient X/F¢ ([23]). Moreover, certain
more general foliations F on X are essentially stable iff the quotient X/F
is a differentiable space ([4]), [14], [25], [35]); [24] describes how “product
decompositions” of quotient-space-germs (X/F¢), are reflected in product
decompositions of the group G. Differentiable spaces thus constitute a good
category in this context.

(8) Differentiable spaces of different classes were first introduced in [3],
[28], [29]. The special case of reduced differentiable spaces was also intro-
duced and discussed in the following years by other authors under different
names, for example: subeuclidean spaces in [1], [2], [38], [39]; Do differential
spaces (= C®-reduced differentiable spaces; the more general differential
spaces are essentially what is known under the more general name of ringed
spaces with derivations) in [26], [27]; and others. Their results are essen-
tially contained in our framework, for example [1], [2], [5], [18], [26], [27] in
[29]-[31]; [13] in [12], [29]; [15] in [31]. [6] for example gives a correct and
extended version of incorrect constructions in [38] in terms of differentiable
spaces.

() For I-differentiable standard, resp. complex spaces X, Y we topolo-
gize ([10], [17]) Hom(X,Y) :={g | g : X — Y is differentiable}, in particular

Hom(X, X) D Aut(X) :={g | g: X — X is a diffeomorphism}

in such a way that we obtain a (0, [)-differentiable mapping f : Hom(X,Y) x
X — Y with

(*) g=f,: X > gxX—Hom(X,Y) x X-55Y Vg€ Hom(X,Y).

The discrete topology on Hom(X, Y') satisfies this condition. More generally,
each topology satisfying this condition has the following property: For each
U C X open, relatively compact, V C Y open we have:

Hom(X,Y)|(U,V) := {g € Hom(X,Y) | g(U) C V} C Hom(X,Y) open.
Moreover, for each h € H(V, Y) the mapping
h* : Hom(X,Y)|(U,V) — H°(U, X)

given by g — g(h) € H°(U, X) is continuous. Here H°(U, X) carries a natu-
ral topology: For C'*°-differentiable standard spaces it is described in [29], for
complex spaces (which constitute a full subcategory in all w*-differentiable
spaces) for example in [7]. In these cases we topologize Hom(X,Y) with the
smallest topology satisfying the above mentioned properties. Then one may
obtain a (0,)-differentiable morphism f : Hom(X,Y) x X — Y satisfying
(). Moreover, for each topological space M and each (0,[)-differentiable
h: M x X —Y there exists exactly one continuous H : M — Hom(X,Y)



318 K. Spallek

satisfying
h=fo(H xid).
This characterizes the topology of Hom(X,Y) again.

The natural mapping Hom(X,Y) x Hom(Y, Z) — Hom(X, Z) is contin-
uous: One has natural (0, [)-differentiable morphisms g5 : Hom(Y, Z) xY —
Z, g1 : Hom(X,Y) x X — Y, hence an induced morphism

id
(Hom(Y, Z) x Hom(X,Y)) x X =% Hom(Y, Z) x Y -2

In particular, in the above mentioned cases Aut X is a semitopological group
in the sense of [8], hence a topological group (by [8], since Aut X, just as
X, has countable topology and is metrically complete). Aut X therefore
is a topological transformation group on X. Connected, locally compact
subgroups of Aut X are therefore Lie groups operating differentiably on X.
For example, the subgroup of isometries on X, if X carries a Riemannian
metric and satisfies appropriate weak properties, will be a Lie group ([16],
p. 83). Concerning more generally infinitesimal transformation groups on
differentiable spaces see also [16], [34], [37].
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