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Distortion function and quasisymmetric mappings

by J. Zajac (Lédz)

Abstract. We study the relationship between the distortion function @, and nor-
malized quasisymmetric mappings. This is part of a new method for solving the boundary
values problem for an arbitrary K-quasiconformal automorphism of a generalized disc on
the extended complex plane.

Introduction. It is well known that a K-quasiconformal (K-qc) map-
ping F' of a Jordan domain G onto a Jordan domain G’ can be extended to
a homeomorphism of their closures. It induces a homeomorphism f of the
boundaries 0G and 0G’. In the case of G = G’ = H = {z : Imz > 0} and
a K-qc automorphism F' of H that fixes the point at infinity, the induced
homeomorphism f of R is a p-quasisymmetric (p-gs) function in the sense
of the Beurling—Ahlfors condition
B L_Jetn—f@ _

o~ flx) = flz—1)

which holds for all x € R and ¢t > 0 with o = A(K) (see [BA], [LV]). The
class of all increasing homeomorphisms f : R — R satisfying (B-A) with
a constant ¢ > 1 is called the p-g¢s class on R and is denoted by Qgr(0).
By Q% (o) we will denote the subclass of Qr (o) consisting of all normalized
(f(0) =0, f(1) = 1) o-gs functions on R. A characterization of f in the
case of K-qc automorphisms F' of the unit disc A = {z: |z| < 1} with fixed
point at zero was given by Krzyz [Krl].

Neither of these characterizations comprises the general case of arbitrary
K-qc automorphisms of H and A, respectively, and neither is “conformally”
equivalent.

In order to build up a representation for the boundary values of an arbi-
trary K-qc automorphism of a generalized disc D C C, we need some new
results on the relation between normalized ¢-gs functions and the distortion
function &k

The latter function gives a sharp upper bound in the quasiconformal ver-
sion of the Schwarz Lemma [HP]: |F(z)| < @(|z]) for each K-qc mapping
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of the disc A into itself with F'(0) = 0. @k is defined by

(0.1 i) = (on0)

where u(t) stands for the conformal modulus of the unit disc slit along the
real line from 0 to ¢, 0 < t < 1, and is strictly decreasing with limits co and
0 at 0 and 1, respectively. We may extend @k to the closed interval [0,1]
by setting @k (0) = 0, Px (1) = 1, for each K > 0. Evidently @ (t) > t for
K >1and &k(t) <tfor 0 < K <1, with equality in each case if and only
if K = 1. Clearly,

Pk, 0Pk, = PK K, s =Pk,
(0.2) W1

Dy(t) = —— 0<t<1.

2(t) = 15> <t<

The explicit estimate
(0.3) P < Ppe(t) <almWER/E g <t <1, K>1,

was given by Wang [W] and Hiibner [H].

A number of significant results concerning @i were obtained by An-
derson, Vamanamurphy and Vuorinen [AVV1], [AVV2] and others. One of
them,

(0.4) DL (t) + D7) (V1-12) =1, 0<t<1, K>0,

is very useful in our present considerations.

1. New results on quasisymmetric functions. In this section we
prove two auxiliary theorems on quasisymmetric functions. The first of
them gives sharp Holder type estimates for normalized o-gs functions (those
of Kelingos [Ke] are not sharp).

THEOREM 1. Suppose that f is a normalized o-qs function of R. Then
for each m € N

o (1= () e (e gr)

for0<t<1lando>1,

() () Yoo
<

(20-1) <1 + (Q—l-l)m—1> (ty — t1)"m

for0<t; <ty <1 and p > 1 (the left-hand bound in (1.2) is essential for
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1<0<2), and

19 () o< (- (i)

fort>1 and o > 1, where

Q m
m=1log;_o-m|(1—|——= ,
Gm = 0812 < (9+1>>
1 m
—log oom [1— [ —— .
O = 1081 < <9+1>>

Proof. Let m € N and ¢, = 1 —27™. By induction on m one can
prove the inequalities

(a52) s (- (G) ) oo

< F((1 = em)a+emb) < (Qil)mf(cw + (1 - (gil)m) f(b)

for a,b € [0,1]; the case m =1, i.e.

(1.4)

0 1 a+b 1 0
@ 0 < () < @+ L,

is equivalent to the (B-A) condition. Induction with respect to n gives

nom _ (1 (2 \"Y" n (™Y L s
e _<1 (Q+1> > Sf(cm)§<l (Q+1> > — o

forn=20,1,2,...
Since f is strictly increasing, for every t € [¢?, ¢, m,n = 1,2,..., we
have

F(8) < fleph) < (e )P < (et t)om = et
f@) = flep) = ()™ = (emt)m = crt®m.
This yields (1.1) because [0,1] = {0} U U, [, ¢t for each m € N.
For every t; € [0,1] the function
ft+t) — f(t)
= 0 =)~ 1)
belongs to Q% (o) provided that f € Qgr(p). Hence, by (1.1) with ¢ = t5 — 1,
1

Flta) = ) < (£ -+0) = £0) (14 o ) (= 1)

F(t2) = f(t2) = (F(L+ 1) — f(02)) <1 + (Qi1>m> (ta— 1)
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for any m € N. By (1.5) and the definition of quasisymmetry we see that

291@1) ) 1< F ) — f(h) < oga(tr) — Fltr) + 1.

Since
o—1
) —t < —
9t 1) <
for all g € Q%(0), 0> 1 and 0 <t <1 (see [Kr2]), we have
o—1 o—1
th—— < t1) <t + ——
1 Q+1_91(1)_1 o+ 1
for t; € [0,1] and ¢ > 1. Consequently,
o—1 o—1
L+t)—ft) <ola+— ) —a1+— +1
f( 1) f(l)_Q(l Q+1> 1 o+ 1
=(0—1z1+0<20—-1
and
1 o—1 o—1
1+t)—ft)> - (-] -y -5 +1
e O e R
1 o—1 P
=(--1)z; - 5F—+1>2-1
0 0 0
Hence

Z—1gf(1+t1)—f(t1)gzg—1.

The left-hand estimate is essential for 1 < o < 2 but asymptotically sharp.
The inequality (1.3) can be derived in much the same way as (1.1). For
m = 1 the inequalities (1.1) and (1.3) reduce to those of Kelingos while (1.2)
is better.
Now we prove

LEMMA. Let f : [a,b] — R be strictly increasing and concave. Then
Flt+s0) — f(0) _ f(t+35)— 1(0)
f@) = flt=s) = f(t) = f(t =)
forallt € (a,b) and 0 < s < sy = min{b—t,t — a}.

(1.6)

=F(t,s) <1

Proof. Let t € (a,b) and 0 < s < s, and set d = s; —s. By the
concavity of f we have

fe—5) = S ple =)+ 10,

t

f@+s)z§j@y+§f@+&y

t
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Therefore
£~ (b= 5) < S(7(0) — £t~ 50).

Flt+ )~ £0) = L7+ 50 - £(0).

t
Since f is strictly increasing,

Ft+s)— F() _ flt+ )~ (1)
fO) = flt—s5) = f) = f(t—s:)
Using once again the concavity of f gives f(t) > %f(t —s)+ %f(t + s), and
so f(t+s)— f(t) < f(t) — f(t — s), which completes the proof.
This lemma has a very practical application. It means that the gs order
o of a given concave and increasing homeomorphism f on [a,b] is attained

on the upper frame of the domain of F.
Another immediate application of the lemma yields

THEOREM 2. Suppose that f : D — R is strictly increasing and concave.
Then f is 0-qs on D in each of the following cases:

(i) D=(a,b) and

(1.7) min{ g @9 - F(b) — f(t) }
. te(a,(atb)/2]  f(t) — fla) “tel(atb)/2,b) f(t) — f(2t —b)
1.
0

(ii) D = (b,00) and
fen ) 1
- e JO-J0) 0"
(iii) D = (0c0,a) and

: fla)—f) 1
() el FO - FOE-a) 0"
(iv) D =R and

e flta)—f(t) 1
BN f—n) o)

2. Main results

THEOREM 3. For each K > 1, there exists 0 > 0 such that the function
D is p-qs on [0, 1] with

(2.1) 0 < 0p = max{2°K 3 2273/ K(1 — @ (1/2))71}.
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Proof. By the definition, @k is concave for each K > 1. Let t € (0,1/2].
Then, by the lemma and by (0.3) we have

D (2t) — Pre(t) P (2t) —Pr(2t3) _ Dr(2t) .
sty dx) g P2
(Qt)l/K 81/K
> W(l—@K(l/Q» = (1-PK(1/2)).
For t € [1/2,1), using (0.4) and (0.3) for 0 < K <1 we have
Pr(1) = Px(t) 1-Pk(t) _ 1 — &2 (t) 1+ &2t —1)
Pp(t) — P (2t —1) ~ 1—Px(2t—1) 1-D2(2t—1) 1+ Pg(t)
Q%/K(m) . 1 - (41—K(W)K)2 1
B, (VI-(2t—1)%) 27 (/T-(2t—1)?)2K 2
_ K K
_ 1612 K <41:Zz> _g. 43K <1+1> > 8.9 0K9K _g. 95K

which completes the proof.

Now, using Theorem 1 we prove a very useful theorem (see [Z]).

THEOREM 4 (subordination principle). Suppose that f is a o-qs function
of [0,1] onto itself. Then for each o > 1 there is a constant K = K(p) such
that

(2.2) ) (V) < f(t) S PR(VE)  for0<t <1,
where
(2.3)
2y/0—1
162_—fnwvm=Ent{1/\/Q—1}, 1<p<5/4,
— e
K < v(o) =< 3-4llogy(1+0), 5/4 < 0 <6,
1
log2)| 1— 1+ > 6,
(182 log2<zlog2<1+@>>>( o e

with v(p) = (log2)(1 + p) as ¢ — .
Proof. By Theorem 1, since 1 — f(1—t) is g-qs and f is a p-qs mapping
of [0, 1] onto itself, for every m € N we have

f(t) < min{c, Pmtfm 1 — com(1—t)*}, tel0,1].

m

Let X € (0,¢p,) and

1 logy . A logy ., (1= X) — 1}

K m — - y “'m
X fmax { Bm 1og1/cm A+1 @ logl/cm (1—=2X)
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Then
c;{gmtﬁm < 1/ Kxm for 0 <t <A,

(1 —t)fxm < com(] — )@ for A<t <1.

Now, by the Wang and Hiibner inequalities (0.3) and (1.1)
f(t) < @%ﬁ,m(\/i) for 0 <t <A\,
and by (0.2) and (0.4)
FOS1—cr(l—tor <1—(1—Hfn <1-0% (VI P)
=®%, (Vi) for A<t <1.

Then

ft) <% (Vt) for0<t<1,
where
(2.4) K= min min Ky, < min Ky,

m=1,2,... 0<A<cm m=1,2,...
and )\, is the solution of
logy /e, Am . logl/cm(l —Am) — 1
1 +logy /e, Am T ogy e, (1= Am)

Consider first the case when 1 < p < 5/4. We have the following esti-
mates:

log(1 — (=&)™ m
o — g(1—(55) )§< 20 > 19 <gm 19
log(1 —27™) l+o) 1—(FH7)" 1—(GH7)"
1\" 1 et/m )
< _ < < o< .
- <1+m2> [ g—melfm S T _gomeym  OrlSesltl/m

Similarly, we obtain the estimate
B > (1—2")e V™) for1<op<1+1/m?.

Suppose that m > 2 is the smallest possible number for which the above
inequalities (2.4) are satisfied with A = 1/2. Then

1 1
K<K < —_— m(1+1 1-2=™
< Kijom < max{ﬁ 1—log2(1—2_m)’a (1 + logy( ))}
ol/(2m) ol/m ol (1
< _9o—m
< mox{ (g gy T e+ om2)
1/(2m) 1/m(q1_ 201 _o9—m
< max e 7 e'/™(1—-1log5(1-2"™))
(=2 ) (1= Togg(1=2-))" (1=2- "1/ m)(1— logy(1—2-™))

B el/2m) o1/
= e { (1-27m) (1~ logy (1-2-™))" (1-2 "el/m)(1— logy(1-2~™) }
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1/m 1/m

e e

<
1-2-7m)(1—logy(1—2-™)) — 1-2-mel/m
where m < Ent{1//o — 1}. Since

1 vo—1
N N
m S 1-o—1--Ve

<
—

we obtain
62 o—1
1 — 2—Ent{1/v0—T1} cEnt{/p—1} °
It is easy to see that v(p) — 1 as o — 1.
Consider now the case 1 < p < 6. By setting m = 1 and A = 1/4 we
have

K< min Ky1 < Ky
0<A<ecy ’

1 logy, (1/4) logy /., (3/4) — 1
= maxg — - , Q1
Br logye, (1/4) +1 logy /., (3/4)
2 logs 3 —3 }
=max{ ——————,log, (1 + o) —2——
it a7y o+ gt =
log,(3/8)
~ logy(3/4)
To obtain the last case we set m =1, a; = «, 81 = 3, and ¢ > 6. Then we
have

K <v(o) =

logy(1 4 0) < 3.411ogy(1+ o) =v(o) forb/4<p<6.

1 1 1
aflog2 =logy(1 + p) - log, (1 + Q) log2 < 510g2(1 +0) < 5
log®
o loet2
2(1 —log?2)

Hence

2
2(1/(a,6))+1 Z 9 10g2 log 2 Z 1 ’
af  2(af)? aflog 2

and so aff < 1/(r — 1) with r = —log(aflog2). By setting A = 27" we
arrive at

1 r 1
= max{ﬁ r—l’“< log2<1—2—r>>}

aX{l - Oé(1+(10g2)2r)} <max{1- a+}

IN
=

B r—1’ B r—1’ 6]
-
r—1"

IA

=
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Then

. 1
K < Tom, (1 1/2) <1 - logz(aﬁlogzl)>
1
< (log2)(e+1) (1 - 1og2(aﬁlog4)>
1
a log, (2 logy (1 + 0))

Asymptotically v(g) = (log2)(o+1) as ¢ — 0o. To obtain the left-hand side
inequality of (2.2) we notice that g(t) =1 — f(1 —t) is a p-gs function if so
is f. Substituting 1 — ¢ = z we have f(z) > 1— &% (/1 —x) = @f/K(\/E).

§(10g2)<1 >(g+1):y(g) for o > 6.
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