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and consequently

I

M) = [f(~1)| = (1) =5.
It may easily be shown that the set A(1) consisting of the roots of the
equation #'(6) = 0 contains only 0 and =. We find

f'(z) = 824+-8:—1, [f(—1)=6, [f(1)=10.
In view of remark 3 we have

IU4(1) = max [()],

ML(1) = min |f'(2)| .
ze.4(1)

zeA(1)
Hence
M, (1) =10

and  ML(1)=6.
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Remarks on the extremal functions of a certain class
of amalytical functions

by J. ZAMORSKI (Wroclaw)

Let us study the class T of the analytic functions satisfying in the
ring 0 < |2| <1 the differential equation

21'(2)
) 1)

=ap(a)+B

where « and B are any complex numbers and p(z2) = 1+ o,z ... satisfies
the inequality rep (2) > 0. We can easily see that the form of the functions
of the class T' is as follows:

(2) f(2) = Cestfexp {aafﬂs)s'l ds}

==
= Cpoth {1 + 2 a,ﬂzk}, C = const .
k=1

Let T.s be a subelass of the class T obtained by fixing the numbers a
and B and putting ¢ = 1. In particular T, will be identical with the class
of all regular starlike schlicht funetions, and 7T-,, will be identical with
the clags of all meromorphic starlike schlicht functions. If we put a = ¢
= 1/(1—ai), B = 1— p (real a) we obtain the class of Spaéek spiral schlicht
funetions [2] and putting a = —g, = —1+¢ we obtain the class of
spiral meromorphic schlicht functions. Class Tpppa—q 18 & certain subelass
(p integral) of the class of p-valent functions. -

In my previous paper [3] it was proved that the following estimations
are true:

. n=1
" . N
(I) if reaz0 then |an gmk]!ma-)—k[;

(1) if  —|ePf<rea<O0 then

=1

(1) ]anlg%[m[[:za—}—k] for m=1,..,N+1,
" k=0
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t

1 ~ where
W) Jou] < 5 [ [120401 tor m=a2,, .

'nl\‘kzo Jou| =1, Bi> 0, 2ﬂ7a=2
F=1

where N is the largest natural number for which
THEOREM B. A function of the class T.p extremal with respect o the

Nrea = —|af; . : L
\a\ functional B (f) = T (ay, ..., an) satisfies the following differential equations:
(III)  if rea<—|al? then |an] <= o' (2)—Bi(z) .
'W‘Pi(z) =0Qz), 4=1,2

Moreover, in the above mentioned paper there were presented some where
instances for functions giving equalities in the above estimations. n o n

W ° i prove t ine i4; NVid

Ve are going to prove the following. Pyz) = =2 jAu

LeyMA. The coefficients of the functions of the class T satisfy the = =1
snequality n n n

. n—1 o A \1 Xj _
st < daf+4 ), b {Trea | el |a? . Pyfz) = & i M’ﬁ i+ A.J 4
Ic-l = F=1
Proof. The function " 1 n\—
plz)—1 ST Q;(z)=a[ 5 2 (b +9) Ay + Zkachk"‘ vz]Zak (k+9) A,H,.l ,

(3) w(z) = ple)+1 = Z Wk j=1 k= j=1 k=0

) =1 n n—j n n n—j

o . . : 3 Q l _
satisfies the inequality |w(z)| < 1 for |z| < 1. Q:(2) = a [Z %Z(tkflﬂﬁ ’blm M apAp— A\./ & ZEkAk-I—:f] )
Si=1 k=0 k=1 i=1 - k=0

Introducing (3) into (1) we obtain

n—3

o o0
. a NV, (0B . of ) .
(g b+ 2a) ape®| = bayz® . {--— Ly~ Y =
( )[k;)( + 2a) g ] 7?§ el A= ]L..J Bney 3!/k+7'l’ %+ = ar
Hence
n—1 ‘ e 1 0 .0
(4) w(z )[ Z (k+2a)a, ] Zkak ok Z for s (-1 2a, a4, 1 .. 0
k=0 k=n+1 O = - a R 51 ay=1.
where ¢; ave certain complex numbers. Computing on the circle || = r < 1 kap ary Gp—s ... ay
the mean value of square of modulus of both sides (4) and tending from r : : :
On the bagis of the \
to 1 and taking into account |w(2)] < 1 we obtain PEEORIM 01 Ilf 1:20veowjhjlfl:m£;;;(; t:;eﬂf:uf;v:fq'
n—_l n 9,
Dkt 2aplap > Y Wlap . fle) = &by ™, =1
k=0 Jo==1

are the only functions giving the equality
The last inequality gives us the assertion of the lemma. This lemuma was

proved for a« = —1 by J. Clunie [1]. 10
Further we will use two theorems included in my provious paper [3]. |aal = 37'12/ |20+
fe=0

THEOREM A. A function of the class T.; for which the functional
E(f) = B(ay, ..., an) atiains its emtremal value is of the form

fle) = 2| ﬁ (1~ oze) ™" |an] =;3—,Z [2a+%|

To==1 k=0

Proof. From the lemma we see that if
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then -
[aj]——yl-' 2a+%k], Ji=1,2,..,n—1.

Since, if |as| attains its maximal value for a certain function, then for
the same function the maximal value is also attained by |a,|. Turning the
plane z and choosing a suitable constant O for formula (2) we can seek
the maximum rea, instead of seeking the maximum |a;|. The functional
rea, satisfies the assumption of theorem A and thus the function giving
its maximum is of the form

(5) fz) = & (L4 2) ™,

and this proves the theorem.

Note 1. This theorem is also true if —|af<rea < 0. Of course
funetion (3) gives then the maximal value of |a,| only for the first N -1
coefficients. For subsequent coefficients the sharp estimations aud the
form of the function giving the maximal value of |a,| remain open.

TueorEM 2. If rea < —|al? the functions of the form

#e) =

are the only functions giving the equality

(1 - ™)

Jaa] =2 fa].

Proof. Sinee krea-+|af* < 0 for every natural % then from lemma
we can easily see that if |an|= 2|a|/m, then all previous coefficients
equal zero. It follows from (1) that for coefficients of the corresponding
function p(2) =1+4+a2+..., vep(z) > 0 we have
coefficients equal zero. Thus a function with a positive real part cor-
responding to the extremal function for |a,| of the class 1 is of the form

P (2) = 1+ 2690 4 a, 271+ L

ple)—1 _ .
w(g) = (e H_l-_Nzﬂ—{
obviously satisfies the inequality |w(e)] <1 for |e| < 1.
into account the Schwarz lemma, we have

y @

The function

Thus, taking

w(z) = glegn
and hence

(6) , p(e) = T2

— glogn ”

Putting (6) into (2) we obtain the theorem.

icm

EBaxiremal funclions of a certain class of analytical funclions

THEOREM 3. If rea = —l|af? the functions of the form

f(z) = z“”(l-&vyz”)“z“/n, [n]=1, =n#2

are the only functions giving the equality
|an] = 2[aln .

Note 2. For n =2 the equality |a, = la| may be satisfied also by
other functions, as is shown by the example of the function

2

VAN
N

1
SUtpmts), —2<p

belonging to the class 1_,,, which realizes the above equality and is
of different form from that given in theorem 3.

Proof. For n =1 the theorem 3 follows directly from theorem A
applied to the functional rea,. Now let % > 3. From the lemma we gee
that in order to have |a.| = 2|a|/n we require that all previous coefficients
except a, should equal zero. The value a, is not defined by the lemma.
We can then determine by theorem B applied to the functional reey,.
Obviously for the extremal function rea, = 2|a|fn. Theorem B gives us
the equality

Py(2)@u(2) = Pyfz) Qu(2)

In this equality we take into account what we already know about the
extremal function and we compare the coefficients of 2~» and #*-». By
this comparison we obtain the equality

. o=, 2ya|] (=1)" _as
(7) aal'blm[ma1+ " —|—a;%(.n_l)a.1

= aa, ?] al —(a+1)alle[—(T—1—)——) ar + 7|a[],
(8) @@ P—1) = 0

(these equalities are true only for = > 3). From equality (8) we infer
that either |@,| =1 or a; = 0. If |ay| = 1 then from (7) we obtain

2a+1

2lal(n—1—a)+ —=(—1)"(ay +ay) =0

and writing @, = cosp-+ising we have
_2|a|
Za+1

This equality is possible only when « is a real number. But then o satisfies
the equation a = —a? and thus « = —1. We can easily see that for

(9) cosng = (—1)° (a+1—mn).


GUEST


252 J. Zamorski

a= —1 equality (9) is impossible. Hence a; = 0. So Uy = lly = oo = Uy =
for the extremal function and we end the proof similarly to the proof
of theorem 2. . .

Note 3. The case here studied is particulary interesting as it concerns
the classes of meromorphic starlike schlicht functions and meromorphic
gpiral sehlicht functions.

Note 4. The theorems here proved were known for regular starlike
sehlicht funetions and for starlike meromorphic sehlicht functions satisty-
ing the additional assumption a; = 0 [1].
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Note on abstract differential inequalities and Chaplighin
method

by W. MLAK (Krakéw)

We arve interested in this paper in an abstract treatment of the
Chaplighin method [1], [9], [10], [11] for the equation
1) %;zfia;(t)—l—f(t,w(t)).
4 is an infinitesimal generator of a semi-group of linear bounded opera-
tors of class (Cp) in the Banach space B. The essential moment in the
Chaplighin method, is the fact that f(¢,») is convex in x. The second
feature of that method is the use differential inequalities. The purpose
of the present paper is the investigation of the Chaplighin method by using
methods which are closely related to the Hille-Yosida semigroups theory
(see [4]). We make use of some theorems concerning ordinary differential
and integral inequalities. In section 1 we give a Dbrief outline of the no-
tation and definitions. We also discuss some geometric properties of
positive cones. Section 2 presents some results concerning abstract linear
differential inequalities. In sections 3 and 4 we examine almost linear
differential inequalities. Sections 5, 6 and 7 are devoted to the main
object of this paper. Three principal questions are considered. The first
one is the question of existence of the Chaplighin sequence on a common
interval. Next we discuss the problem of uniform boundedness and con-
vergence of the Chaplighin sequence. We then use some assumptions
imposed on the relationship between the partial ordering and metric
properties. Following R. Kalaba [6] we introduce the concept of New-
tonian sequences. Finally we present some results which concern the
estimation of the norm of the difference between the exact solution of (1)
and the approximate one. The last section deals with the uniform bounded-
ness of Newtonian sequences.

1. Preliminaries. Let F be a real Banach space. The norm of
@ el is denoted by |»|. The norm of bounded linear operators is also
denoted by simple bars. The funetion f(¢,®) is defined on <0, «) x B
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