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SECURITY PRICE MODELLING BY A BINOMIAL TREE

Abstract. We consider multidimensional tree-based models of arbitrage-
free and path-independent security markets. We assume that no riskless
investment exists. Contingent claims pricing and hedging problems in such
a market are studied.

1. Introduction. A binomial tree (tree, for short) is a subset
{s0, sε1,...,εn : εi = ±1, n ≥ 1} of (0,∞)d. The starting point of our work is
the observation that trees can be used as models for discrete time security
markets. Indeed, let Ω = {−1, 1}N (N is the set of positive integers) with its
Borel σ-algebra A and the usual invariant probability P. Let A0 denote the
trivial σ-algebra {∅, Ω}, and let An (n ≥ 1) be the σ-algebra generated by
the first n coordinates ε1, . . . , εn of the element ε = (ε1, ε2, . . .) ∈ Ω. The
sequence {Sn, n = 0, 1, . . .} of random vectors on Ω is defined by

(1.1) S0 = s0, Sn(ε) = sε1,...,εn , n ≥ 1.

Then the collection

(1.2) (Ω,A,P, (Sn,An)n=0,1,...,N )

serves as a discrete time security market model, where the trading takes
place at times 0, 1, . . . , N (N < ∞). This construction goes back to Cox,
Ross, and Rubinstein (1979). Their CRR tree is a subset {s0, sε1,...,εn} of
(0,∞)2 and is determined by a number r > 0 and a function x : {−1, 1} →
(0,∞) as follows: if s0 = (1, s10), then

sε1,...,εn = T (εn)sε1,...,εn−1
, n ≥ 1,

1991 Mathematics Subject Classification: 90A09, 90A12, 62M10.
Key words and phrases: arbitrage-free market, binomial market model, numeraire

portfolio.
Research of R. Leipus supported by the Lithuanian State Science and Studies Foun-

dation Grant K-014.

[253]



254 R. Leipus and A. Račkauskas

where T (εn) is the diagonal matrix diag(1 + r, x(εn)). The correspond-
ing market model contains a riskless security (bond) with price dynam-
ics S0

n = (1 + r)n and a risky security (stock) with price dynamics S1
n =

S1
0x(ε1) . . . x(εn). Moreover, the market model is arbitrage-free if

(1.3) 0 < x(−1) < 1 + r < x(+1).

Extensions of the binomial model to general discrete time arbitrage-free
security markets were subsequently considered by many authors (see, for
instance, Harrison and Pliska (1981), Jensen and Nielsen (1996), Lamberton
and Lapeyre (1996), Jacod and Shiryaev (1998) and references therein).

Due to some element of abstraction of the riskless security, i.e., a security
that permanently grows in value at the rate 1+r, we suggest the alternative
way of modelling an arbitrage-free market where the riskless investment does
not exist or is unknown. The role of numeraire is thus played by the price
of some fixed benchmark portfolio of the securities. As pointed out by Long,
Jr. (1990) the notion of the numeraire portfolio (which slightly differs from
ours) is related to several ideas, such as the behaviour of asset returns in ef-
ficient markets; pricing by risk-neutral valuation; growth-optimal portfolios;
empirical definitions of abnormal returns.

Under the arbitrage-free market requirement the class of trees reduces
to those with the following property, analogous to (1.3):

P1. There exists a ∈ R
d
+ = [0,∞)d, a 6= 0, such that for each n ≥ 1,

s̃ε1,...,εn−1
∈ (s̃ε1,...,εn−1,−1, s̃ε1,...,εn−1,1),

where s̃ε1,...,εn := sε1,...,εn/〈sε1,...,εn , a〉 (〈x, y〉 denotes the inner product in

R
d) and (x, y) = {αx+ (1− α)y : α ∈ (0, 1)} for x, y ∈ R

d.

Another feature of the CRRmodel is its path-independence, which means
that an up movement of the price followed by a down movement leads to the
same node as a down movement of the price followed by an up movement.
This corresponds to the so-called recombining tree assumption, i.e.

P2. For each n ≥ 2,

(1.4) sε1,...,εn−2,1,−1 = sε1,...,εn−2,−1,1.

The recombining tree assumption provides a much more computationally
efficient model giving n+ 1 nodes in the nth time step instead of 2n in the
“bushy” tree.

Tree models under consideration have a recursive form:

sε1,...,εn = T (ε1, . . . , εn)sε1,...,εn−1
,

where T (ε1, . . . , εn) is a d × d matrix (see also Motoczyński and Stettner
(1998), where a multidimensional extension of the CRR model is studied).
Conditions P1 and P2 are met by specifying the matrix T (ε1, . . . , εn).
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In Section 2 some necessary notions and definitions are collected. The
tree based model is studied in detail in Section 3. In addition, several
concrete examples of arbitrage-free and path-independent market models
are provided. Section 4 deals with contingent claim pricing and hedging
problems for the cases considered.

2. Some notions and definitions. Consider a security market where
trading according to the rules given below takes place at times 0, 1, . . . , N .
Let Ω be a set of market states (not necessarily finite); F be a σ-algebra of
subsets of Ω; F be a class of σ-algebras F0 = {∅, Ω} ⊂ F1 ⊂ . . . ⊂ FN ⊂ F ;
and P be a probability measure on (Ω,F). Denote by Si

n > 0 the time n
price of the ith security. We assume that, for all i and n, Si

n is an Fn-
measurable random variable. Set Sn = (S1

n, . . . , S
d
n) and call the collection

(2.1) (Ω,F ,P, (Sn,Fn)0≤n≤N )

a discrete-time security market.
Assume that, at each time n ≤ N, the investor can buy/sell securities.

Let Φi
n be the number of ith securities held at time n. We assume that

for any i the process {Φi
n, n = 0, 1, . . . , N} is predictable and we call the

d-dimensional process Φ = {Φn ≡ (Φ1
n, . . . , Φ

d
n), n = 0, 1, . . . , N} a strategy.

The portfolio value at time n is the random variable Vn = 〈Φn, Sn〉 ≡∑d
i=1 Φ

i
nS

i
n.

Recall that the strategy Φ is called self-financing if 〈Φn, Sn〉 = 〈Φn+1, Sn〉
for each n = 0, 1, . . . , N − 1. An admissible strategy is defined as a self-
financing strategy for which Vn ≥ 0 a.s. for each n = 0, 1, . . . , N . An
admissible strategy Φ is called an arbitrage strategy if the corresponding
portfolio values satisfy V0 = 0, EVN > 0. The market (2.1) is arbitrage-free
if there is no arbitrage strategy.

We define

S̃n := Sn/〈Sn, a〉, n = 0, . . . , N,

where a ∈ R
d
+, and set ∆S̃j := S̃j − S̃j−1.

Standard arguments imply the following arbitrage-free criteria for the
market (2.1).

Proposition 2.1. (1) If there exist a ∈ R
d
+, a 6= 0, and a measure Pa

equivalent to P (Pa ∼ P) such that the process {S̃n, n = 0, . . . , N} is a

martingale with respect to Pa then the market (2.1) is arbitrage-free.

(2) If the market (2.1) is arbitrage-free, then for all a ∈ R
d
+, a 6= 0,

there exists a probability measure Pa ∼ P such that the process {S̃n, n =
0, . . . , N} is a martingale with respect to Pa.

For convenience of the reader the proof of the proposition is provided in
the appendix.
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3. Binomial model of the security market. Consider the discrete
time security market model (Ω,A,P, (Sn,An)n=0,1,...,N) corresponding to
the tree {s0, sε1,...,εn : εi = ±1, n ≥ 1} as defined in the introduction.

Proposition 3.1. If the tree {s0, sε1,...,εn} has property P1 then the

market model (Ω,A,P, (Sn,An)n=0,1,...,N ) is arbitrage-free.

P r o o f. By the definition (1.1) of the process {Sn} and property P1 of
the tree it follows that the process {Sn/〈Sn, a〉} is a martingale with respect
to the P-equivalent measure

Pa =
∞∏

n=1

(αnδ1 + (1− αn)δ−1),

where αn ∈ (0, 1) satisfies

s̃ε1,...,εn−1
= αns̃ε1,...,εn−1,1 + (1− αn)s̃ε1,...,εn−1,−1.

The result now follows by Proposition 2.1.

Next we give rigorous definitions and notions needed to introduce our
model. Fix a ∈ R

d such that 〈a, a〉 = 1. Let La = {ta : t ∈ R} and let
ẽ1, . . . , ẽd−1 be an orthonormal basis in

L⊥
a = {x ∈ R

d : 〈x, a〉 = 0}.

For convenience set ẽd = a. For x, y ∈ R
d define a vector product

x ⊗̃ y =

d∑

k=1

〈x, ẽk〉〈y, ẽk〉ẽk.

For ε ∈ {−1, 1} set ε′ := (1− ε)/2.
Consider the tree {s0, sε1,...,εn} defined recursively by the equations

(3.1) sε1,...,εn = [sε1,...,εn−1
⊗̃ xn(εn)]Xn

( n−1∑

k=1

ε′k

)
, n = 1, 2, . . . ,

where xn : {−1, 1} → (0,∞)d and Xn : N → (0,∞).
The solution to (3.1) is

sε1,...,εn = [s0 ⊗̃ x1(ε1) ⊗̃ . . . ⊗̃ xn(εn)]X1X2(ε
′
1) . . . Xn(ε

′
1 + . . .+ ε′n−1).

Our aim is to ensure that the functions xn and Xn are defined in such a
way that the tree {s0, sε1,...,εn} is recombining and has property P1.

Define

Zn :=
Xn(1)

Xn(0)
, bnj :=

〈xn(−1), ẽj〉

〈xn(1), ẽj 〉
, n ≥ 1, j = 1, . . . , d.

Proposition 3.2. The tree given by (3.1) is recombining if and only if

for any n ≥ 1,
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(i) Xn(i+ 1)/Xn(i) does not depend on i = 0, 1, . . . , n− 2; and
(ii) bnj = Zn . . . Z2b1j , j = 1, . . . , d.

P r o o f. Condition (1.4) applied to the tree (3.1) reads

(3.2) [xn−1(1)⊗̃xn(−1)]Xn

( n−2∑

i=1

ε′i

)
= [xn−1(−1)⊗̃xn(1)]Xn

( n−2∑

i=1

ε′i+1
)
.

This implies that the ratio Xn(
∑n−2

i=1 ε′i +1)/Xn(
∑n−2

i=1 ε′i) does not depend

on
∑n−2

i=1 ε′i. Thus

(3.3) Zn =
Xn(

∑n−2
i=1 ε′i + 1)

Xn(
∑n−2

i=1 ε′i)
, n = 2, 3, . . .

Taking the scalar product of both sides of (3.2) with ẽj , we find that for
n = 2, 3, . . . and j = 1, . . . , d,

(3.4)
〈xn(−1), ẽj〉

〈xn(1), ẽj〉
= Zn . . . Z2

〈x1(−1), ẽj〉

〈x1(1), ẽj〉
.

Obviously, (i) and (ii) imply (3.2).

It is easy to see that the tree {s0, sε1,...,εn} defined by (3.1) satisfies P1
provided

1̃ ∈

(
xn(−1)

〈xn(−1), a〉
,

xn(1)

〈xn(1), a〉

)
,

where 1̃ ∈ R
d is such that 〈1̃, ẽj〉 = 1 for each j = 1, . . . , d.

Corollary 3.1. Let a ∈ R
d
+, a 6= 0, and let the price process {Sn} be

given by (1.1), (3.1). Assume that for any n ≥ 1,

(i) Xn(i+ 1)/Xn(i) does not depend on i = 0, . . . , n− 2;
(ii) bnj = Zn . . . Z2b1j , j = 1, . . . , d;
(iii) for each n = 1, . . . , N and j = 1, . . . , d − 1, there exists αn ∈ (0, 1)

such that

(3.5)
〈xn(1), ẽj〉

〈xn(1), a〉
=

1

αn + (1− αn)cj
, where cj = b1j/b1d.

Then the market model (1.2) is arbitrage-free and path-independent.

P r o o f. From (ii) and (iii) we have

(3.6)
〈xn(−1), ẽj〉

〈xn(−1), a〉
=

cj
αn + (1− αn)cj

.

Therefore by (3.5), (3.6),

αn
〈xn(1), ẽj〉

〈xn(1), a〉
+ (1− αn)

〈xn(−1), ẽj〉

〈xn(−1), a〉
= 1
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for all n. This obviously implies property P1, thus Propositions 3.1 and 3.2
yield the assertion.

Remark 3.1. One can easily verify that conditions (ii) and (iii) of Corol-
lary 3.1 are equivalent to

(ii′) bnd = Zn . . . Z2b1d;

(iii′) for each n = 1, . . . , N and j = 1, . . . , d − 1, there exists αn ∈ (0, 1)
such that

〈xn(1), ẽj〉

〈xn(1), a〉
=

1

αn + (1− αn)cj
,

〈xn(−1), ẽj〉

〈xn(−1), a〉
=

cj
αn + (1− αn)cj

.

Remark 3.2. Under the conditions of Corollary 3.1 we have

(3.7) Xn(i) = Xn(0)Z
i
n

and

〈xn(εn), ẽj〉

〈xn(εn), a〉
=

c
ε′
n

j

αn + (1− αn)cj
.

Thus sε1,...,εn can be rewritten as follows:

sε1,...,εn =
d∑

j=1

〈sε1,...,εn , ẽj〉ẽj(3.8)

=
d∑

j=1

〈s0, ẽj〉
[ n∏

k=1

〈xk(εk), ẽj〉Xk(ε
′
1 + . . .+ ε′k−1)

]
ẽj

=
d∑

j=1

〈s0, ẽj〉

×

[ n∏

k=1

c
ε′
k

j

αk + cj(1− αk)
〈xk(εk), a〉Xk(ε

′
1 + . . .+ ε′k−1)

]
ẽj

=

n∏

k=1

[〈xk(εk), a〉Xk(0)Z
ε′
1
+...+ε′

k−1

k ]

d∑

j=1

〈s0, ẽj〉τ
(1,n)
j ẽj ,

where

τ
(m,n)
j = τ

(m,n)
j (ε1, . . . , εn) :=

n∏

k=m

c
ε′
k

j

αk + cj(1− αk)
.

Equivalently, (3.8) can be rewritten in the following recursive form:

(3.9) sε1,...,εn = sε1,...,εn−1
⊗̃ Yε1,...,εn ,



Security price modelling by a binomial tree 259

where

Yε1,...,εn = 〈xn(εn), a〉Xn(0)Z
ε′1+...+ε′

n−1

n

d∑

j=1

τ
(n,n)
j ẽj .

It is easy to see that

(3.10) 〈xn(εn), a〉Xn(ε
′
1 + . . .+ ε′n−1) = 〈sε1,...,εn , a〉/〈sε1 ,...,εn−1

, a〉.

Next we consider some particular cases of the model (3.1).

Example 3.1. Assume that

sε1,...,εn = sε1,...,εn−1
⊗̃ x(εn)δn,

where δn > 0 for all n ≥ 1 and x : {−1, 1} → (0,∞). Thus, conditions (i)
and (ii) of Corollary 3.1 are automatically satisfied and condition (iii) on
the values of x(1) and x(−1) and vectors a, ẽ1, . . . , ẽd−1 becomes

α(1) = . . . = α(d−1) = α ∈ (0, 1),

where

(3.11) α(j) =

1−
〈x(−1), ẽj〉

〈x(−1), a〉
〈x(1), ẽj 〉

〈x(1), a〉
−

〈x(−1), ẽj〉

〈x(−1), a〉

for j = 1, . . . , d− 1.

Note that the condition α(j) ∈ (0, 1), where α(j) is defined by (3.11), is
equivalent to the following one: either

〈x(−1), ẽj〉 < 〈x(−1), a〉, 〈x(1), a〉 < 〈x(1), ẽj 〉

or

〈x(−1), a〉 < 〈x(−1), ẽj〉, 〈x(1), ẽj 〉 < 〈x(1), a〉.

In particular, consider the case where the function x = (x1, . . . , xd) is known.
Then we can choose the portfolio a as follows: first check whether there exist
k0, 1 ≤ k0 ≤ d, and J ⊂ {1, . . . , d} such that

(3.12)

{
xj(−1) < xk0

(−1), xk0
(1) < xj(1), ∀j ∈ J, j 6= k0,

xk0
(−1) < xj(−1), xj(1) < xk0

(1), ∀j 6∈ J, j 6= k0.

If such a k0 exists, put a = ek0
, where e1, . . . , ed are the standard orthonor-

mal basis vectors.

If such a k0 does not exist, then one has to change the standard basis
to another one, say ẽ1, . . . , ẽd, and then to check condition (3.12) with xj =
〈x, ẽj〉. It is easy to construct examples where condition (3.12) is not valid
for the standard basis but valid for another basis.
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Example 3.2. Assume that in the model (3.1), e1, . . . , ed is the standard
orthonormal basis in R

d and let for each n ≥ 1,

〈xn(εn), ed〉 = 1 + r, r > 0.

Then cj = 〈x1(−1), ej〉/〈x1(1), ej〉, Zn ≡ 1 and

〈xn(εn), ej〉 =
(1 + r)c

ε′
n

j

αn + (1− αn)cj
.

The tree (3.1) reduces to

sε1,...,εn = sε1,...,εn−1
⊗̃ xn(εn)

or, equivalently,

sε1,...,εn = Tn(εn)sε1,...,εn−1
,

where Tn(εn) = diag(x1
n(εn), . . . , x

d−1
n (εn), 1 + r), xj

n := 〈xn(εn), ej〉. This
model corresponds to the CRR model with one dth riskless security and d−1
risky securities, where jumps at each time n are non-identically distributed.

Example 3.3. Assume that the model (3.1) is such that

(3.13) 〈xn(1), a〉〈xn(−1), a〉 = 1, n ≥ 1.

Together with condition (ii′) of Remark 3.1, this implies that for any n ≥ 1,

〈xn(−1), a〉 = (Zn . . . Z2b1d)
1/2, 〈xn(1), a〉 = (Zn . . . Z2b1d)

−1/2,

or more concisely

〈xn(εn), a〉 = (Zn . . . Z2b1d)
−εn/2, n ≥ 1.

Therefore, by (3.9), we have

sε1,...,εn = sε1,...,εn−1
⊗̃ Yε1,...,εn , n ≥ 1,

where

Yε1,...,εn = (Zn . . . Z2b1d)
εn/2Xn(0)Z

ε′
1
+...+ε′

n−1

n

d∑

j=1

c
ε′
n

j

αn + cj(1− αn)
ẽj

= Xn(0)b
ε′
n
−1/2

1d Z
ε′
n
+ε′1+...+ε′

n−1−1/2
n

n−1∏

k=2

Z
ε′
n
−1/2

k

d∑

j=1

c
ε′
n

j

αn + cj(1− αn)
ẽj .

4. Contingent claim pricing and hedging. Consider the discrete
time security market model (Ω,A,P, (Sn,An)n=0,1,...,N) corresponding to
the tree {s0, sε1,...,εn : εi = ±1, n ≥ 1} as in (3.1). Assume that f(SN)
is a contingent claim, where Sn ≡ (S1

n, . . . , S
d
n) and f : R

d → (0,∞) is
a measurable function. Let the assumptions of Corollary 3.1 be satisfied.
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Then the value of f(SN ) at time n is

(4.1) Vn = 〈Sn, a〉Ea

(
f(SN)

〈SN , a〉

∣∣∣∣Fn

)
,

where the conditional expectation Ea is taken with respect to the measure

Pa =

∞∏

n=1

(αnδ1 + (1− αn)δ−1).

Theorem 4.1. Let the assumptions of Corollary 3.1 be satisfied. Then

the time n value of the contingent claim f(SN) is

(4.2) Vn = Fn(ε1, . . . , εn),

where

(4.3) Fn(i1, . . . , in)

=
∑

in+1,...,iN=±1

f(si1,...,in ⊗̃ tn(i1, . . . , iN ))

×
N∏

k=n+1

[〈xk(ik), a〉
−1X−1

k (0)Z
−(i′1+...+i′

k−1)

k (1− αk)
i′
kα

1−i′
k

k ]

and

tn(i1, . . . , iN )

:=

N∏

k=n+1

[〈xk(ik), a〉Xk(0)Z
i′
1
+...+i′

k−1

k ]

d∑

j=1

τ
(n+1,N)
j (in+1, . . . , iN ) ẽj

(i′k := (1− ik)/2, ik = ±1).

P r o o f. By (3.10),

〈SN , a〉 = 〈Sn, a〉
N∏

k=n+1

〈xk(εk), a〉Xk(ε
′
1 + . . .+ ε′k−1).

Thus, (4.1) yields

(4.4) Vn = Ea

(
f(SN)

N∏

k=n+1

〈xk(εk), a〉
−1X−1

k (ε′1 + . . .+ ε′k−1)
∣∣∣Fn

)
.

Observe that

SN(ε) ≡ sε1,...,εN = sε1,...,εn ⊗̃ tn(ε1, . . . , εN ),
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where

tn(ε1, . . . , εN ) = Yε1,...,εn+1
⊗̃ . . . ⊗̃ Yε1,...,εN

=
N∏

k=n+1

〈xk(εk), a〉Xk(ε
′
1 + . . .+ ε′k−1)

d∑

j=1

τ
(n+1,N)
j ẽj .

Since εn+1, . . . , εN are independent of the σ-algebra Fn, applying (3.7) we
obtain from (4.4),

Vn =
∑

in+1,...,iN=±1

f(sε1,...,εn ⊗̃ tn(ε1, . . . , εn, in+1, . . . , iN ))

×
N∏

k=n+1

[〈xk(ik), a〉
−1X−1

k (ε′1 + . . . + ε′n + i′n+1 + . . .+ i′k−1)]

×
N∏

l=n+1

(1− αl)
i′
lα

1−i′
l

l

≡ Fn(ε1, . . . , εn).

Example 4.1. Consider the model given in Example 3.1 and assume that
the conditions of Corollary 3.1 hold. Let b := b1d ≡ 〈x(−1), a〉/〈x(1), a〉.

Since 〈x(ik), a〉 = bi
′

k〈x(1), a〉, by Theorem 4.1 we obtain

(4.5) Fn(i1, . . . , in)

=
∑

in+1,...,iN=±1

f

( N∏

k=1

(〈x(ik), a〉δk)
d∑

j=1

〈s0, ẽj〉
c
i′1+...+i′

N

j

(α+ cj(1− α))N
ẽj

)

×
N∏

k=n+1

(〈x(ik), a〉
−1δ−1

k (1− α)i
′

kα1−i′
k)

=

N−n∑

k=0

(
N − n

k

)
f

(
bi

′

1+...+i′
n
+kγ1,N

d∑

j=1

〈s0, ẽj〉
c
i′1+...+i′

n
+k

j

(α+ cj(1− α))N
ẽj

)

× b−kγ−1
n+1,N

(
1− α

α

)k

αN−n,

where

γm,N := 〈x(1), a〉N−m+1δm . . . δN , m ≤ N.

Pricing of a European call option. Assume that the contingent claim
f(SN) is the payoff of the European call option on “index” 〈SN , w〉 with
exercise price K, where w ∈ [0, 1]d, 〈w,w〉 = 1:

f(SN) = (〈SN , w〉 −K)+.
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For the price dynamics corresponding to (3.8) the value of a European call
option at time n, by Theorem 4.1, is given by (4.2) with

Fn(i1, . . . , in) =
∑

in+1,...,iN=±1

(〈si1,...,iN , w〉 −K)+

×
N∏

k=n+1

[〈xk(ik), a〉
−1X−1

k (0)Z
−(i′1+...+i′

k−1
)

k (1−αk)
i′
kα

1−i′
k

k ].

Note that

〈si1,...,iN , w〉 =
N∏

k=1

[〈xk(ik), a〉Xk(0)Z
i′1+...+i′

k−1

k ](4.6)

×
d∑

j=1

〈s0, ẽj〉τ
(1,N)
j (i1, . . . , iN )〈w, ẽj〉.

If the benchmark portfolio a coincides with the weights w = (w1, . . . , wd)
(or any orthonormal basis vector in L⊥

w), i.e. a = w, then (4.6) simplifies to

(4.7) 〈si1,...,iN , w〉 = 〈s0, w〉
N∏

k=1

〈xk(ik), w〉Xk(0)Z
i′1+...+i′

k−1

k .

If w = a, in the case of Example 4.1 with b > 1, one sees by (4.5) and
(4.7) that the time n value of the payoff (〈SN , w〉 −K)+ corresponding to
the European call option equals

Fn(ε1, . . . , εn) =

N−n∑

k=0

(
N − n

k

)
(bε

′

1+...+ε′
n
+kγ1,N 〈s0, w〉 −K)+

× b−kγ−1
n+1,N(1− α)kαN−n−k

= bε
′

1+...+ε′
nγ1,n〈s0, w〉ϕ(k0, N − n, 1− α)

−Kγ−1
n+1,Nb−(N−n)(1− α+ αb)N−nϕ(k0, N − n, α),

where

ϕ(k, n, p) :=
n∑

j=k+1

(
n

j

)
pj(1− p)n−j ,

k0 :=

[
logK − log γ1,N − log〈s0, w〉

log b

]
− ε′1 − . . .− ε′n

α :=
1− α

1− α+ αb
.
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Hedging. To find the hedging strategy {Φn, n = 0, . . . , N} for the con-
tingent claim f(SN), we have to solve the equations

〈Φn, sε1,...,εn〉 = Fn(ε1, . . . , εn)

for each n = 0, 1, . . . , N , where Fn(i1, . . . , in) is given in (4.3). Since
{Φn, n = 0, . . . , N} is a predictable sequence and therefore Φn does not
depend on εn, we have

〈Φn, sε1,...,εn−1,−1〉 = Fn(ε1, . . . , εn−1,−1),

〈Φn, sε1,...,εn−1,1〉 = Fn(ε1, . . . , εn−1, 1).

Note that in the case d = 2 one easily obtains the unique solution

Φ1
n =

Fn(ε1, . . . , εn−1,−1)s2ε1,...,εn−1,1 − Fn(ε1, . . . , εn−1, 1)s
2
ε1,...,εn−1,−1

s1ε1,...,εn−1,−1s
2
ε1,...,εn−1,1

− s1ε1,...,εn−1,1
s2ε1,...,εn−1,−1

,

Φ2
n =

Fn(ε1, . . . , εn−1,−1)s1ε1,...,εn−1,1
− Fn(ε1, . . . , εn−1, 1)s

1
ε1,...,εn−1,−1

s2ε1,...,εn−1,−1s
1
ε1,...,εn−1,1

− s2ε1,...,εn−1,1
s1ε1,...,εn−1,−1

.

5. Appendix. To prove Proposition 2.1 we will need the following
lemma.

Lemma 5.1. Let a ∈ R
d
+ and {Φ′

n, n = 0, 1, . . . , N} be a d-dimensional

predictable process. Then for an arbitrary number V0 there exists a unique

one-dimensional predictable process {φn, n = 0, . . . , N} such that {Φn =
Φ′
n + φna, n = 0, 1, . . . , N} is a self-financing strategy and the initial value

of the new portfolio is V0.

P r o o f. Let Ṽn := Vn/〈Sn, a〉 and define

(5.1) φn = Ṽ0 +
n∑

j=1

〈Φ′
j ,∆S̃j〉 − 〈Φn, S̃n〉.

It follows immediately from (5.1) that {φn, n = 0, . . . , N} is predictable.

On the other hand, the self-financing assumption is equivalent to

(5.2) Ṽn = Ṽ0 +
n∑

j=1

〈Φj ,∆S̃j〉

(see Proposition 1.1.2 in Lamberton and Lapeyre (1996)). Substituting Φj =
Φ′
j + φja to (5.2) we obtain

(5.3) 〈Φ′
n, S̃n〉+ φn〈a, S̃n〉 = Ṽ0 +

n∑

j=1

〈Φ′
j ,∆S̃j〉+

n∑

j=1

φj〈a,∆S̃j〉.
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Since 〈a, S̃n〉 = 1 and hence 〈a,∆S̃n〉 = 0 for any n, (5.3) implies that

φn = Ṽ0 +

n∑

j=1

〈Φ′
j ,∆S̃j〉 − 〈Φ′

n, S̃n〉

and therefore {φn} is a unique predictable process such that {Φn} is a self-
financing strategy.

Proof of Proposition 2.1. (1) Let a ∈ R
d
+ and suppose the sequence

{S̃n, n = 0, . . . , N} is a martingale with respect to the measure Pa ∼ P.
Assume that {Φn} is an admissible strategy such that V0 = 0. Let

Ṽn = Vn/〈Sn, a〉, n = 1, . . . , N.

Since for every self-financing strategy {Φn} equality (5.2) holds, it follows

that {Ṽn} is a martingale with respect to Pa. Thus

(5.4) EaṼN = EaṼ0 = Ea(V0/〈S0, a〉) = 0,

where Ea denotes the expectation with respect to the measure Pa.

Since VN ≥ 0 and P ∼ Pa, equality (5.4) implies that EVN = 0, i.e., the
market is arbitrage-free.

(2) For any d-dimensional predictable process {Φ′
n} set

vn :=

n∑

j=1

〈Φ′
j ,∆S̃j〉, n = 0, 1, . . . , N.

According to Theorem 1.1 in Kabanov and Kramkov (1994), we have to
prove that vn ≥ 0 for each n = 0, 1, . . . , N implies vN = 0 a.s. By Lemma 5.1
there exists a unique process {φn} such that {Φn = Φ′

n + φna} is a self-
financing strategy and V0 = 0. Then for the self-financing strategy {Φn} we
have

(5.5) Ṽn = Ṽ0 +

n∑

j=1

〈Φj ,∆S̃j〉 =
n∑

j=1

〈Φ′
j ,∆S̃j〉 = vn.

If vn ≥ 0 for all n = 0, 1, . . . , N, then from (5.3) and the definition of the
arbitrage-free market it follows that EvN = 0.
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