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Epidemiological studies reported an inverse association between the consumption of legumes and the incidence of age-related diseases. This trend
could be attributed to the presence of antioxidant compounds, especially phenolic and flavonoid compounds. In this paper, five pea (Pisum sativum L.)
and twelve chickpea (Cicer arietinum L.) accessions, having different characteristics and geographical origin, were characterised in terms of antioxidant
activity, as well as macro- and micro-nutrient composition. The antioxidant activity has been evaluated using both DPPH (2,2-diphenyl-1-picrylhydra-
zyl) and ABTS (2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging capacity assays. Chickpea and pea accessions showed a dif-
ferent behaviour in the presence of these different radicals. Chickpea accessions were characterised by significantly higher DPPH" scavenging activity,
while peas showed a significantly higher value of antioxidant activity evaluated using the ABTS assay. Pea accessions had the highest content of total
phenolic compounds, Zn, and Cu. A positive correlation was found between some minerals, such as Zn, Cu and P, and the ABTS"* scavenging activity.
Black and brown chickpea accessions showed significantly higher contents of anthocyanins, Mn, Mg, and Ca, which were positively correlated with
the antioxidant activity assessed with the DPPH assay. Despite the dataset investigated in our study included a limited number of accessions, it was
possible to highlight the influence of the chemical composition on the antioxidant activity due to the high phenotypic diversity found between the ac-

cessions, emphasising the importance of selecting the antioxidant activity assay according to the matrix to be evaluated.

INTRODUCTION

The demand for grain legume-based food is expected to
increase in developing countries, as a consequence of the de-
mographic growth, but also in the developed countries, given
their contribution to a healthy diet and food safety. The in-
creased awareness of risks associated with excessive con-
sumption of animal proteins [Daryanto et al., 2015] and with
fat accumulation due to the high intake of energy-dense foods
poor in micronutrients and bioactive compounds also plays
a determinant role in prompting legume consumption.

In addition, greater cultivation and consumption of food le-
gumes has high priority to increase the sustainability of agricul-
ture in terms of soil fertility, greenhouse gas emissions, energy
efficiency, pollution, and crop diversity [Annicchiarico, 2017].

* Corresponding Author: Fax: +39 080 5443467,
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Chickpea (Cicer arietinum L.) is the third grain legume spe-
cies cultivated worldwide [FAOSTAT data, 2018]. It has been
shown that the two commercial types of chickpea, i.e. kabuli, with
large seeds and beige coat, and desi, with small seeds and dark-
-coloured, fall in different genetic clusters [De Giovanni ef al.,
2017]. Furthermore, a black-pigmented chickpea type (Apulian
black) traditionally cultivated in Apulia (Southern Italy), dis-
played peculiar phenotypic and genetic features [Pavan er al.,
2017]. From a nutritional point of view, chickpeas are character-
ised by high dietary fibre and lipid content [Jukanti e al., 2012].
The lipid fraction, in particular for the coloured types such
as desi and Apulian black type, has a high content of essential
unsaturated fatty acids [Summo et al., 2019a,b] which elicit
beneficial effects on human health [Jukanti et al., 2012].

Pea (Pisum sativum L.) is the fourth grain legume culti-
vated worldwide [FAOSTAT data, 2018], grown for both
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human nutrition and livestock feeding. Studies on pea genetic
diversity highlighted clear differentiation between the pea wild
progenitor, P sativum subsp. elatius, and the main pea culti-
vated subspecies (P, sativium subsp. sativum). Within P, sativum
subsp. sativum, geographical patterns of variation were iden-
tified, as landraces from the Mediterranean area, the Cau-
casus, Ethiopia, and Central Asia exhibited peculiar genetic
features [Smykal et al., 2012].

As other legumes, pea (Pisum sativum L.) and chickpea
(Cicer arietinum L.) are characterised by low levels of lip-
ids and high contents of proteins, complex carbohydrates,
B group vitamins, and minerals. They represent a good source
of minerals, such as iron, zinc, calcium, magnesium, potassi-
um, sulphur, and selenium [Ashokkumar et al., 2015] and ca-
rotenoids, such as pB-carotene [Ashokkumar et al., 2015].

Both pea and chickpea have been studied for agronomic
[Fotiadis et al., 2019], genetic [Pavan et al., 20171, and nutri-
tional features [Summo et al., 2019a]. Furthermore, they have
been proposed as functional ingredients of bakery products,
such as bread and cakes [Millar ez al., 2019; Pasqualone et al.,
2019al, as well as ready-to-eat foods, such as purée and burg-
ers [Summo et al., 2016, 2019c¢].

Moreover, epidemiological studies reported an inverse
association between the consumption of legumes and the in-
cidence of age-related diseases [Kris-Etherton ef al., 2002].
The beneficial effect of legumes on health could be attrib-
uted to their content of phenolics and flavonoids [Fidrianny
et al., 2016], which are the most active antioxidant com-
pounds in foods [Dudonne et al., 2009]. Furthermore, anti-
oxidant defences rely heavily on minerals in the diet, such as
Fe, Mn, Cu, Zn, and Mg [Evans & Halliwell, 2001]. Dietary
antioxidant compounds can stimulate cellular defences
and help prevent oxidative damage [Dudonne ef al., 2009].
There are numerous published methods measuring the in vi-
tro total antioxidant capacity. They can be classified in hy-
drogen atom transfer (HAT) or electron transfer (ET) based
assays. The ET-based assays include the total phenols assay
by Folin-Ciocalteu reagent, DPPH (2,2-diphenyl-1-picryl-
hydrazyl) and ABTS (2,2’-azino-bis (3-ethylbenzthiazoline-
-6-sulfonic acid) radical scavenging capacity assays [Huang
et al., 2005]. Both DPPH" and ABTS"* can be used to pre-
dict the antioxidant activity of vegetables, fruits, pulses,
and food products [Fidrianny et al., 2016; Yao et al., 2013].
The principal aim of this study was to evaluate the antioxi-
dant activity of chickpea and pea accessions by using two
different radical scavenging capacity assays, such as DPPH
and ABTS. Furthermore, proximate composition, contents
of minerals, phenolic compounds, carotenoids, anthocya-
nins, and phytates of whole meal flour from the same acces-
sions of chickpea and pea were determined. Finally, correla-
tions between both antioxidant activities and legume flour
composition were defined.

MATERIAL AND METHODS

Plant material and flour preparation

Twelve chickpea and five pea accessions were consid-
ered in this study, selected from the ex situ repositories
of the United States Department of Agriculture (USDA),

TABLE 1. Chickpea (Cicer arietinum L.) and pea (Pisum sativum L.) ac-
cessions analysed.

Legume | | Type | Seed size |Seed colour| Origin
PI1292006 KC Small Beige Jordan
PI339154* KC Large Beige Turkey
PI357648* KC  Small  Beige _Miirtzlif‘e‘gm
PIS18255% DC Small Brown  Afghanistan
PI251514* DC Small Black Iran
Chickpea  pri40293* DC  Small  Brown Tran
(Cicer
arietinum L.) P1358934* DC  Small Black Iran
PI533683* DC Large Black Spain
W610046* DC Large Black Bulgaria
110694  AB Large Black Italy
MG_13* AB Large Black Italy
MG_ 17" AB Large Black Italy
1G116297 Medium  Green Turkey
RORI12 Large Green Italy
}();zum 1G52442 Medium -pgrrg:g{e g Svia
sattn 1) 1G134828 Medium —pi(grrszgge g Georgia
1G51520 Medium pgfg:gte o Ethiopia

KC - kabuli chickpea, DC - desi chickpea, and AB — Apulian black
chickpea.

*The chickpea accessions are part of a wide collection already character-
ised, whose data repository is in Summo e al. [2019a].

the Department of Plant, Soil and Food Science of the Uni-
versity of Bari, Italy (DiSSPA), and the Institute of Biosci-
ences and Bioresources of the Italian National Research
Council (CNR-IBBR) ( ). For each, type, country
of origin, and phenotypic traits (seed size and colour) were
indicated. Chickpea accessions encompassed the three ge-
netic clusters previously identified, corresponding to the desi,
kabuli, and Apulian black types [Pavan et al., 2017]. Genetic
diversity of pea germplasm was ensured by selecting one
accession referable to the wild progenitor P sativum subsp.
elatius collected in Syria, and four P. sativum subsp. sativum
accessions originating from the Mediterranean area (Italy
and Turkey), the Caucasus (Georgia), and Ethiopia. Among
them, the Italian landrace ROR12 was reportedly resistant
to the parasitic weed Orobanche crenata [Pavan et al., 2016].
All plants were grown in the experimental farm “P. Martuc-
ci” of the University of Bari “Aldo Moro”, Italy (41°01°22.1”
N, 16°54°21.0” E) during the growing season 2017-2018.
They were harvested according to a randomised complete
block design with two replicates, each replicate being formed
by 30 individual plants. After harvesting at crop maturity,
chickpea and pea seeds were milled (ETA mill, Vercella
Giuseppe, Mercenasco, Italy) and sieved at 0.6 mm.
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Preparation of extracts and determination of
the antioxidant activity

Antioxidant activity was determined using both DPPH
and ABTS radical (DPPH" and ABTS"+) scavenging capacity
assays. The determinations were performed for an aqueous-
-methanol extract (20/80, v/v) prepared as reported by Summo
et al. [2019b]. The DPPH radical scavenging capacity assay
was carried out following the procedure described in Pasqua-
lone et al. [2015]. The ABTS assay was performed according
to Difonzo ef al. [2017]. The antioxidant activity values were
expressed as umol of Trolox equivalent per g of dry matter
(d.m.) of seeds. Each analysis was done in triplicate.

Determination of nutritional composition and bioactive
compounds in flours

Proteins (total nitrogen X 5.7), lipids, ashes, total dietary
fibre, and moisture of the flours were determined according
to the Association of Official Analytical Chemists (AOAC)
methods 979.09, 945.38 F, 923.03, 991.43 and 925.10, respec-
tively [AOAC, 2006]. Lipid content was determined. Carbo-
hydrate content was calculated by difference.

Total carotenoid content was assessed using the method
reported by Pasqualone ef al. [2013] and was expressed as
mg of B-carotene equivalent per kg of seed d.m.

Total anthocyanin content was determined as described
by Pasqualone e al. [2015] and was expressed as mg of cyani-
din 3-O-glucoside equivalent per kg of seed d.m.

Total phenolic compound (TPC) content was assessed
as described by Summo et al. [2019b] using the extracts pre-
pared as previously reported in section Preparation of extracts
and determination of the antioxidant activity. The content of to-
tal phenolic compounds was expressed as mg of ferulic acid
equivalent per g of seed d.m., considering a calibration curve
prepared with ferulic acid at different concentrations.

Total phytate content was measured according to
the method reported in Summo ef al. [2019b].

Determination of minerals in flours

The determination of minerals in flours was performed
by digesting using a microwave oven (CEM 6, Mars, CEM
Corporation, Matthews, United States). Briefly, 0.5 g of each
sample was weighed into a Teflon vessel, and 7 mL of HNO,
(65%) and 1 mL of H,O, (30%) were added [Rybicka &
Gliszczynska-Swiglo, 2017]. After cooling, digests were diluted
to 50 mL with demineralised water (Hydrolab System, Wiglina,
Poland) and kept at 4°C until spectroscopic determinations.
Three digests were prepared for each sample. Spectroscopic
determinations of minerals were performed using atomic emis-
sion spectroscopy and the method described in detail by Ozbek
& Akman [2016]. Analytical wavelengths for minerals were:
213.9 nm for Zn, 324.8 nm for Cu, 372.0 nm for Fe, 403.1 nm
for Mn, 616.2 nm for Ca, 404.4 nm for K, and 589.0 nm for
Na. The spectroscopic analysis was performed using two in-
dependent standard curves with a range from 0.05 to 1 ug/mL
for microelements, 0.05 to 5 ug/mL for Na, and from 10 to
100 pwg/mL for other macroelements. Due to the high limit
of quantification (LOQ) of phosphorus in atomic spectros-
copy, its content was determined using the spectrophotomet-
ric molybdenum blue method adopted for multiple analysis

using 48-microwell plates and microplate spectrophotometer
(BioTek PowerWave XS2, Biokom, Warsaw, Poland) [Murphy
& Riley, 1962]. Briefly, 0.16 mL of the sample, then 0.08 uL
of 5% ammonium molybdate, 0.08 L of 0.5% hydroquinone,
and 0.08 uL of 20% sodium sulphite were added to the well.
The plate was shaken and left for 30 min in the dark; the ab-
sorbance was measured at 823 nm.

Statistical analysis

Data were subjected to one-way ANOVA followed
by Tukey’s HSD test, considering both the differences between
the species (chickpea vs. pea) and those among the acces-
sions. Significant differences among the values of all recorded
variables were determined at p<0.05 by the XLStat software
(Addinsoft SARL, New York, NY, USA). Correlation analysis
was performed by the same software.

RESULTS AND DISCUSSION

Antioxidant activity evaluation

The antioxidant activity has been evaluated using two
different radical scavenging capacity assays, namely DPPH
and ABTS, and expressed as pmol Trolox/g of dry matter
( ). A different activity was observed between chick-
pea and pea accessions depending on the assay. Chickpea ac-
cessions were characterised by a significantly higher DPPH*
scavenging activity, while peas showed a significantly high-
er value of antioxidant activity when the ABTS assay was
performed. The same trend has been reported by other re-
searchers in green bean (Phaseolus radiates L.) and peanut
(Arachis hypogaea L.) extracts [Fidrianny et al., 2016]. This
result could be linked to the different chemical composition
that characterised the two different legume species analysed.
In fact, it has been shown that different phenolic compounds
are responsible for quenching different free radicals [Xu et al.,
2016]. In order to explain the different antioxidant activi-
ties between chickpea and pea species, correlations between
in vitro radical scavenging capacity and compositional fea-
tures of legume accessions were investigated.
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FIGURE 1. Mean values, standard deviation and results of the statistical
analysis of antioxidant activity of chickpea and pea accessions assessed us-
ing both DPPH and ABTS radical scavenging assays. Different small letters
indicate significant differences between the species (p<0.05) for the type
of antioxidant activity method used (n=12 for chickpeas and n=>5 for peas).
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TABLE 2. Proximate composition and content of bioactive compounds in the chickpea (Cicer arietinum L.) and pea (Pisum sativum L.) accessions

analysed.
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MG _13 AB 20.29 3.36 3.37 54.32 18.67 1.08 34.21 121.99 14.97

MG _17 AB 17.31 4.42 2.69 59.86 15.72 0.82 41.26 79.16 9.66

110694 AB 22.71 3.35 3.90 52.84 17.20 0.96 42.76 119.00 11.36

PI339154 KC 18.11 2.86 3.45 66.36 9.21 0.92 27.76 25.78 11.86

P1292006 KC 20.34 4.16 3.64 60.60 11.26 0.69 29.46 32.45 14.72

Chicknea® PI357648 KC 21.38 4.47 3.48 62.73 7.94 0.81 22.76 27.45 10.35

ickpea™

P PI518255 DC 17.80 2.83 3.75 45.81 29.82 0.71 46.85 4437 15.29
PI251514 DC 19.17 3.71 3.70 51.08 22.35 0.79 41.61 159.62 13.96

P1140293 DC 19.32 2.80 3.47 49.39 25.03 1.08 26.01 46.52 11.79

PI358934 DC 17.30 3.90 3.48 55.36 19.95 0.76 37.03 155.79 15.44

PI1533683 DC 20.19 3.35 3.70 52.70 20.06 1.04 42.27 115.40 11.02

W610046 DC 25.92 3.41 3.65 48.87 18.15 0.83 48.92 103.23 11.95
Mean 19.98% 3.55 3524 54.997 17.95% 0,878 36.74* 85.90" 12.70
DS 2.50 0.59 0.30 6.20 6.37 0.14 859 49.63 2.06
1G116297 26.82 1.68 2.89 50.95 17.66 1.12 25.03 33.36 13.23

RORI12 24.42 1.52 3.32 58.07 12.67 1.22 16.72 19.26 10.71

Pea 1G52442 27.76 1.63 3.68 47.84 19.09 1.10 59.39 78.30 14.78
1G134828 26.75 2.06 3.45 53.69 14.04 1.05 33.59 72.63 13.99

1G51520 26.02 1.30 3.49 55.56 13.63 1.03 23.56 35.92 16.09
Mean 26.36" 1.64% 3.36* 53.204 15.42» 1.io» 31.66* 47.894 13.76*
DS 1.25 0.28 0.30 3.98 2.79 0.07 16.62 26.03 2.01

KC - kabuli chickpea, DC - desi chickpea, and AB — Apulian black chickpea.

Different letters indicate significant differences between the species at p<0.05. *The chickpea accessions are part of a wide collection already charac-

terised, whose data repository is in Summo et al. [2019a].

Nutritional composition and bioactive compound content
reports proximate composition and content of bio-
active compounds of chickpea and pea accessions examined
in this study. Significant differences (p<0.05) between the two
species were found for protein, lipid, and carbohydrate con-
tents. Chickpea showed a significantly higher lipid content
and significantly lower protein and carbohydrate contents
than pea. No significant differences (p>0.05) between species
emerged for total dietary fibre content, possibly due to the high
variability observed among the accessions within the species.
Data on the chemical composition and bioactive com-
pound content of a collection of chickpea accessions, in-
cluding the twelve ones tested in this study, were reported
and discussed in our previous work [Summo et al., 2019b].
Considering the data on the pea accessions ( ),
a large variation was currently observed among the pea ac-
cessions, especially for bioactive compounds. In particular,
the accession ROR12 showed the highest value of total

phenolic compounds (1.22 mg ferulic acid/g d.m.). The ob-
served mean value of total phenolic compounds was higher
than the levels obtained by Zia-Ul-Haq et al. [2013], who
reported 0.99 mg/g as a maximum value of total pheno-
lic compounds detected in the cultivar Climax. Notably,
ata high concentration, antioxidants can act as pro-oxidants
by reacting with molecular oxygen [Sotler e al., 2019]. Due
to the high metabolic rate, reactive oxygen species (ROS)
generation is incredibly high in transformed cells [Perillo
et al., 2020].

The total carotenoid content also varied considerably
among pea accessions, ranging from 16.72 mg B-carotene/kg
d.m. in the accession ROR12 to 59.39 mg B-carotene/kg d.m.
in the 1G52442. Ashokkumar et al. [2015], examining a col-
lection of 94 pea genotypes, found a carotenoid content
in pea ranging from 10 to 27 ug/g in accessions with green
cotyledons, and from 5 to 17 ug/g in accessions with yellow
cotyledons.
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TABLE 3. Mineral composition of the chickpea (Cicer arietinum L.) and pea (Pisum sativum L.) accessions analysed.

R - -

o0 o o0 o0 o o0 o0 o o0

z E E E E E E E E E

F | B | 2| 32| 22| 52| 22| 2| 2| 2 .8

MG_13 AB 4.46 1.03 4.22 248 176.49 194.69 898.45 4.89 405.82

MG_17 AB 2.81 0.29 3.78 4.78 153.95 290.81 756.18 2.89 297.10

110694 AB 2.65 0.37 4.26 3.63 184.57 219.68  1055.07 7.00 42591

PI339154 KC 2.80 0.43 2.95 3.40 173.57 146.50  1159.11 7.53 456.10

PI1292006 KC 2.80 0.31 3.52 3.07 168.78 211.94  1009.69 9.09 406.16

PI357648 KC 2.49 0.23 2.73 3.26 160.20 174.71 957.08 9.99 386.94

Chickpea

PI518255 DC 3.05 0.36 422 432 179.79 431.83 1034.08 15.48 419.95

PI251514 DC 2.15 0.25 4.11 3.66 183.79 334.91 1027.31 39.36 394.75

P1140293 DC 238 0.20 3.20 3.84 188.73 279.21 984.70 19.91 386.19

PI1358934 DC 225 0.22 3.44 4.34 190.05 376.76  1005.02 16.69 364.63

PI533683 DC 235 0.23 3.68 4.03 179.16 305.03 980.09 1.83 395.08

W610046 DC 1.99 0.21 3.25 3.32 175.69 210.17  1007.91 2.11 395.15
Mean 2.68" 0.34% 3.61° 3.68* 176.22%  264.69*  989.56* 11.40n 394.48A
DS 0.64 0.23 0.52 0.63 10.92 86.70 95.99 10.59 38.37
1G116297 3.74 0.87 4.00 0.96 157.63 117.07 884.55 3.14 474.17

RORI2 3.16 0.56 3.69 1.12 153.90 90.96 937.62 5.02 412.93

Pea 1G52442 4.39 0.84 5.23 1.07 177.15 119.61 996.19 297 543.83
1G134828 4.08 0.72 4.66 0.99 163.56 97.07 979.05 3.15 503.97

1G51520 2.56 0.70 3.87 1.02 166.99 129.17 971.88 1.64 421.20

Mean 3584 0.74* 4.29A 1.03% 163.85%  110.78%  953.86* 3.18* 471.224
DS 0.73 0.12 0.64 0.06 9.01 16.10 44.21 1.21 55.35

KC - kabuli chickpea, DC - desi chickpea, and AB — Apulian black chickpea. Different letters indicate significant differences between the species at p<0.05.

The total anthocyanin content varied from 19.26 mg cy-
anidin 3-O-glucoside/kg d.m. in the non-pigmented pea ac-
cession ROR12 to 78.30 mg cyanidin 3-O-glucoside/kg d.m
in the pigmented accession pea 1G52442. Notably, antho-
cyanin content was highly variable even within pigmented
accessions with the minimum value (23.56 mg cyanidin
3-0-glucoside/kg d.m) displayed by the accession IG 51520.

Legumes contain non-nutritional factors, such as phy-
tates, that can reduce the bioavailability of some compounds
or inhibit the enzymes necessary for their digestion [Shi et al.,
2018]. As reported in , no significant differences were
observed between the two species, although considerable
variation was found among the individual accessions. Pea ac-
cessions under the study showed a higher content of phytic
acid than green and yellow peas studied by other research-
ers. Millar et al. [2019] reported that phytic acid content
was 543.41 mg/100 g in the green pea and 574.14 mg/100 g
in the yellow one was 574.14 mg/100g [Millar et al., 2019].

Phytic acid is the principal storage form of phosphorus
in seeds; this compound and its salts are capable of forming
complexes with minerals, such as Ca, Cu, Mg, Fe, and Zn,
thereby having a negative effect on their gastrointestinal ab-
sorption [Shier al., 2018].

Mineral composition

Potassium (K) was the most abundant mineral found
in both chickpeas and peas ( ), without significant dif-
ferences between them. Instead, significant differences were
observed for other minerals such as zinc (Zn), copper (Cu),
iron (Fe), manganese (Mn), magnesium (Mg), calcium (Ca),
and phosphorus (P) (»p<0.05). Chickpeas had the high-
est contents of Mn, Mg, and Ca. Magnesium and calcium
contents in chickpeas were higher than those (mean values
of 1402 and 1040 ug/g, respectively) reported in Vandemark
et al. [2018], but similar to those reported by Kaya et al.
[2018]. Peas had significantly higher Zn, Cu, Fe, and P values
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TABLE 4. Correlation table (correlation coefficient — 7 values) between the in vitro antioxidant activity (DPPH and ABTS assays) and chemical com-

pound contents determined in the pulse accessions.

|Pr|L|A|C|DF|TPC|TC|TA|PH|ZH|CU|Fe|Mn|Mg|Ca|K|Na|P

DPPH -0.53 0.58 -0.04 -0.14 034 -031 0.66 0.64

ABTS 0.73 -0.79 -0.46 -0.02 -026 0.59 -0.50 -0.43

0.13
0.01 0.59 0.61

-0.11 -0.13 0.14 0.64 045 053 -020 0.04 -0.48

039 -0.86 -0.59 -0.68 -0.26 -0.31 0.70

Pr - Proteins; L - Lipids; A — Ashes; C — Carbohydrates; DF — Dietary fibers; TPC — Total phenolic compounds; TC - Total carotenoids; TA — Total
anthocyanins; PH — Phytates; r values in bold indicate a significant correlation (p<0.05).

than chickpeas. The values found in our study agree with
Wang & Daun [2004], who reported a range of 2.50-5.20,
0.40-0.90, 4.30-7.90, and 270.30-950.50 mg/100 g for Zn,
Cu, Fe, and P, respectively.

At the intraspecific level, Apulian black and some desi
chickpea accessions showed a high Fe content, with the highest
value observed in the accession 110694 (4.26 mg/100 g d.m.).
In contrast, kabuli chickpeas were characterised by a low Fe
content, with the lowest value found in the accession PI1357648
(2.73 mg/100 g d.m.). In accordance with the previous study
of Jukanti et al. [2012], DC accessions showed the highest
Ca content (mean value 322.99 mg/100 g d.m.), followed
by AC (mean value 235.36 mg/100 g d.m.) and kabuli (mean
value 177.72 mg/100 g d.m.). The DC accession PI1518255 dis-
played the highest Ca content (431.83 mg/100 g d.m.), which
was found to be far from the mean value shown for chick-
peas (264.69 mg/100 g d.m.). The AB variety MG_13 had
the highest Zn and Cu levels (4.26 and 1.03 mg/100 g d.m.,
respectively).

Peas were characterised by a low variability among dif-
ferent accessions. However, the pigmented variety 1G51520
had the highest content of Ca (129.17 mg/100 g d.m.), which
was higher than the maximum value (106.90 mg/100 g)
reported by Wang & Daun [2004].

Correlations between antioxidant activity and flour
composition

Correlations between in vitro radical scavenging capacity
and compositional features of legume accessions are reported
in the

A positive correlation was observed between the total
phenolic content and ABTS*+ scavenging activity (r=0.59;
p<0.05). On the contrary, a negative, but not significant
(p>0.05) correlation was observed between ABTS assay re-
sults and contents of both carotenoids and anthocyanins.
Considering the same compounds, an inverse trend was found
for DPPH" scavenging activity. Bioactive compounds, such as
phenolics, carotenoids, and anthocyanins, are recognised as
antioxidants. Thus, they can prevent or reduce lipid peroxi-
dation and scavenge free oxygen radicals through their high
antioxidant activities [Ashokkumar et al., 2015]. Moreover,
phenolic compounds exhibit anti-tumoral, anti-inflammatory,
and anti-allergic properties while anthocyanins are impor-
tant due to their anti-carcinogenic properties and the ability
to limit the incidence of hepatic steatosis and cardiovascular
diseases, to control obesity, and to mitigate diabetes [Her-
nandez-Velazquez et al., 2020]. Interestingly a significant as-
sociation has been found between the total flavonoid intake

and a high level of magnesium, paralleled by a reduction
of the metabolic syndrome [Jin et al., 2020].

By contrast, several flavonoids, known for their anti-
oxidant features, were proved, instead, to act as prooxidants
and mutagenic factors in the in vitro studies [Rahal et al.,
2014]. A study conducted to determine the potential of grape
pomace extracts as a source of natural antioxidants reported
a positive correlation between ABTS** scavenging capacity
and total phenolic contents, as well as with the total flavo-
noid contents [Xu et al., 2016]. Yao et al. [2013] confirmed
these results in black mung beans, where a significant posi-
tive correlation was found between bound phenolic acids
and ABTS"+ scavenging activity (r=0.941; p<0.01). Flavo-
noids and tannins have a relevant influence on the ABTS anti-
oxidant activity, while anthocyanin compounds give a greater
contribution to the antioxidant capacity measured by DPPH
test, as shown by Xu et al. [2016] in pomace extracts. Further-
more, a negative correlation between ABTS*+ scavenging ac-
tivity and B-carotene was reported by Thaipong e al. [2006]
for methanol extracts from guava fruit. Considering the nutri-
tional composition, the ABTS data showed a positive correla-
tion with protein content (r=0.73; p<0.01), whereas the same
data were negatively correlated with lipid content (r=-0.79;
p<0.01) ( ). As previously reported by other research-
ers in leguminous seeds [Grela et al., 2017], a positive correla-
tion was found between DPPH* scavenging activity and lipid
contents (r=0.58; p<0.05). Grela et al. [2017] have report-
ed a high correlation between DPPH* scavenging activity
and unsaturated fatty acid contents, especially polyunsaturat-
ed ones, in several legumes, namely lupines, peas, chickpeas,
lentils, grass peas, and common beans. In contrast, no cor-
relation between fatty acids and DPPH" scavenging activity
in 20 Canadian lentils cultivars was reported by Zhang et al.
[2014]. Usually, the number of unsaturated bonds in the fatty
acids induces an exponential increase in the susceptibility to
oxidation. Therefore, the content of the individual double
bonds of fatty acids may not be directly related in a linear
way to the antioxidant activity. The positive correlation be-
tween the antioxidant activity (measured by DPPH test)
and lipid content found in our study may suggest that other
compounds have a significant influence on the resistance
to oxidation of fatty acids [Grela et al., 2017]. For instance,
as mentioned above, carotenoids, anthocyanins, and phenolic
compounds can contribute to the increase in the antioxidant
potential.

A significant negative correlation was found between
ABTS*+ scavenging activity and Mn (r=-0.86; p<0.01),
Mg (r=-0.59; p<0.05) and Ca (r=-0.68; p<0.01), whereas
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the correlation was positive for Zn (r=0.59; p<0.05), Cu
(r=0.61; p<0.05) and P (r=0.70; p<0.01). No significant
correlation between DPPH" scavenging activity and mineral
compounds was found, except for Mn (r=0.64; p<0.05). De-
spite the large amount of information available in scientific
literature on mineral content of legumes, to the best of our
knowledge, there are no reports on the direct correlation be-
tween mineral content and antioxidant activity. However, sev-
eral studies suggested that an imbalance of minerals would
change the content of polyphenols and flavonoids [Grela
et al., 2017; Sulaiman et al, 2011]. This behaviour may
explain the positive correlation found for the content of Mn
and DPPH" scavenging activity. In fact, Mn is involved
in activating enzymes that enhance the biosynthesis of fla-
vonoids [Gordon, 2007]. A significant correlation between
Mn content and DPPH" scavenging activity was reported
by Sulaiman ef al. [2011] in banana (Musa sp.) fresh pulps
and peels. Furthermore, Zn-deficient or Zn-excess conditions
cause changes in the antioxidant enzyme activities, as shown
in bean plants by Prabhu Inbaraj & Muthuchelian [2011].
Tewari et al. [2006] reported, instead, an increase in the activ-
ity of the antioxidative enzyme superoxide dismutase (SOD)
in mulberry (Morus rubra L.) Mg-deficient plants, suggesting
an inverse relationship between Mg and antioxidant activity.
Other researchers reported a significant correlation between
the total flavonoid content and minerals due to the chelating
role of polyphenols, especially condensed tannins [Rehecho
et al., 2011]. Therefore, these compounds may prevent or de-
lay metal-catalised initiation and decomposition of lipid hy-
droperoxides. Rehecho ef al. [2011] reported significant cor-
relations between the total flavonoid content and minerals,
such as K, Zn, Cu, Ca, and Mg in verbena extracts.

CONCLUSION

Chickpea and pea accessions showed a different anti-
radical activity against DPPH* and ABTS**. In particular,
chickpea accessions were characterised by significantly
higher DPPH" scavenging activity, while pea showed a signif-
icantly a higher value of antioxidant activity evaluated using
the ABTS assay.

Pea accessions had the highest content of total phenolic
compounds, Zn and Cu. A positive correlation was found be-
tween some minerals, such as Zn, Cu and P, and the ABTS**
scavenging activity found. Black and brown chickpea accessions
showed a significantly higher content of anthocyanins, Mn, Mg
and Ca, which were positively correlated with the antioxidant
activity assessed by the DPPH assay. Therefore, the high phe-
nolic content found in pea accessions was linked to the higher
ABTS"* scavenging capacity, while chickpeas, especially Apu-
lian black and desi types, having high carotenoid and anthocy-
anin contents, were able to quench the DPPH radical.

Furthermore, the content of minerals and their com-
position may influence the antioxidant activity, especially
ABTS"* scavenging. Indeed, a significant negative correla-
tion was found between ABTS** scavenging activity and Mn,
Mg, and Ca, whereas the correlation was positive for Zn, Cu,
and P.

Despite the dataset investigated in our study included
a limited number of accessions, it was possible to highlight
the influence of the chemical composition on the antioxi-
dant activity due to the high phenotypic diversity found be-
tween the accessions, emphasising the importance of select-
ing the antioxidant activity assay according to the matrix to
be evaluated.
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