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Notes on exponential-logarithmic terms
by

Bernd I. Dahn and Peter Goring (Berlin)

Abstract. The asymptotic behaviour of functions defined by exponential-logarithmic terms
is studied modifying methods from [D]. This gives 1-model completeness, bounds on the last roo.
and characterizations of possible limits of such functions, especially for integral exponential functiont

These notes are fruits of the efforts to generalize results in [D] and [W] to ex-
ponential-logarithmic terms. The results presented here make it possible to apply
the methods in [D] also to terms with binary exponentiation. They came up in close
cooperation of both authors and are a part of the thesis of the second author who has
developed and simplified several ideas of the first author.

We consider these notes as a supplement to [D] and presume acquaintance
with concepts and proofs from that paper so that we can confine ourselves here to
the description of the necessary (and sometimes essential) modifications. The signa-
ture is extended by a unary function symbol log. The theory T'is an extension of the
theory of ordered exponential fields by means of the axiom

w V(e # 0 - 29500 = 52)

and the Rolle- and intermediate value schema for exponential-logarithmic terms
(el-terms for short). The axiom (L) means that log(x) denotes the function usually
denoted by log(Jx|). However this docs not matter since (in the usual notation)
log(¥]) = 4log(x*) and

log(x) = log(|e"® =P 4 x|y ~Tog([2]) .

We note that el-terms are continuous in substructures of models of 7" and that
their formal derivative satisfies the usual g-8-definition of the derivative.

Let C, be a model of T'and let C be a substructure of C;, We consider el-terms
in one variable x and with parameters from C. As in [D] the germs of the functions
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defined by these terms in some neighbourhood of +co in C, form a differential field
(Cy). closed under e and log and ordered by the relation of eventual dominance
in Cy.

In [D] it was shown first that for different models C; 2 C the resulting exponen-
tial fields are isomorphic and then the major part of that paper was concerned with
proving that also the order relation on (Cy),, i independent of C,. This strategy
must be changed for el-terms since for these terms there is an intimate relation between
equality and order, e.g. ¢°*® —¢ = 0 if and only if #>0. That is also the reason
why Theorem 2.8 of [Wi], which was used several times in [D], could not be genera-
lized to the present setting. Consequently, the concept of an F- normal field in [D],
which was adopted from [Wi], is replaced by the following

DEFINITION. A subfield K of (C;). is called normal, if for all ae K @' =0
implies ¢ = ¢ for some ce C.

The following simple lemmas turn out to be very useful. Let #(x) be an el-term.
limz denotes Iimz(x).

x— o0

LemMa 1. If limt = ce C and t' = 0 in (Cy)y, then t = ¢ in (Cy)y-
LemMa 2. If lim? = oo, then t' # 0 in (Cy)y-

LeMMA 3. Let K be a subfield of (Cy)., containing some s € K such that lims = co.
Then for each ae(Ci)y

a<1modK implies a' <1modK.

Let 1og®(x) = x and for each 130 log® ¥ (x) = log(log®(x)). The definition of
an outer extension is adopted from [D], p. 14 by replacing x in a) by log®(x) for
some i and giving up the divisibility of the group G. It is easy to see that Propo-
sitions 19 and 22 and the Corollaries 21 and 23 of [D] remain valid. This yields

LeEMMA 4. Let K(e€) be an outer extension of K by means of G which is dense
in Ky S(C1)e- Then every fe K, has a unique representation

f=adl(l+r)

where ae K, g € G and r is coinitial in K.

PROPOSITION 5. Let K be a normal differential subfield of (Cy), containing
some s € K such that lims = co. Let K(e%) be an outer extension of K by means of G.
If K(e%) is dense in a field K; S(Cy)w, then K, is normal.

Sketch of proof. Let ¢ e K; be such that a’ = 0. By Lemma 2 |lima| < 0.
Hence @ has a representation @ = b+r where b € K and r is coinitial in K. a’ = 0
yields |5'| = |r'|. But+’' < 1mod K by Lemma 3 and b’ € K; hence b’ = 0. Since K is
normal, this implies b e K. Now r’ = 0 and limr = 0, hence r = 0 by Lemma 1.
Hence a = c.

In a similar way it can be shown that any subfield of (C,), containing C(x)
dense, is normal.
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DEFINITION. A subfield K, of (Cy),, is called a simple inner extension of K if
there is some r coinitial in X such that K; = K(¢") or K, = K(log(1+7)).
For each natural number k>1 we put

k "
W = T (-1

Then Proposition 15 of [D] can be gencralized in a canonic way. Using a method
similar to the proof of Proposition 5 and approximating e(z), log(t) by e.(?), i)
respectively, it is possible to prove the important

ProPOSITION 6, Let K be « normal differential subfield of (C,), containing
some s & K such that lims = co. Let K' denote C(x) or some outer extension of K
and let Ky be an inner cxtension of K'. Then K' is dense in K.

The following concept is adopted from the definition of a ladder in [D].

DermITION, A field K has a tower (K, G);<, of depth I and height n provided
that

0) Ko =C, Gy = Z‘IOEGM)(X)’K;:—H = K,

1) for cach i =1, ..., n there are some j </, some finitely generated nontrivial
Archimedean ordered subgroup Ve (K], +,0, <) and some ge G}'” such that
G, =V,

2) K;(e®') is an outer extension of K; by means of G; (i=1, ... n),

3) K4, is an inner extension of Ky(e%) (i =1, ..., n).

TaeoreM 7. If K has a tower then K is normal.

This is proved by induction on the height of the tower using Propositions 5
and 6.

Lemmas 26-29 and Proposition 30 of [D] with their proofs carry over to the
present situation without essential modifications.

Since C(x) and C(log®(x)) are isomorphic in a canonic way, it is often suf-
ficient to regard only towers of depth 0.

LemMA 8. Every tower of depth 0 for a field K = (Cy),, can be extended to a tower
of depth 1 for K(log(x)).

Applying Lemmas 8 and 4 one can prove

PROPOSITION 9. For ecch f'e KN{O} each tower for K can be extended to a tower

for K(log(f)).

This together with the analogue of Proposition 30 of [D] suffices to prove.

TrmoreM 10. For each f&(C,), there is a field K < (Cy)., such that fe K and K
has a tower.

Now let ¢, €, be models of T containing an exponential logarithmic field C.
For each tower of subfields of (C,),, there is an isomorphic tower of subfields of
(C3)., and the isomorphism can be chosen to be the identity on C(x) and to respect <,
¢ and log. As in [D], this argument makes use of the fact, that for each tower
(K,, G));<, the order on K., is uniquely determined by the order on K; (i<n).
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Hence Tu Dy is sufficient to decide the dominance relation for el-terms. This can
bestrengthened by generalizing results from [W].
Slightly modifying Wolter's proof of Theorem 6 in [W] it is possible to show
THEOREM 11. For each el-term t with parameters from C there is a ¢ € C such that

Cy EAxVy = x(D) A 1(3) > 0) if and only if

TuDekVyz (D) At(3)>0);
C; EIAxVy = x(D(y) A t(y) = 0) if and only if
TuDckVyz (D) at(y) = 0)

where D(y) is a formula saying that t(v) is defined.
Using induction on the number of iterations of ¢, on the number of iterations
of log and on the well-known Hardy-rank, Theorem 11 can be used to obtain
THEOREM 12. Supposé Cy, Cy are models of T such that C; = C, and t is an
-el-term with parameters from Cy. Then the sets .

{xe Cy: t(x)is defined} and {xe Cy: t(x) is defined and t(x) = 0}

ure finite unions of intervals in C, with boundaries in C,.

As in [D] Theorem 12 can be applied to prove the 1-model-completeness of T,
i.e.

THEOREM 13. Suppose Cy, C, are models of T such that Cy < C,.and ¢(x) is
@ quantificr-free formula with one variable x and with parameters from €. Then
CyFx@(x) if and only if C, FIxp(x).

As in [D] it is possible to obtain a representation of (Cy),, as a field of power
-series of transfinite length. We confine ourselves here to the construction of the
appropriate scale H,, such that (C,),, can be embedded into C[[H,]].

For each natural number 7, let H} be the multiplicative subgroup of (C,).,
_generated by log™(x). Then for each m >0 M, and. C™ are defined as in [D] but
such that the isomorphism E sends also log(a) to |a]. Then (H3)yee and (C*"")ew
are increasing sequences. We put

U Hia,

new

C® = U C:‘.n,n ,

et

H, =

C* can be considered as an exponential field as in [D]. It is obvious that each v & C
~can be uniquely represented as & = ¢(log™(x))"¢’(1 +d) such that n, mew, ce C,
.de C” and supp(d)< 1, provided a % 0. With this representation we put

log(a) = log(c)+mlog"* (x)+b+ Z( I)Hl rrrrr

By %nduction on the height of an appropriate tower. we can show that there is
-2 canonic embedding a + o, of (Cy),, into C*, Tt is not difficult to check that for
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each tetin t the coefﬁments of theé series o, can be represented as vanable-f;ee terms
bulld from the same parameters as ¢. Similar to Lemma 37 in [D]it can bc shown
for each el-term ¢ and for A = maxsupp(s,) that there is-a posmve_ce C and.an
ieo such that |o,—o,(h) k] < e(logP(x)) L h.

Hence Theorem 38 and Corollary 39 of [D] géneralize to thé present settmg

Now we can apply these results to the study of the binary exponential function.

Let M denote Richardson’s set of integral exponential functions (cf. [R]),
i.e. M is the least set of functions: contammg the constant function with value 1, the
identity function and closed under addition, multiplication and binary exponentia-
tion. D denotes the set of exponential constants from [R], i.e. the least set such
that 1e D and such that ¢,de D implies also c¢+d, cd, e’,c"* e D.

A look at the power series representing integral exponential functions gives

ProroSITION 13, Suppose ae M and let o, be the transfinite power series re-
presenting a. Then

1) supp(a,) = 1,

2) o(1) is a natural number,

3) for all hesupp(o,) there are ¢,de DU{0} such that o,(h) = c—d,

4) o, (maxsupp(s,))e D.

Proposition 13 is proved by induction on the number of iterations of binary
exponentiation in a.

Richardson proved (cf. Theorem 7 of [R]) that each exponential constant can
be obtained as the limit of the quotient of two integral exponential functions. Now 4)
of Proposition 13 gives immediately

THEOREM 14. If p, q € M are such that p|q is bounded by some natural number,
then limp/q e D L {0}.

Proposition 13 and Theorem 14 generalize a result of van den Dries, who proved
them for terms < 22%, It might seem promising to study the dominance of integral
exponential functions by means of their power series. However it is not clear how to
compute o, for a given a € M without knowing the diagram of the least exponential-
logarithmic field contained in the reals. So we can only state

PROPOSITION 15. The dominance problem for exponential-logarithmic terms is
Turing-equivalent with the identity problem for constant exponential-logarithmic
terms.
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Uniform quotients of metrizable spaces
by

J. Vilimovsky (Praha)

Abstract. The easiest possible example of a metrizable uniform space having a nonmetrizable
uniform quotient is given. Using this example all metrizable spaces - having metrizable uniform
quotients only are fully described,

In the literature several sufficient conditions for a uniform quotient of a metric
space to be metrizable are treated e.g. [1], [2], [4]. The first attempt to bring a con-
crete example of a nonmetrizable uniform quotient of a metric space appeared in [41,
and two much simpler examples appeared later in [3].

In the sequel f: X— Y is a uniformly continuous onto mapping between uniform
spaces. f is called a uniform quotient mapping if Y is endowed with the finest uni-
formity making f uniformly continuous. Himmelberg [2] strengthens the latter
concept defining so called uniformly psendoopen mappings (i.e. the images of uni-
form vicinities of the diagonal are uniform vicinities) and proves that a uniformly
pseudoopen image of a metrizable space is metrizable. We start with another streng-
thening of uniform quotient mappings which scems to be more convenient (see
Remark 1) for our problem.

DeriniTion 1. Let /2 X— ¥ be a uniformly contintous mapping from X onto Y.
Jf will be called uniformly conservative if for every uniform cover % of X the cover

J@ = {£184(/7*(), W)]; ye ¥}

is uniform on Y.

It might be easily verified that every uniformly pseudoopen mapping is uniformly
conservative and every uniformly conservative mapping is a uniform quotient.

ProrosITION 1. If f3 XY is uniformly conservative (onto), X metrizable,
then Y is metrizable as well,

Proof. Take an arbitrary uniform cover ¥* of ¥, choose a uniform star-refine-
ment #" of ¥ and set % = f~*(#’). Then for every y& ¥ we have

FIStS™0), W < St(y, #)
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