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Stable shape concordance
implies homeomorphic complements

by

Vo Thanh Liem (University) and Gerard A. Venema * (Grand Rapids)

Abstract. Let X and ¥ be compacta satisfying the inessential loops condition in the interior
of a piecewise linear m-manifold M, m # 3 or 4, with Fd(X) = k< m~3, If X and Y are shape
concordant, and if pro-mi(X) is stable for 0 € #<r and Mittag-Leffler for { = r, where r = 2k+
+2~m, then M—X is homeomorphic to M—Y.

1. Introduction. In this paper we prove a complement theorem for shape
concordant compacta in a PL manifold. The main theorem (Theorem 5) is a generali-
zation of recent results of Sher [S,] and Liem [L]. Sher has shown [S,] that if X
and X, are compact subsets of a PL n-manifold M™, n> 6, such that both X,
and X, satisfy the inessential loops condition (ILC), have the shape of a finite
polyhedron K* with k <n—3, and are shape concordant via an ILC compactum
Zc MxI, then M—X, =~ M—X,. Liem subsequently improved Sher’s theorem
by showing [L] that the hypothesis that Z satisfy ILC in M x I could be dropped.

Our theorem generalizes that of Liem in two ways. First, the condition n>6
is changed to n # 4. Second, the assumption of polyhedral shape is replaced by
a considerably weaker condition on the homotopy pro-groups. We prove that if X,
and X; are ILC compacta of fundamental dimension k in a PL n-manifold M",
k<n—3, n # 4, if pro-n,(X,) is stable for i <2k+1—n and Mittag-Leffler for
i = 2k+2—n, and if X, and X, are shape concordant in M, then M- X & M— X,.
We also prove that two shape concordant weak Z-set compacta in a Hilbert cube
manifold have homeomorphic éomplements (Theorem 7).

In addition to being a direct generalization of the theorems of Liem and Sher,
our theorem also indirectly implies most of the other known finite dimensional
complement theorems. For example, the main result of [ISV] can be obtained as
follows. Suppose X, and X, are two ILC compacta in E" having fundamental
dimension at most k where k<n~3 and n3> 5. If Sh(X;) = Sh(Xy) and X is
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(2k—n+2)-shape connected, then [HI], Corollary 2 gives a shape concordance
from X, to X;. So our theorem applies and we conclude that £"— X, ot E"—X,.

A compact subset X of a manifold A is sald to satisfy the inessenfial loops
condition (abbreviated ILC) if for every neighborhood U of X there is a neighbor-
hood V of X such that each loop in ¥'— X which is null-homotopic in ¥ is null
homotopic in U— X. Throughout this note, I = [0, 1. Two compacta X,, X; in
the interior of a manifold M are said to be shape concordant if there is a compactum
Z in MxI such that X,x{A} = Z n (Mx{A})=Z is a.shape equivalence for
each A = 0, 1. Similarly, we can define the notion of shape concordance in Hilbert
cube manifold theory.

We will work with pointed topological spaces; however, we will suppress the
base points from our notations. We assume that the reader is familiar with the
fundamentals of shape [B] and ANR-systems [MS]. For standard notions and
notations in piecewise linear (abbreviated PL) topology and Hilbert cube manifold
theory, we refer to [Hd,] and [Ch] respectively if it is not specified otherwise.

A map f: X - Y between ANR’s is r-connected if fi: nX) - n(Y) is an
isomorphism when 0 <7< r~1 and an epimorphism-when i = r. A shape morphism
fi X - Y between pointed 1-movable continua is shape r-comnected if fy:
pro-m,(X) - pro-zn,(¥) is an isomorphism of pro-groups for 0<i<r—1 and
an epimorphism for i = r, Recall that a pro-group G = {G,, gup, 4} I stable
if G is isomorphic in the category of pro-groups to a group, and that G satisfies
the Mittag-Leffler condition if for each ae A there is a fa such that for all
¥ > B: guy(Gy) = guﬁ(Gﬂ)‘

Let X be a compactum in Hilbert cube (or PL) manifold M. By a defining
sequence for X in M, we mean a sequence {U,| n = 1,2, ..} of compact Hilbert
cube (or PL) manifold neighborhoods of X such that U, .y < Inty U, forn = 1,2, ...,
and that X = () {U,| n = 1, 2,...}. A defining sequence is said to be r-connected
if U,4;< U, is r-connected for each n = 1,2, ... The fundamental dimension of
X is defined by Fd(X) = min{dim¥| ¥ is a compactum and Sh(X) = Sh(¥)}.
We use the notation X & ¥ to mean that X and ¥ are homeomorphic spaces and
the notation fa:g to mean that f and g are homotopic maps.

2. Constructing polyhedral concordances. In this section we show how to use
the shape concordance Z to construct a polyhedral concordance from a polyhedron
approximating X, to a polyhedron approximating X;. The proof of the first lemma
is similar to that of [V,, Lemma 3.6].

Remark, We assume that pro-m,(X,) satisfies the Mittag-Leffler condition
in order to overcome the base point problem which arises. This is the standard
assumption which is used to handle base point problems and implies that X, is
pointed 1-movable. (See [DS], Lemma 7.1.2, and [DS], Theorem. 7.1.3, for example.)
In the proof of our main theorem the compacta either have fundamental dimension
in the trivial range (in which case the problem does not arise) or else have pro-m,
which satisfies the Mittag-Leffler condition,
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LemmMa 1. Suppose X, and X, are continua in the PL -manifold M*, pro-n,(X,)
satisfies the Mittag—-Leffler condition, and X, and Xy are shape concordant via g com-
pactum Z < M x I. Then for every neighborhood U of Z in M x I, there exists a neighbor-
hood V of Z in U such that the inclusion-induced homomorphism

(V. ¥ o (M x {1})) - 7(U, U n (M x {1}))
is trivial for every i=0.

Proof. The case { = 0 is trivial, so we begin with the case i = 1.

Pick base points zeZ and xe X, x {1} for pro-n;(Z) and pro-z,(X,x{1})
respectively. Let U be given. Suppose f = {f;} is a fundamental sequence from Z
to X;x{I} which is a shape-inverse of the inclusion-induced sequence i: X; x
x {1} = Z. We may assume that each f; is a map of the form f;: U - Mx{1}.

Use the fact that pro-m,(Z) is Mittag-Leffler to choose a neighborhood ¥,
of Z in U having the following property: If ¥ is any neighborhood of Z in M x I
and /is a loop in V; based at z, then / is homotopic in U (rel z) to a loop in V. Next,
choose a neighborhood ¥V of Z and an integer j such that fj|V ~idy in V; and

" £V A (Mx{1}) is homotopic to idyaarxgy in V1 0 (Mx{1}). We may assume

that f,(z) = x.

Now suppose that g: (4',84") —(V, V' n (Mx{1})) where 4'= [0, 1].
Adjust g if necessary so that ¢(0) = x. First, observe that g|d4* can be extended
to a map g 4' =¥y o (M {1}). The reason is that g|a4! ~f;g|d4* and f,gl04*
extends to a map of 4" into ¥y n (M x {1}) (namely fjg). Let a be the path traced
out by z during the homotopy from idy to f;]¥ and let b be the loop which consists
of g(4") plus g,(4") with reverse orientation. Then, aba™! is a loop based at z
and contained in ¥;. Thus aba™' is homotopic in U (rel 2) to a loop ¢ in V (by

. the choice of V). Furthermore, the choice of a shows that ¢~ a[f(e)]a™* (rel 2).

Therefore
bealaba e a™ ca a alf(e)la” a ~f(c),

all homotopies being in U and rel x. Thus g is homotopic in U (rel endpoints) to
the path consisting of the loop fi(c) followed by g,(4"). This completes the proof
of the case i = 1. )

Now suppose i 2> 0 and that the neighborhood U has been given. Use the first
part of the proof to choose a neighborhood ¥ of Z such that the inclusion induced
map 7, (Vi, Vi 0 (M x{1D) = m, (U, U ~ (M x {1})) is trivial. Next choose a neigh-
borhood ¥, of Z and an integer j such that f)]V, =~idy, in ¥y. Finally, choose
a neighborhood ¥ and an integer k such that fi|V n (M x{l})fzidynmx{m in
Vo n (Mx{1}).

Let g: (4, 24" - (V, V(M x{1}) be given, where 4' is an i-simplex.
Exactly as in the proof of the case i = I, the choice of ¥ guarantees that g|a4’
extends to a map g,: 4' = ¥V, n (M x{l}). Let g: S* > ¥, be the map which
agrees with g on the northern hemisphere of S* and with g, on the southern hemi-
sphere. Then § ~f;¢ in ¥, and f, 10(SY) = ¥, n (M % {1}). Let p be the path followed
2‘
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by the base point x during that homotopy. Use the choice of ¥ to homotope p
(rel endpoints) to a path p in U n (M {1}). Now we see that the original map
g is homotopic in U (el 84" to g, plus the singular i-sphere which is £, (S*) acted
on by p. B
Levva 2. Suppose X, and X are continua in the PL manifold M", pro-n,(X,)

satisfies the Mittag-Leffler condition, and X, and X, are shape concordant via a com-
pactum Z < M x I. Then for every neighborhood U of Z in M x I and every integer p,
there exists a neighborhood V of Z in U such that if P is any compact polyhedron
in V with dimP < p, then there is a homotopy f: P — U such that fy = inclusion,
FUPYS U (Mx{1}), and fJP v (M x {1}) = id for every t.

Proof. Define V,.; to be U and use Lemma 1 to choose neighborhoods
> ... oV, such that the inclusion induced map

w(Vis Vi (M x{1D) = (P 1, Viwy 0 (M x{1}))

€3

is trivial for i = 0,1,...,p. Let V = V,.

Suppose P is a compact subpolyhedron of ¥ such that dimP < p. Triangulate P
so that P n (M x{1}) is a subcomplex. Bach vertex of P in P—(Mx {1}) can be
homotoped through ¥, into ¥, n (M x {1}) by the choice of ¥,. Use the homotopy
extension property to extend that homotopy to a homotopy of all of P, being
careful that the extension is the identity on P n (M x {1}). Now all the 1-simplices
of P have their vertices in ¥; n (M x {1}) and the choice of ¥y allows us to homotope
them through ¥V, into ¥, n (Mx{1}), keeping the boundaries fixed. We again
extend that homotopy to all of P using the homotopy extension property. The
construction is continued inductively. We next homotope the 2-simplices into
M x {1}, then the 3-simplices, etc., until all of P has beea homotoped into M x {1}. W

LeMMA 3. Suppose X, and X, are continua in a PL n-manifold M" which are
shape concordant via a compactum Z < MxI. Suppose further that Fd(X,)
=k<n—3, n>5, X, satisfies ILC, and either 2k+2<n or pro-n;(X,) satisfies
the Mittag-Leffler condition. Then for every neighborhood U of Z in MxI, there
exist a k-dimensional polyhedron K< M", a regular neighborhood Ny of K in M"
and a (k+1)-dimensional polyhedron L < U such that

(3.1) X, =Ny,

(3.2) Nox{0} = U n (M x{0}),

(3.3) LA (Mx{0}) = Kx{0}, and

(B4 LM L (Mx{1}).

Proof. Let r = 2k+2—n. Fix a fundamental sequence {f;} from Z to X, x {L}
as in the proof of Lemma 1.

Consider the case r < 0. Choose a neighborhood ¥ of Z and an integer j such
that fjlV ~idy in U. By [V,, Theorem 4.1], there exist a compact k-dimensional
polyhedron KX in M and a regular neighborhood N, of K such that X, x {0} = Ny x
x{0} = V' (M x{0}). The choice of ¥ implies that there exists a map g: Kx
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x[0,1] = U such that g(x,0) = (x, 0) e Mx {0} and g(x, I) = fi(x, 0) e Mx {1}.
We may assume that g is a PL map in general position and that g(Kx {1}
= g(&xI) n (Mx{A}) for 4 =0,1. By general position, the dimension of the
singular set of g is no more than 2(k+1)—(@+1) = 2%k+1-n =r—1<0, and
50 g is an embedding. We simply take L to be g(KxI) in this case.

Next, consider the case > 0. In that case, pro-m,(X,) is Mittag-Leffler and
so Lemma 2 applies. Let ¥, = U. Choose neighborhoods ¥V, Vs, ..., ¥, of Z such
that Vo> V; > ... oV, and such that each inclusion satisfies the conclusion of
Lemma 2 with p = r, Finally, choose a neighborhood ¥ of Z and an integer j such
that fi|V' =~idy in ¥,. By [Vy, Theorem 4.1] again, there exist a compact, con-
nected, k-dimensional polyhedron K< M and a regular neighborhood N, of K
such that X, x {0} = Ny x {0} = ¥ n (M x {0}). The choice of ¥ implies that there
exists a map g;: Kx I — V, such that g, is a PL map in general position, g,(Kx ;
= Kx{0}, and g,(Kx{i}) = g((KxI) n (M x{A}) for A =0,1.

Let S; denote the singular set of g, and let L, = g,(Kx I). By general position
we have dimS; <2(k+1)~(@m+1) = r—1. Since KxINKx{l}, Lemma 7.3 of
[Hd, ] implies that there is a subpolyhedron 2, of K'x I such that S;  Z;, dim%; <r,
and KxInZ; u (Kx{1}). (We call Z; the shadow of S;.) We now define L¥ to be
the polyhedron formed by taking L U [¢,(Z,)xI] and identifying each point
xeg;(Z) =L, with the point (x,0)e g,(Z;)xI. Notice that LI\ g, (Ex{1}) u
U (9:(F1 n Kx{1})xT) U (g(E)x{1}). By the choice of V,, the inclusion map
L; o ¥, can be extended to a map g,: L - V,_; such that g,(L}) n (Mx {0})
= g, (Kx{0}) and g;(LD) 0 (Mx{1}) = g(g: (K {1}) U (9:(5; 0 Kx{IPxD) L
U (g1(Z;) x {1})). We may assume that g, is a PL, general position map.

We now repeat the entire construction in the previous paragraph. Let L,
= g,(L}) and let S, denote the singular set of g,. Then dimS, < (k+1)+(r+1)—
—(@m+1)<r—2. By [Hd,], Lemma 7.3 again, there is a shadow X, of S, in L}.
We next form L} by attaching g,(Z,)x I to L. The choice of ¥,_; gives a map
gs: L3 - V,_, such that g; extends the inclusion L, < V;_, and such that g,(L}) n
A (x{1)) = g3([02(52) N (M x INIxT U [9,E) x {111 U [L, 2 (x {1})]). Put
g3 in general position and let L, = g4(L3).

The construction is continued inductively and produces a sequence Ly, L,, ...
vy Lyyy of (k+1)-dimensional polyhedra such that L;c ¥V, .4, L; 0 (M%{0})
= Kx {0}, and L,;\L; n (M x{1}) U X, where X, is a subpolyhedron of dimension
<r+l1-i.

Take L to be L,.,. Notice that Le ¥, = U, L n (M x{0}) = Kx{0} and
LML (Mx{1}) U %,,., where dimZ,.;<0. On the other hand, L can only
collapse to a connected set. So we must have that L\NL n (M x {1}).

Remark. The construction in the second part of the proof above is reminiscent
of the construction in the proof of an engulfing theorem. Notice, however, that
nothing like a piping argument is needed because of the fact that K has codimension
4in MxI
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3. Main theorem. In this section we state and prove our main theorem.

Lemma 4. Suppose X, and X are continua in the interior of a PL manifold M»
which are shape concordant via a compactum Z < M x I. Suppose further that Fd(X,)
=k<n—3, n25, X, satisfies ILC and either 2k+2--n<0 or pro-n,(X,) satisfies
the Mittag-Leffler condition. Then for every ncighborhood My of X, there exists
a PL isotopy h, of M" such that hy = id, h\(X,) = My and Xy and h,(X,) have the
same relative shape in M,.

Proof. Let {f}} be a fundamental sequence from Z to X, x {1} as in the proof

of Lemma 1. Choose a neighborhood U of Z and an integer j, such that
[U2[40U  and  fjlU o Mx {1} =idy, gy in My,

for every j > jo. Apply Lemma 3 to this neighborhood U; let K, Ny, and I¥+! be
as in the conclusion of Lemma 3. Choose a regular neighborhood N of L in U such
that N meets the boundary of MxI regularly and N~ (Mx{0}) = N, x{0}.

Let Ny be the PL submanifold of A such that N (Mx{1}) = Ny x{1}.
We claim that N is homeomorphic with Ny %I via a PL homeomorphism g: Nyx
xI — N such that g|N; x {1} = inclusion. To see this, notice that we may assume
that L n (M x [0, &]) = Kx [0, €] for some small positive number &, Then N—M x
x[0,8) is a regular neighborhood of L n (Mx{1}) which meets the boundary
of M x I regularly and hence N—(Mx [0, &)) & N, x [0, 1] by [Hd,, Theorem 2.16,

p. 65]. Adding back the collar N n (M x [0, &]) does not change the PL homeo-
morphism type and so the claim is correct.

Now 8N = g(N;x{0}) U g(8N; xI) U g{(N, x {1}). We can adjust g near
O(NyxI) so that the collar g(dN, xJ) has very short fibres but g]N, x {1} is not
changed. It will then be the case that Kx {0} = g(N, x{0}). So we can define an
embedding Fy: K~ N, by (x, 0) = g(Fy(x), 0) for every x € K and an embedding
Fi KxI—MxI by F(x,t) = g(F(x),t). Then F|Kx {0} = inclusion and
FXx{1h <N, x{1}. '

We now apply Hudson’s Concordance Implies Isotopy Theorem ([Hd,],
Theorem 1.1) to F. There is a PL isotopy H, of Mx I such that Hy = id, H|Mx
x{l}. = id for every ¢, and H,F(x, t) = (Fy(x), 1) for all (x, ) e Kx I By first
pushing N, radially along the product structure of Ny—K if necessary, we car

" adjust H; so that it has further propetty that Hy(Ng % {0]) = M, x{0}.

Let 4, be the isotopy of M defined by (k,(x), 0) = H,(x, 0). Notice that ho =id
and the adjustment made just above implies that h,(N,) < M 1 and a fortiori hy(Xo)
oM. 'Fo see that h;(X,) and X, have the same relative shape in M, we construct
a relative fundamental séquence {f]} from h(Xo) to X, For j»j, define
£i h(o) - M by (6, 1) = fi(h 1(x), 0), where {#;} is the fundamental se-
quence mentioned at the beginning of the proof. It is obvious that {f}} is a funda-
mental sequence. By the choice of j, it follows that Silhy(No) exidy, gy for j=Jo
and so {f}} is a relative fundamental sequence. W nee '
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+ THEOREM 5. Suppose X, and X, are continua in the interior of the PL n-mani-
Jfold M", n # 4, which are shape concordant via a compactum Z = Mx I, In case
n =3, assume that M contains no fake 3-cells. If X, and X, satisfy ILC in M",
Fd(X,) = k<n-3, and pro-n,(X,) is stable for 0<i<r—1 and Mittag-Leffler
for i =r, where r = 2k+2—n, then M—X, & M—X,.

Proof. Consider first the case n = 3. Then X, and X, are cell-like subsets
of M* which satisfy McMillan’s cellularity criterion, and so M3—X, & M3—X,
o M3 —point.

Now suppose n>35. By the observation following the proof of Theorem 1
in [IS], X; has a PL manifold neighborhood M such that the inclusion X, = M,
is shape r-connected. By Lemma 4, there exists a PL isotopy A, of M™ such that
hy(Xp) cIntMy and X, and h,(X,) have the same relative shape in M. We can,
therefore, apply [IS], Theorem 3 to obtain a homeomorphism from M, —h;(X,)
to M;— X, which is the identity on @M;. Extend that homeomorphism via the

_ identity to a homeomorphism of M"~h,(X,) to M*—X,. W

Remark. A version of Theorem 5 could be proved for compacta instead of
continua. In case r<0, the proof goes through unchanged for (nonconnected)
compacta. If > 1, the fact that pro-mo(X,) is stable means that X, has only a finite
number of components. If each of them satisfied the hypotheses of Theorem 5,
we could do the construction of Lemma 4 for each component and still conclude
that M—X, =~ M—X,.

4. Concordance implies homeomorphic complements in Hilbert-cube manifolds.
Following [S,], we say that a compact subset X of a Hilbert cube manifold M is
a weak Z-set if for each closed neighborhood U of X and closed set 4 — U there
is a hometopy H: AxI— U such that H(Ax{1}) N X =@ and H(x,?) = x if
either ¢ = 0 and x € 4 or x € Fr) U. The following is a different form of the Z-set
unknotting theorem in Hilbert cube manifold theory that we will use in the proof
of Theorem 7 below.

LeMMA 6. Let X, and X, be two Z-set copies of a compactum X in a Hilbert
cube manifold M. If X, and X, are shape concordant in M, say by a compactum
ZaMxl, then M— X, = M—X,.

Proof. For each A =0,1, let {U,,| n=1,2,..} and {W,] n=0,1,..}
denote defining sequences (connectedness is not necessary) for X, and Z; and
fr={f w,- U,,} a shape inverse of i*: X,cZ where i* = {i{} and each
it: U, — W,_,. Observe that f'i° and f°* are inverses each other.

The proof similar to that of Theorem 25.2 [Ch] is divided into three steps:

(i) Given a small neighborhood ¥; of X, there is a homeomorphism A&; of
M such that h,(X,) = Vy and k| X, =flil1]1 X, (in ¥;) for all large s.

(ii) If U, is a small neighborhood of X, such that h(Uy) = ¥;, then there
is a homeomorphism /4, of M such that X; c hyh,(U,) and s, = id on M—V7;.


GUEST


130 Vo Thanh Liem and G. A, Venema

(iii) ¥f ¥, is small neighborhood of X, such that V, = h,h,(U,), then there is
a homeomorphism £, of M such that hshyhy (Xo) = V, and by = id on M~ h,hy (U,).

The proofs of (ii) and (iii) are exactly the same as those of steps II and III
on pp. 41-42 [Ch], by use of the fact that f1i° and f°§* are inverses of each other,
The following is a proof of (i).

Let 5 be an integer such that U, ,., =¥,. Then we can show that the map
Syl Xy: X, — Uy, .~y is homotopic in W,.., to the inclusion X, < W,_,. Con-
sequently, Projyfi-tiy: Xo— Uppmy=2XocM. Let ag: Xo - intU,., be
a Z-embedding homotopic in Uy,,..; to projyfi.,i’. Then, we can extend oy to
the homeomorphism %; we want of M by using Theorem 11.1 [Ch]. Hence, the
lemma follows. M

THeoREM 7. Let X, and X, be weak Z-sets in o Hilbert cube manifold M, If
Xy and Xy are shape concordant, say by Z < Mx1, then M~X, & M~ X,.

Proof. For each A = 0, 1, there is from [S,] an open neighborhood ¥, of X,
in M such that ¥, is homeomorphic to an open subset of the Hilbert cube. Let
U, = 7, be a compact neighborhood of X, and #;: X, — Inty U, 2 Z-set embedding
approximating 7,: X,  IntyU, such that %, =/, jn Inty,U,. Now, from the proof
of Theorem 3.1 [S,], there is a homeomorphism h: ¥,— X, & ¥,~1,(X,) such
that A|(V,—U;) = id. Then, by extending h via the identity, we obtain M—X,
2 M—7,(X;). Therefore, combining with Lemma 6, we have M— X, = M—X,.
The proof is now complete. B

Remarks 1. Following the proof of Theorem 25.1 [Ch], we can prove that
if X, ¥ are weak Z-sets in a compact Hilbert-cube manifold M such that M—X
& M7, then X and Y have the same shape.

2. Let Xand Y be weak Z-sets in the Hilbert cube @ suchthat Q— X = Q- ¥,
then X and Y are shape concordant in Q.

3. From the proof of Theorem 5 and Theorem 7 above, there actually is an
Llevel-preserving homeomorphism H: (M x I)— (X, x {1) > M xD— (X, x {1}
such that H(x, 0) = (x, 0) and H(x, 1) = (h(x), 1), where % is 2 homeomorphism
obtained in Theorem 5 or Theorem 7 correspondingly. Conversely, for given com-
pacta X, Y« M, if such a level-preserving homeomorphism H exists, it is easy to
prove that X and ¥ are shape concordant.
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