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Smooth dendroids as inverse limits of dendrites
by

Wiodzimierz J. Charatonik (Opole)

Abstract. It is proved that a dendroid is smooth if and only if it can be represented as the
inverse limit of an inverse sequence of finite dendrites with bonding mappings which are monotone
relative to points forming a thread. As a consequence another proof of the existence of a universal
smooth dendroid [4] is obtained. .

§ 1. Preliminaria. All spaces considered in this paper are assumed to be metric
and all mappings are continuous. A dendroid means a hereditarily unicoherent
and arcwise connected continuum. If, moreover, it is locally connected, it is called
a dendrite. By a ramification point of a dendroid X we understand a point which
is the centre of a simple triod contained in X. A dendroid having at most one
ramification point ¢ is called a fan, and ¢ is called ifs fop. A fan with at most » end-
points is called an n-fan. A. dendroid X is said to be smooth at a point p € X provided
that for each sequence of points 4, X which is convergent to a point € X the
sequence of arcs pa, converges to the arc pa. A mapping /> X — ¥ of a continuum
X onto Y is said to be monotone relative to a point p € X if for each continuum Q
in ¥ such that f(p) e Q the set f~*(Q) is connected (see [6], p. 720).

The author is very grateful to Professor Henryk Torunczyk for his important
sugestions, which have contributed to the preparation of the present version of
the paper.

§ 2. The main result and corollaries. The following result is a particular case
{for dendrites) of Corollary 4 of [l].

THEOREM A. Let an inverse sequence {X*, f'} be given of dendrites X containing
points p' such that 1° fH(p'™Y) = p* and 2° the bonding mappings f*: X'** - X" are
monotone relative to points p'**. Then the inverse limit X = Lim{X", f'} is a den-
droid which is smooth at the thread p = {p'}.

The aim of this paper is to prove the inverse theorem, so that the characterization
can be obtained of smooth dendroids as inverse limits of finite dendrites with
bonding mappings which are monotone relative to some points forming a thread
of the inverse sequence. Namely we shall prove the following
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MAIN THEOREM. Let a dendroid X be given which is smooth at a point peX.
Then for each i€ {1,2, ...} there exist finite dendrites X', mappings f*+ X1 - xi
and points p'e X' such that 1° fi(p'™) = p' and 2° the mappings f* are monotone
relative to p*** and the inverse limit Lim {X, % is homeomorphic to X in such a way
that the thread {p'} corresponds to the point p.

Before proving the theorem we pose some problems and give corollaries.

ProBLEM. What continua X can be obtained as inverse limits of locally con-
nected continua X* with bonding mappings f* satisfying conditions 1° and 2° of
Theorem A?

In a proposition below we give an answer to this question for the class of con-
tinua which are hereditarily unicoherent at a point. Recall that a continuum X is
said to be hereditarily unicoherent at a point p e X if the interscction of any two
subcontinua of X each of which contains p is connected.

PROPOSITION 1. Let an inverse sequence {X*, %} be given of locally connceted
contimia X* containing points p' such that conditions 1° and 2° of Theorem A. hold.
If the inverse limit X = Lim{X",f*} is hereditarily unicoherent at the thread p
= {p"), then cach X' is a dendrzte and hence X is a dendroid which is smooth at p.

In fact, by Corollary 1 of [2] each natural projection from X onto X' is
monotone relative to p. Hence, by Theorem 2.5 of [6], p. 721, each X is hereditarily
unicoherent at p'. So X is a dendrite by Theorem 2.2 of [3], p. 63.

Now we are interested in the universal smooth dendroid. Its existence has
been proved in [4]. We show thzt the standard methods of McCord [7] applied
to the class. of pointed finite dendrites with mappings monotone relative to
distinguished points, together with the Main Theorem, give another proof of the
existence of a universal smooth dendroid. For this purpose we need some auxiliary
concepts.

A pair (X, x) where xe X is called a pointed space. Let % be a class of
mappings of pointed spaces which is closed with respect to taking compositions.
The class 2 of pointed polyhedra is called & -amalgamable if for each finite se-
quence (Py,p;), (P2, P2); v, (Py, py) of members of 2 and mappings f;: (P, p))
~ (Q, q) where (Q, g) € 2 and each f, € & there exist a mcmber (P, p) of 2 with
embeddings g;: (P;, p)) — (P, p) and a mapping fe " of (P, p) onto (Q, q) such
that f; = fg; for each ie {1,2,..,n}.

Let & be a class of pomted polyhedra. We say that a pointed continuum
(X, x) is (2, o)-like if there is an inverse sequence of members of 2 with bonding
mappings belonging to " such that (X, x) is the inverse limit of that sequence.

Using exactly the same arguments as McCord uses in his proof of Theorem 1
of [7], Part 3, p. 72-77 and considering the concepts introduced above, we get

PrOPOSITION 2. If a class @ of pointed polyhedra is o -amalgamable, then
there exists a universal (P, H)-like continuum.
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Denote by & the class of pointed finite dendrites and by . the class of mapp-
ings which are monotone relative to distinguished points. Now we are able to re-
formulate the Main Theorem and Theorem A as follows:

COROLLARY 1. 4 pair (X, p) is a pointed dendroid which is smooth at p if and
only if (X,p) is (D, H)-like.

PROPOSITION 3. The class @ is J -amalgamable.

Proof. Let (Py,py); .., (Py, p,) be pointed finite dendrites and let f;: (P;, p)
- (Q, q) be monotone relative to p; with (Q, g) & 2. Let P be the one-point union
of P; with points py, ps, ..., p, identified to a point p € P. Then (P, p) is a pointed
finite dendrite. We consider g, as a natural embedding of (P,, p,) into (P, p) and
define f: (P, p) = (@, q) by fIP; = f, or — more exactly — f(x) = fi(gi *(x)) for
x e g,(P;). One can observe (simply by definitions) that f is monotone relative to p.
So all conditions of the definition are satisfied.

Corollary 1 and Propositions 2 and 3 lead to

COROLLARY EZ ([4], Theorem 3.1, p. 992). There exists a universal smooth
dendroid.

§ 3. Proof of the Main Theorem. The following result of Mackowiak will be
used in the sequel.

TuroreM B ([6], Corollary 2.10, p. 722). Let a continuous mapping f map
a dendroid X onto a dendroid Y, and let p € X. Then f is monotone relative to p if and
only if flpx is monotone for each x e X.

For each natural number i let F? be the cone over the set 4’ = {0, 1}} and
let F be the cone over the Cantor set C = {0,1}%; ie., F! = 4% [0, 1]/4'x {0}
and F = Cx[0, 1]/Cx {0} are the 2-fan and the Cantor fan respectively. Denote
by ¢! the top of the fan F? and by ¢ the top of the fan F. The projections C - A*
and A - 4% induce maps p': F— F' and u': F'*! o FP

We shall employ the following result of Grispolakis and Tymchatyn.

THEOREM C ([5], Theorem 2.3, p. 132). Each smooth dendroid X can be em-
bedded into a smooth dendroid Dy such that there exists a mapping g: F— Dy
satisfying the conditions:

10 4f g (v, p1) = g (%2, 92), then py = y, for each (x1,31), (%2, ¥2) € F;

20 4f glvyy) = g(xa, 1) and 0<y<yy, then g(xy,¥) = g (0, ¥);

3° for cach ye [0, 1] the set g(Cx{y}) is zero-dimensional;

° g(t) e X< Dy.

The main step in the proof of the Main Theorem is

PROPOSITION 4, Suppose Dy is a smooth dendroid, X« Dy and a map g: F— Dy
satisfies 1°~4° of Theorem C. Then for each i€ {1,2, ...} there are finite dendrites D'
and maps g': F* —» D', v*: D**' — D' and ¢*: Dy — D* such that

(@) D' is a dendrite with at most 2 end-points;
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(b) the diagram
ut pi+t
. Fl(_ FH~1 P 4

e

Di<__;‘___Di+1<~ Dy

gitl

commutes and all mappings are monotone relative to points t'e F', ¢*1 e F'*! teF,
gty e D' and g(t) € Dy respectively. Moreover,

(©) if dy, ds € Dy and dy # dy, then there exists an index i with gd,) # q'(dy).

Proof. For each ie {1, 2, ...} consider the family %' of all relations R satisfy-
ing four conditions:

() R is a closed subset of F'x F'; _

(2) if (x4, y1)R(%2,y5), then p; = y,, where Xy, x, € 4" and yi, 3, €0, 1]

(3) if (g, y1)R(x3, ¥;) and 0<y<yy, then (x1, y) R(%2, 3);

(4) for each two points f1,f, € F, if g(/1) = g(f2), then p'(f) Rp*(f2).

One can verify in a routine way than this family is multiplicative. To see that
it is non-empty define R F'x F* by (x;, y;) R(x4, o) if and only if y; = y, and
note Re #. Put R' = | #* and note R' e #'. Define D' = F'/R' and g*: F'—» D}
as the identification map.

We show (a). The following properties of the mapping g’ are consequences
of (2) and (3):

(8) if g'(xs, ¥1) = ¢*(x2, ¥2), then yy = y, and

(6) if g%(xy, y1) = g'(x2,7;) and O<y<y,, then gi(x;, ¥) = g'(x;, 1),

By a straightforward induction on # it follows that a map defined on an n-fan
satisfying (5) and (6) has a dendrite with at most n end-points as its image. So (a) is
established.

Now we define v': D'** — D! Take a point de D'** and let fe Fi*! satisfy
g () = d. Put v'(d) = g'(!(f)). To see that the definition is correct consider
the relation R defined on F*** by f,Rf; if and only if g'(u(f,)) = g'(u!(fs)) and
note that R satisfies (1)-(4) for F*** and hence R'*!< R, This means that g'*1(f;)
= g'*(f,) implies g'(u'(f1)) = ¢'(u!(f)) and we are done.

Similarly define ¢': Dy — D' by ¢' = g'%p'(g)~'. This definition is correct
by (4). The commutativity of the diagram follows directly from the definitions
of v' and ¢'.

Observe that the mappings p’, ', g* and g are monotone relative to respective

points by Theorem B. To see that so is v, consider a continuum Q< D! with -

g'(the Q and observe that ()7*(Q) = g™+ (g)~Y(Q) is a continuum by
monotoneity relative to the respective points of the mappings g* and u'. A similar
argument implies ¢’ is monotone relative to g(t), and so (b) is established.

It remains to show (c), Le., that if fy, f, € F with g (fy) # g(f3) then g'(p'(/1))
# g'(p(f2)) for some index i. To this end write Si= (x5, »), where x;e C and

icm

Smooth dendroids as inverse limits of dendrites 167

1600, 1] for je {1, 2} If y; 5 y, then by (5) ¢'(p'(f)) # g'(p'(/)). and so as-
sume y; = y, = y&(0, 1]. By condition 3° of Theorem C the set g(C x {3} is
zero-dimensional, whence there are two closed and open sets U; and U,
= g(Cx{yH\U, containing the points g(f,) and g (f,) respectively. Write g iUy
= C;x{y} for je{1,2}. So C, and C, are digjoint, closed and open subsets of C
satisfying C; Oy = C and x; € Cy, x,e€C,.

Since g(xy, ) # g(x;,») and since g is continuous, there exists a positive
number z<y with g(x',z) # g(x”,z) for each x’e C; and x" e C,. Note that
condition 2° of Theorem C implies )

(7 g, 2) % g(x",z") for all 2’ e[z, 1], x' € C| and x"“ & C,.

Observe that C is the inverse limit of the sets A with the projections A'!— 4*
as bonding mappings. Denoting by r': C — A* the projection map, we see that
there exists an index 7 such that the sets #¥(C;) and r(C,) are non-empty, disjoint
subsets of A? with ri(C,) L r(C,) = 4%

Define a relation R on F, putting (a;, b;)R(d, by) if and only if b; = b,
=bel0,1] and

b<z, or

b>z and ay, a, € r'(Cy), or

b>z and a;, a, € F(C,).

Observe that the relation R satisfies conditions (1)-(4) ((4) is a consequence
of (7). So R'cR. Note that

(P'(f)), P'(f2) € F'x FNR & F'x F\R}

hence g'(p'(f;)) # ¢'(p'(f)), which establishes () and finishes the proof of Pro-
position 4.

Proof of the Main Theorem. Let X be a subset of Dy as in Theorem C.
In the notation of Proposition 4 let X* = ¢*(X) and f* = »|X***, Then X is a sub-
continuum of D%, and so it is a dendrite with at most 2! end-points; further, /% is
monotone relative to g'(+") by Proposition 3 of [1]. Define h: X — Lim{X? f%}
putting k(x) = {p(x)} for x € X. It follows from (c) that k is a homeomorphism,
and so the proof is complete. '
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The limit behaviour of exponential terms
by

Bernd I. Dahn (Berlin)

Abstract. Let T be the theory of ordered exponential fields satisfying Rolle’s schema and
the intermediate value schema. It is shown that formulas of the form ¥ xq, where g is quantifier
free, persist under extensions of models of 7. Asymptotic expansions of transfinite length are used
to show that the limit of an exponential term in a model of T, if it exists, can be calculated from
the coefficients of the term by means of another exponential term.

The main subject of this paper is the behaviour of exponential terms for large
values of the argument, taken from some (possibly non-Archimedean) ordered
exponential field. This will have conscquences for the model theory, algebra and
analysis of such fields.

The author would like to express his gratitude toward Professor Helmut Wolter
for long and helpful discussions.

An exponential term is always a term which is built from the variable x and
parameters from some specified set including 0, 1 and —1 by means of the unary
function symbols ~*, e and the binary function symbols + and :. For every such
term we can easily write a quaatifier-free formula which is true for some value a
of x iff the term is defined at-a. T' denotes the first order theory having as axioms
— the axioms of the theory of ordered fields,

— e(@+y) = e@x)e(y),

— e(x)=1+x,

— for every term #(x, ¥y, ..., ¥,) an axiom saying that for all ¢y, ..., ¢, a,b, if
a<b and 1(x, ¢y, ..,c,) is defined for all xel[a,b] and t(a,cy, .., c,)
= 1(b, ¢y, ..., ¢,;) = 0, then there is some ¢ € (4, b) such that t'(c, ¢y, ..., ¢,) = 0
where ¢’ is the formal derivative of # with respect to x (Rolle’s schema) and

— for every term £(x, ¥y, .., ¥,) an axiom saying that for all ¢, ..., ¢, @,b, if
a<b and t(x,cy, ..., c,) is defined for all xe[a,b] and ¢(a, ¢y, ..., ¢)<O
<t(b, ¢y, ..., C,), then there is some ce(s,b) such that f(c,cyy.i,c) =0
(intermediate value schema).

In [DW] it has been proved that 7' is strong enough to prove that formal
differentiation using the rule (e(s)) = s’e(s) and differentiation applying the usual
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