240 M.S. Lambrou

[16] G. N.Raney, Tight Galois connections and complete distributivity, Trans Amer. Math. Soc. 97
(1960), pp. 418-426, MR 22 4 10928.

[17] J. R. Ringrose, Un some algebras of operators, Proc, London Math. Soc. 15 (1965), pp.
61-83, MR 30 # 1405.

UNIVERSITY OF CRETE
DEPARTMENT OF MATHEMATICS

Iraklion—Crete, Greece

Accepté par la Rédaction le 17. 8. 1981

icm

Remarks on intrinsic isometries
by

Juliusz Oledzki and Stanislaw Spiez (Warszawa)

Abstract. A map f: A A’ of metric spaces is said to be an intrinsic isometry if it
preserves the length of every arc. It is shown in this note that the Euclidean n-space E" is
intrinsically isometric to a subset A of E"*! with arbitrarily small diameter 5(4). We also
consider the intrinsic metric of a product of metric spaces.

1. Introduction. The notion of the intrinsic metric for metric spaces and
related notions were introduced by K. Borsuk [1]. Let us say that a space 4
(with metric @) is geometrically acceptable (notation: AeGA) if

(1.1) for every two points x, yeA there exists an arc L = 4 with finite
length such that x, yelL

and

(1.2) for every point xe4 and for every &> 0O there is a neighborhood U
of x in A such that for every point ye U there exists in 4 an arc L
containing the two points x, y and such that the length |L| <e.

Then setting

(1.3)  @4(x, y) = lower bound of the length of all arcs L = A4 containing the
two points x, y,

one gets a metric g, in A called the intrinsic metric in A. The topology in
AeGA induced by the metric g, is the same as the topology induced by the
metric @. ‘

A function f mapping a GA-space A onto another GA-space A’ is said

‘to be an intrinsic isometry provided

for every x, yeA.

(1.4) 04 (%, ¥) = gu (f (2, S )

A map fis an intrinsic isometry if and only if it preserves the length of every
arc. Every intrinsic isometry is a homeomorphism.

K. Borsuk has proved [1] that for every ¢ > O there exists an intrinsic
isometry mapping the Euclidean n-space E” onto a subset 4 < E?" such that
the diameter of 4 (by tbe usual metric in E?") is less than &. We will prove
the following i .
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(1.5) THEOREM. For every ¢ > O there exists a subset A of the (n+ 1)-space
E™*! with a diameter less than & which is intrinsically isometric to the
Euclidean n-space E".

Let A and B be GA-spaces with metrics ¢’ and ¢”, respectively. Then the
product 4 x B with the metric ¢ given by
(1.6) Q((an by), (az, bz)) = \/(Ql (aq, az))2+(g”(b1, bz))z
is a GA-space. The intrinsic ¢,z in A X B is given by

.7 24x5((a1, by), (az, b)) = /(0 (ay, a))" +(eb by, b))’

(see Theorem (3.7)). It follows that if f: 4 — A’ and ¢g: B —+ B’ are intrinsic
isometries of GA-spaces, then the map f xg: AxB — A’x B’ is an intrinsic
isometry.

2. The Euclidean n-space E" is intrinsically isometric to a subset of E"*!
with a small diameter. We denote by I the set of all integers. Let F be the
union of segments A; in E” (iel) such that the intersection A;NA;,,
= A;nA;4, is a point and segments A4; and A; are disjoint if {i—j| > 1. We
say that the broken line F is obtained by the reflection of a straight line K
relative to a family {H;},, of hyperplanes ((n— 1)-dimensional hyperplanes in
E™ if the following conditions are satisfied:

(21) Ao <=K,

(22) A N4 <H,

(2.3) the hyperplane H; is perpendicular to the bisectrix of the angle
between the segments A4;_, and 4,,

(24) F is intrinsically isometric to K.

Fig. 1

For positive real numbers a and b we define

p= (Il+l (= 1)b> for every iel.
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Let A;(a, b) be the segment which joins the points p; and p;4,. Let L;(a, b)
be a straight line which contains the point p; and which is perpendicular to
the bisectrix of the angle between the segments A;-, (a, b) and A;(a, b); ie.

the broken line F(a, b) = |J 4;(a, b) is obtained by the reflection of the
iel

straight line K which contains the segment Aq(a, b) relative to the family

{Li(a, b)}ies (see Fig. 2).

L,

Lo
L;

Ly

L

Fig. 2

One can prove that for any positive real numbers g, d and ¢ there exists
a positive number b (sufficiently small) such that for any straight line K’
parallel to the segment Aq(a, b) where the distance of this segment from K’ is
less than d the broken line F’ which is obtained by the reflection of K’
relative to the family {L;(a, b)};; has a diameter 6(F’) less than 2a+e.

Thus we can formulate the following

(2.5) LemmA. For any positive real numbers ¢ and d there exist positive
real numbers a and b such that for any straight line K' parallel to the segment
Ag(a, b) where the distance of this segment from K' is less than d the broken
line F' which is obtained by the reflection of K’ relative to the family
{Li(a, b)}er has a diameter & (F') less than ¢. The sets F' and f (F') are disjoint
for any nontrivial translation f of the direction of the second axis.

Now we will prove the following

(2.6) LEmMA. Let X be a subset of the Euclidean n-space E" which does
not intersect the set f(X) for any nontrivial translation f in the direction of
some vector a. Then for any &> O there exists an embedding

g: X xE - E"*!

which is an intrinsic isometry such that
(27)  S(g(X xB) < 8(X)+2s,
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(28) the sets g(X xE) and f'(g(X xE)) are disjoint for any nontrivial
translation f' in the direction of some vector «

Proof. We will consider E" as a subset. of E**'. Let P be a plane in
E"*1 parallel to the (n+ 1)-axis and to the vector « such that the intersection
P~ X is nonempty (any such plane intersects the set X in at most one point).
For ¢ and d = §(X) we find positive real numbers a and b which satisfy the
conditions of Lemma (2.5). Let F(a, b) = UA (a, b) be a broken line in P

defined as above in such a way that the stralght line which contains the
segment Ag(a, b) intersects the set X and is parallel to the (n+ 1)-axis of
E"*1 Let L;(a, b), icl, be the straigth line in the plane P defined as above.
By H;(a, b), icl, we denote the n-dimensional hyperplane in E"*! with the
image L;(a, b) under the orthogonal projection onto the plane P.

The straight line parallel to the (n+ 1)-axis which contains a point xe X
we denote by K (x). Let F(x) be the broken line which is obtained by the
reflection of the straight line K (x) relative to the family {H;(a, b)};c;- Observe
that F(x) is contained in the plane P(x) = E"*! which is parallel to P and
which contains the line K (x). We know that P(x)nX = {x}; thus F(x) and
F(x') are disjoint if x and x' are different points of X. By Lemma (2.5) the
diameter & (F (x)) is less than ¢ for every point xeX. Thus the diameter of the

set Y = |) F(x) is not greater than &(X)+ 2s.
xeX

Let g, be the intrinsic isometry of K (x) onto F(x) which is the identity
on the segment of K (x) between the hyperplanes H,(a, b) and H, (a, b). The
embedding

g: XxE—>Y < E"*?
defined by

g(z) =g,.(z2) if zeK(x)and xeX
is an intrinsic isometry since g restricted to any arc in X xE is a composition
of the reflections relative to some hyperplanes H,(a, b).

Observe that for any nontrivial translation f' in the direction of the
bisectrix of the angle between the segments A_ (a, b) and Ay (a, b) the sets Y
and f'(Y) are disjoint.

From Lgmma (2. 6) one can obtam (by induction) Theorem (1.5).

It is easy to see [1] that there exists a smooth embedding g: E"
— Y < E*" which is an intrinsic isometry such that the diameter (Y)of Y is
small. There is no smooth intrinsic isometry g: E” —+ E"*! with the diameter

4(Y) finite, n> 1. This follows by the Hartman-Nirenberg theorem of [2]
(see Theorem (5.3) Chapter VI, [3]). Let us formulate the following question:

(29) Is it true that there is no smooth intrinsic isometry g: E"— Y < E™

with the diameter &(Y) finite if m is less than 2n?
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3. The intrinsic metric of the product of metric spaces. By R+_ we
denote the set of all nonnegative real numbers. We will consider functions
f: R*xR* = R* which satisfy the following conditions:

(3.1) (80, 1)+ (82, t2) = f (5452, 11 +12),
(3.2) fsy, 1)) <f(sa,ty) i sy <5, and t; <oy,
(3.3) [as, aty = af(s, 1),

3.4) f(s,=0 ifand only if s=0=1t.

Let X and Y be metric spaces with metrics ¢’ and ¢” respectively. If
f: R*xR* - R™ is a function which satisfies conditions (3.1}-(3.4), then
setting

(3.5) Q((xl, V1) (X2, J’2) f(Q (%1, x2), @ (¥1, J’2))
one gets a metric ¢ on the product X xY which induced the product
topology. Observe that the function f: R* xR* — R* defined by

(3.6) (s, 0 =S/ +12

satisfies conditions (3.1)+3.4).

Now we will prove the following

(3.7) THEOREM. Let oy and gy be the intrinsic metrics in GA-spaces (X, o)
and (Y, ¢'") respectively. Let o be the metric in the product X x Y given by (3.5),
where f: R¥ x R* — R* is a function satisfying conditions (3.1)-(3.4). Then the
intrinsic metric in the metric space (X xY, g) is given by

(3.8) QXxy((xh V1) (%2, ,Vz)) =f(Qx(x1: X,), 0y (1, J’Z))-

Proof. Let z, = (x,, y;) and z, = (x;, y,) be points in X x Y. Let L be
an arc lying in X x Y and joining the points z; and z, with a parametric
representation given by a homeomorphism

h: <0, 15— L.

Let hy = pyoh and hy = pyoh, where py and py are the natural projections
of XxY onto X and Y respectively. For every &> O there exists a sequence
O=ty<t; <..<t =1 such that

Z di' > oy (y1» J’z)

i=1

K
Z dj > ox(%y, x)—e& and
i=1

where

d; = ¢ (hx(t), hx(ti=y)) and  df = o"(hy(2), hy (t;- 1))
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By conditions (3.1) and (3.2) we obtain

k k
> ¥ e(he), he-9) = ¥ 7, &)

k k
>f( Z d, Z dzf') ?f(Qx(xu X2)—¢, gy (1, )’z)“ﬂ)-
i=1 i=1
Since f is continuous, we obtain

14 >f(Qx(x11 X2), @y (¥1» Yz))-
Thus

(3.9 Qx =y (21, 23) >f(9x(x1a X2), 0y (V15 M))-

For every ¢ > 0 there exist arcs L in X joining x, and x, and L’ in Y
joining y; and y, such that

(3.19) ox(xy, X)+e>[L]  and oy (y;, y))+e>|L7.
Let the parametric representations _
H:0,up-L and h": <0,0) L'
be intrinsic isometries. Let
0: €0, 1> =<0, uy x<0, v

be a map given by @) =(t'u,t'v). Let &=(hxh)op, ie &)
= ('(t-w), K" (t*v)). For every 3 > 0 there exists a sequence 0 = ¢, < <.
. <t, =1 such that

ILi < ¥ o(@(t), Bt-y)+6
. i=1
where L is the arc with the parametric representation @. For any GA-spaces

A and for any points a, be A we have g, (a, b) > o(a, b). Thus, by conditions
(3.2) and (3.3), we obtain

K K
ig'x Q(ip—(ti)’ Pl-1) = Z f(Q’(h((rt"“)’ Kt -u)), e’ (h”(ll'v’v ity U)))

i=1

k
< Zlf(lfi'“’"li—l ul, o=ty v))

k
= E b=t £ 1) =, 0) = £, 2.

Thus
IL} < (L), |ILD+36
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for every 6 > 0. By conditions (3.2) and (3.10), it follows that
1L < (L), 1D < fex (X1, X2)+e, 0y (1, Do) +6)-

Since oy xy (21, 22) < |L|, we obtain

exxy (21, 22) < S (ex (X1, X3)+&, 0y (V1> ¥2)+e)
for every ¢ > 0. Since f is continuous, we obtain

(3.11) Ox xy (21, 23) <f(2x(x1: x3), oy (¥, ¥2))-

From Theorem (3.7) follows
(3.12) CoroLLARY. Iff': X' > Y  and f": X" — Y" are intrinsic isometries
of GA-spaces, then the map f'xf" is an intrinsic isometry.
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