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Continua whose local homeomorphisms
are homeomoyrphisms

by

Akira Tominaga (Hiroshima)

Abstract. Let /2 X — Y be a local homeomorphism between continua. Then an answer is
given to the question: Under what conditions for X, is / a homeomorphism?

1. Introduction. Let X, Y be continua and f: X —>Y a local homeo-
morphism of X onto Y. Then we give sufficient conditions for X that fis a
homeomorphism. If X is a chainable continuum or more generally a tree-like
continuum, then f is a homeomorphism ([S, p. 261], [3, p. 671, [2, p. 3171,
[4, p. 50]).

Our results are the following:

Tueorem 1. Let X, Y be continua and f: X =Y a local homeomorphism
of X onto Y. If X is the limit of an inverse sequence, with bonding maps onto,
of simply connected Peano continua and X has the fixed point property for
homeomor phisms, then f is a homeomorphism.

TueoreM 2. Let X, Y be continua and f+ X —» Y a local homeomorphism -
of X onto Y. If X is the intersection of a monotone decreasing sequence of
simply connected Peano continua and X has the fixed point property for
homeomorphisms, then f is a homeomorphism.

CoroLLARY. Every local homeomorphism of a compact metric AR onto a
space is a homeomorphism.

2. Definitions and notation. A Peano continuum is a locally connected,
connected, compact metrizable space. A space X is simply connected if it is
arcwise connected and each closed path in X is homotopic to zero. A map
means a continuous function. A local homeomorphism f: X —Y between
topological spaces is a map having the following property: For each point x
of X there exists an open neighborhood U of x such that f(U) is open in ¥,
and f restricted to U,f|U, is a homeomorphism of U onto f(U).

Let (M, d) be a metric space and & a positive number. For points a, b of

M, a 8-chain from a to b is a finite sequence a = {a = xy, Xp,....,% = b} of
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points such that d(x;, x;+;)<dé (1 <i<I). If a=b, then a is a -loop based
at a. Let « = {ay,...,a;}, p = {by,...,b,,} be d-chains. I {ay,...,q;, by,...,b,}
is also a &-chain, then we denote it by af. Moreover {aj, aj_y,...,a;} is
denoted by «~*. For & > 0, a finite set of points {x;: 1 <i<L1<j<m}is
a S-net provided that the diameter of [Xi, X;j41s Xiwy, o Xig1, 41 (1 <
<l,1<j<m) is less than 8. Let o = {a,, a,,...,a, = a;} be a é-loop. If
there exists a d-net {x;: 1 <i<l, 1<j<m} such that X;; = a; and Xy
=Xpm =Xy =a (1 i<, 1<j<m), then a is said to be d-homotopic to
zero in M, and we denote a =~ 0(d).
Let X, Y be continua, and f: X =Y be a local homeomorphism of X
onto Y. Hereafter we shall exclusively use the symbols ¥, %, ¢, u, v, and A
#" = an open covering ¥ of Y as follows: For each Ve " there exists a
- finite collection {E;,..., E,}, denoted by %'(V), of mutually exclusive open sets

k
of X, such that f~'(V)= (J E, and f|E;: E;~ V(1 <i<k) is a homeo-
i=1

morphism of E; onto V.
% = the covering |J (V) of X.
vey

&=the Lebesgue number of #".

u=the mesh of %.

v=the Lebesgue number of #.

4=a positive number such that if 4 is a subset of X with diameter
<4, then fl4: A - f(A4) is a homeomorphism,

Let B = {by,...,b;} be a chain in Y such that {b,, b,,,} is contained in
an element ¥, of #". If a chain a = {a,,..., 4} in X satisfies the condition that
f(a) = b, and {a;, a;,.,} is contained in an element of % (¥), then we say that
o covers B, or that « is a lifting of f. A homeomorphism g of X onto itself is
said };o B; an automor[{hi‘sm of X with respect to f-provided that fog =f1.
e ha?;e (;.i?e;izd(gfzi?ftlng similar to that in the theory of covering spaces,

(2.1) Let B be an &-chain in Y, with initial point ¥, and let x be a poi i
X with f(x) = . If 4 < 3/2, then ists a unique chain i o o
o coueriig g .u / n there exists a unique chain' in X with initial

(2.2) Let B, B' be chains in Y from y to V', such that B~ ~0 (g i
Let x be a point of X with f(x) =y, and let «, a' be liftings {)jﬂ B, B M(J)it(li)il;’iltilﬁ
point x, respectively. If u< /2, then o, d have the same t,erminal point
Whence a lifting of a loop e-homotopic to zero is also a loop. .

Obviously

(23) If B,y are n-chains in Y with y < B, then Byt =~ 0 ().
3. Proof of Theorem 1. We first prove that if 4, be X with fla) =f(b),

then there exists an automorphism i " ’
g of X with respect to f such that
=b. Next we show that if g # b, then g has no fixed point. -
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Let X be the limit of an, inverse sequence, with bonding maps onto, of
simply connected Peano continua X;. Let m; be the ith projection of X onto
X,, and d; a metric on X; bounded by number 1. Then a metric 4’ on X is
given by

) &) = 3 27 (9, %)

We may assume that

(2) u<ij2

Let 7o, be a positive number such that

(3) If A is a subset of X with diam(A4) <7, then diam(f(4)) < &.

By (1) there exist a positive integer n and y >0 such that )

(4) If K is a subset of X, with diam(K) <7, then diam (r;; ! (K)) < 1o-

Choose 6 > 0 such that

(5) If z, Ze X, and d,(z, 2) < §, then z, z’ can be joined by an arc in X,
with diameter < 7y.

Moreover choose ©> 0 such that

(6) T < min {zo, 6/2"}
and ‘

() If « is a 7-chain in X, then every lifting of f(a) is a 6/2"-chain.

(a) The definition of g: X — X: Let x be a point of X and join a to x
by a t-chain «. Then by (6) and (3), f(x) is an g-chain in Y. Since & is the
Lebesgue number of ¥, by (2) and (2.1) we can lift f(a) to 2 unique chain o
in X with initial point b. The terminal point of &' is our desired g(x).
Obviously fog(x) = f(x). .

(b) The map g is well defined, ie, g(x) is a unique point indepen-
dent of t-chains from a to x. For let o= {a=x, Xs...% = x}, o
={a = Xpp > Xpme 112+ X141 X1 =x} be 1-chains in X from a to x. Put
2z, = 1, (%) (1 <k < l+m). Then (e’ ™Y) = {24, 21 s Zem) IS @ O-loOp
in X, based at m,(a) (cf. (1), (6)). Let o be an arc in X,, from 2, t0 zg4y,
whose diameter <y (cf. (5)), and let y: I =[0, 1]— X, be a parametrization of

the closed curve oy o, U... Uppm-1-
Since X, is simply connected, there exists a map F: [ xI - X, such that

F(s, 0 =y(s),
F(s, 1) = F(,t)= F(1,9)= n,(a)
Then we can find numbers 0=15; <5, <...<§, = 1ad 0=t; <t; <...
<t, =1 such that ‘
(8) diam {z;;, 2;,j4+ 1 Zit 1,1 Zi+ L1} <
where z;; = F(s;, t}), and such that {s;} has a subsequence, 0= sy < ...
< Sy < - < Sigem = 1, With z;,, =z Choose a point x;; of =, '(z;) so’

(0<s,t<1).


GUEST


4 A. Tominaga

that x, =x;;, =x;=a (1<i<p, 1 <j< g and Xy, =% (1 <k <I+m)
Then by (8) and (4) {x;} is a 7o-net in X, and by (3) {f(x;)} is an e-net
in Y. Therefore if B = {f(a) =r(x11),f(X21),-sf (Xip1) =f(x)] and p
= (f(@) =£ (%05 f (%= 1,1)s oS (Xign,1) =S (X)), then BB ™1 =0 (¢). Hence by
(2) and (2.2) the liftings of B, #’ with initial point b have the same terminal
point. :

On the other hand, since o, «' are T-chains, by (6) and (3) f(a), f(«) are
e-chains with f(a) = B, f(&') = B. Since B, f’ are e-chains, by (2.3) we have
f@B ™ ~0 (¢), f(@)p~*=0(c). Thus the liftings of f(«) and f(«') with
initial point b have the same terminal point, g(x) (cf. (2.2)).

(c) The map g is a local homeomorphism. For let U be any neigh-
borhood of g(x). Then there exist Ve ¥, {E,, E,} < € (V) such that f(x)eV,
xeE, and g(x)eE,. Let V' be an open set such that f(x)eV' =¥,
diamV’' <¢, diam(E}))<t and E,<U, where E;=(f|E;)"'(V),
Ej = (f|E;)~ (V). If u is any point of E7 and « is a t-chain from a to x, then
a U {u} is a t-chain from a to u and f(o) U {f(4)} is an ¢-chain in Y. Lifting
the ¢-chain to a chain with initial point b, we see that g(u)eE}, = U and
hence g(E}) = U. Thus g is continuous. Clearly g(E}) = E}, and g is a local
homeomorphism. '

(d) The map ¢ is a homeomorphism. For suppose that there exist
distinct points x, x" with g(x) = g(x'). Let «, «’ be t-chains from a to x, x'
respectively, and let B, f' be the liftings of f(a), (') with initial point b.
Then B, f' are §/2"-chains from b to g(x) (cf. (7)). As in Paragraph (b), we see
that a, @' have the same terminal poinp, which contradicts to x s x'.
Therefore g is one-to-one. Obviously g is onto.

(e) If a # b, then g has no fixed point. For otherwise there would exist
xeX with g(x) = x. Let « be a 7-chain from a to x and let o’ be the chain
with initial point b, covering f(«). Then o™, «'"* cover f(x) ! and have the
common initial point x. By (2) and (2.1), we have a = b, contrary to a # b.

(f) Suppose that there exist distinct points a, be X with f(a) = f(b). Then
by (a) ~ (e) there exists an automorphism g of X without fixed point, which
contradicts to our assumption that X has the fixed point property for
homeomorphisms. Thus f is a homeomorphism.

4. Proof of Theorem 2. Let a, b be points of X with f(a) = f(b). We first
sho;v the existence of an automorphism g of X with respect to f such that
g(a)=b.

We may assume that u < 4/2. Let 7, be a positive number such that if 4
is a subset of X with diam(4) < 7, then diam(f(4)) < &. Then we can find a
positive integer n such that X, is contained in a ,/4-neighborhood of X.
Choose é > 0 such that if z, z’e X, and d(z, z') < 4, then z, z' can be joined
by an arc in X, with diameter < 7,/2. There exists t>0 such that

e _ ®
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7 < min {74, 6} and such that if « is a t-chain in X, then each lifting of f(«) is
a o-chain. _ '

(a) The definition of g: X —» X is the same as (a) in the preceding
section. '

(b) The map g is well defined. For let & = {a = x1, X53,..., % =X}, o
= {8 = X4y Xjm—1,+-+» X = X} be 7-chains in X, and let o, be an arc in X,,
from x, to x;.,, whose diameter < 7o/2. If y: I — X, is a parametrization of
the loop a; Uay U ... Ut m_y, then there exists a map F: I xI— X, such
that

Fs, ) =y (),

Fis, ) =F(0,)=F(l,f)=a OIS

We can find numbers 0 =s; <s,...<s,=1 and O0=1t; <t <...<tf, =1
such that i

L Ny
diam {z;, Z; j4 15 Ziv 1,0 Ziv 1) < To/2,

where z;; = F(s;, t;), and such that there exists a subsequence of {5}, 0 =54,
<o < Sy < oo < Sigam = 1, With 2y = x,. Choose a point x;; of X so
that d(x;, z;) <To/4, Xg=Xy=Xy=a (1<i<p,1<j<q) and X1
= x,(1 < k < I+m). Then {x,;}.is a to-net in X and {f(x;)} is an e-net in ¥.
Therefore if we put B = {f(a) =/ (x11),f(*21)s--.f (iqn,1) =F(x)} and B’
= {f(@) =1 (1) [ (Xp-1,1)s--sf (xicn,1) = (%)}, then BB ™' =0 (¢). Hence the
liftings of B, B with initial point b have the same terminal point (cf. (2.2)). On
the other hand, since f(x) = §,f(@) < B, by (23) and (2.2) the liftings of
f(@), f(«) with initial point b have the same terminal point, g(x).

By the same procedure as (c) ~ (f) in Section 3, we can complete the
proof.

Addendum. The following Propositions 1 and 2 correspond to Theorems
1 and 2, respectively.

Prorosition 1. Let X, Y be continua, and [ X — Y a local homeomor-
phism of X onto Y. If Y is the limit of an inverse sequence, with bonding maps
onto, of simply connected Peano continua, then f is a homeomorphism.

ProrosiTioN 2. Let X, Y be continua, and f: X — Y a local homeomor-
phism of X onto Y. If Y is the intersection of @ monotone decreasing sequence
of simply connected Peano continua, then f is a homeomorphism.

I am much indebted to Professor Y. Kodama who indicated to me that
Propositions 1 and 2 above are consequences of the Fox’s overlay theorem
[1, (5.2), p. 60]. Also after submitting the manuscript, I have known Lau’s
theorem (Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), p. 382) deeply
related to this paper.
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A sum theorem
- for A-weakly infinite-dimensional spaces

by

L. Polkowski (Warszawa)

Abstract. In this note we shall establish a hereditarily closure-preserving sum theorem for
A-weakly infinite-dimensional spaces. The applications of this theorem to the closed mappings
defined on A-weakly infinite-dimensional spaces are given in [5].

Our terminology and notation follow [2]. Let us recall that a normal
space X is said to be A-weakly infinite-dimensional (abbrev. A-w.i.d.) if for
every sequence (4, By), (4,3, By),... of pairs of disjoint closed subsets of X
there exists a sequence Ly, L,,....of closed subsets of X such that, for each
positive integer i, the set L; is a partition between A; and B; in X (meaning
that there exist digjoint open subsets U;, ¥; of X such that 4, = U;, B, < V]

and X\L; =U;uV¥), and () L, =@. It is manifest that every closed sub-
i=1

space of an 4-w.i.d. space is A-w.id.

We begin with the following obvious lemma (cf. the proof of Lemma
1.2.9 in [2]). ;

Lemma 1. Let F be a closed subspace of a hereditarily normal space X
and A, B a pair of disjoint closed subsets of X. For every partition L between
ANF and BAF in F with F\L = G U'H, where disjoint open subsets G, H of
F are such that AnF < G and BN F < H, there exists a partition ' between
A and B in X with X\ L = M U N, where disjoint open subsets M, N of X ar
such that Ac M, BN, MnF=G and NnF =H. :

The next lemma deals with countable families of partitions.

Lemma 2. Let F be a closed subspace of a hereditarily normal A-w.id.
space X and (A;, B,), (A,, B),... a sequence of pairs of disjoint closed subsets
of X. For every sequence L, L,,..., where L; is a partition between A; " F
and B, F in F for i =1, 2,..., such that (\ L; = O, there exists a sequence

i=1
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