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A new construction of a Kurepa tree with
no Aronszajn subtree

by ‘
Keith J. Devlin(!) (Lancaster, UX.))

Abstract. In 1969, we asked whether V = L implies the existence of a Kurepa tree having no
Aronszajn subtrees. The affirmative answer to this question was supplied by Ronald Jensen in 1971,
whose proof appeared in [2]. Jensen’s proof was somewhat involved, and required some delicate
argumentation, We present here a much simpler proof which has the same degree of complexity as
the construction of any Kurepa tree in L.

Preliminaries. For terminology and notation covering trees we refer to
either [1] or [2]. An in these references, for A < w,, by a A-tree we mean a
normal tree of height A having countable levels. An Aronszajn tree is an w, -tree
with no uncountable branch, a Kurepa tree is an w;-tree with at least N,
uncountable branches. Aronszajn trees can be constructed in ZFC. Kurepa trees
can be constructed assuming V = L (Solovay) or & — which is true if V=1L
(Jensen), ‘

For background on constructibility we refer to [1]. We shall not require
any fine structure theory.

The question as to whether V = L implies the existence of a Kurepa tree
with no Aromszajn subtrees was raised by me in 1969, and answered
affirmatively by Jensen in 1971. Jensen's (rather involved) proof appeared in [2],
together with an application of such a tree to solve a problem in partition
calculus. At the time, it seemed as though, my application to combinatorics not
withstanding, such trees were merely a curiosity. (Indeed, my original question
was little more than a “coffee room™ variety.) That this was not the case was
demonstrated by Juhdsz and Weiss ([3]), who proved that the existence or such a
tree is equivalent to the existence of an w,-metrizable, w;-compact space of
cardinality at least o,, resolving an old question of Sikorski.

The new consiruction of such a tree (from V = L) does not involve any new
methods, rather a refinement of the known tricks of the trade. That a rather
simple modification to the standard construction of a Kurepa tree in L would
give the required result occurred to me after a discussion with Bill Fleissner on
some work of Ken Kunen and himself on the normal Moore space problem.

(') The result in this liaper was obtained during the summer of 1980 whilst I was visiting the
University-of Toronto (Erindale College). My stay in Toronto was supported in part by a joint
Nuffield Foundation/NSERC award.
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The new construction.

THEOREM (Jensen). Assume V = L. Then there is a Kurepa tree with no
Aronszajn subtree.

Proof (Devlin). For each o < w,, let
S, ={vew,| L= ZF~ and o = b},

Define a function f: w; — w; by setting

f(a)={

sup(S,), if S, is non-empty and has no largest member;
the least y such that aeL, <L, , otherwise.

Wy
We construct an w,-tree T by recursion on the levels, using countable ordinals
as elements. ‘For each o <, T[a will be an a-tree inside Ly,.

To commence, set T = {0}, and if T [(«+1) is defined, obtain T,,, by
using the first @ unused ordinals to give every member of T, exactly two
successors on T, in some canonical fashion. Clearly, if T [(x+1) is an (x -+ 1)-
tree, then Tf(x+2) will be an (a+2)-tree, and if T[(a+1)eLsy4y), then
To+2) €Ly

Suppose now that lim(x) and T [ is defined, an a-tree in Ly,. To obtain
T;, use the first w unused ordinals to give one-point extensions to each a-branch
of T fa which lies in Lyq,. Now, in Ly y), o is countable, so this extension
procedure can be done canonically within Ly, ;,, thereby ensuring that
T Moa+1)€Lp+y,. The question is: is T [(x+1) an (a+ 1)-tree? What we must
show is that for every xeTlo there is at least one a-branch of T [a which
contains x and lies in L.

If f (o) is the least y such that ae L, < L, , there is no problem, since o is

countable in Ly, in this case, and the construction of a-branches within Ly, is
straightforward. So suppose f (@) = sup(S,). Then a = i@ and L, thinks
that T [a is an wy-tree. (Since we use o intervals of ordinals for the levels
of T Ly, recognises that each level of T la is countable) For some
A€S,, TlaeL,.(In fact it is easy to see that T '« ELmin(Sa)’ but we do not need
this fact) Given xeT o, we construct, within L;, an a-branch, b, of T la
containing x. Let us use b, (y) to denote the member of b, in T,. So the definition
of b, (y) for y < yo = ht (x) is determined by the requirement xeb,. For y > Yo, il
b, (y) is defined, let b, (y+1) be the least (as an ordinal) extension of b,(y) on
T,+1. And if y > y,is a limit ordinal and b,() is defined for all § < , let b, (y) be
the unique extension of all b,(5), § <y, on T,. By induction we see that
<bx(8)] 6 <ydeLyy, so such a b.(y) exists. This defines b, within L;, as
required.

We now know that T= |J T« is well-defined and is an Ny -tree. We

. x<oy .
prove thgt T is Kurepa. This is practically identical to Solovay’s proof.
Notice first that the function f is definable within L,, (by the definition
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"given). Hence T is definable within L,,, (again by the given definition). Suppose

T were not Kurepa. Then T will have exactly N, many o, -branches, which can
be enumerated as (B,| v < ®;). (A simple variant of our construction of the
limit branches b, given above shows that T certainly has N, many w,-branches.)
Let this enumeration be the <,-least such. Then it too is definable in L, .

By recursion, define an increasing chain

N0<N1<'<Nv'<-<Lw2 (V<(D1)

of elementary submodels of Ly, thus:

Ny = the smallest N <L, ;
N,y = the smallest N <L, such @"at N,U{N,nw;} S N;

N,= U N,, if lim().
v<i

For each v < w;, N, n o, is transitive, so let &, = N, ", . Then <{eo,| v < @)
is strictly increasing, continuous, and cofinal in w,. Let m,: N, = Ly,. Then
Ty rav =id f“v: 7'5‘,((01) = Oy, TEV(T) =T f‘x, nv(<By| y < (1)1>) = <B)J NT r%'
y <a,D, for each v < w,.

We try to define an o, -branch, b, of T by recursion. Let b(0) = 0. The idea
now is to define b(a,), v < w,, by recursion on v. Noting that T; = {1, 2}, by
definition, we let (if this is possible) b (zo) be the extension on T, of the < L-least
%g-branch of T [, containing 1. Then in general, if b(a,) is defined, let x, be that
element of T, not in B, and let b(a, ) be the extensionon T, _ . of the < -
least «, . (-branch of T |, containing x, (if possible). Finally, if lim(4) and we
have defined b(a,), v < A, we let b(;) be the unique point of T, extending all
b(a,), v < A (again, if possible).

Now, providing the above definition goes through, b will be an w,-branch
of T distinct from each B,, v < oy, (since x, eb— B, for a]l v < w,), which will
give us our desired contradiction. We prove by induction on v that b(a,) is well-
defined for all v < wy.

Well, b(0) is well-defined, and since the < -least branch of T o, containing
1 is clearly an element of Ly, b(ao) is well-defined. Moreover, if b(x,) is
defined, the <, -least branch of T [, , containing x, is an element of Ly .,
50 b(a, 4 1} is well-defined. (Note that whatever x, is, it is one of jus two ordinals,
both available within Ly, , ) S0 there remains the case of b (o), where lim (1),
and b («,) is well-defined for all v < 1. We must show that the o;-branch of T [a;
determined by {b(a,)] v < A} is an element of Ly, - Well, this branch is clearly
definable from (T la; <o, v <), (B,nTloy| v<A>in ZF~+V =L

(The above definition made no use of the power set axiom). So it suffices to
show that each of these sets is a member of Ly . (In the case where f (a;)
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= sup(S,,), we can then drop down to some L, which contains these sets and is
amodel of ZF ™ to define the required branch within L,; in the other case Ly,

is already a model of ZF~+V =1)

Now, o; = w1 (since o; = m,(cw,)) and Ly ZF™. Thus if f(a,)
=sup(S, ), we have B(A)€S,,, so B(4) <f(a;). And in the other case where
ocleLf(ml)~<Lm1, we have

a,>

Ly F “a; is countable”,
so again f(4) <f(a,).

But Tla, =mn(TVeLyy and <BynTlay v <o) =m,({B,] v<w,))
€Ly, s0 it remains only to show that {a,| v<i) €Ly, But it is
easily seen that {a,| v < 1) is deﬁr@ble from Lg;, in exactly the same way that
{a,] v<;> was defined from L,, (see [1] for details), so in fact
loy| v < A eLf(,)') also, and we are done.

We turn now to the proof that T has no Aronszajn subtree. Suppose, on the
contrary, that there were such a subtree, and let 4 be one such. Let y be the least
ordinal such that T, A€ L,, and for each n < o let % (n) be the (n+ 1)-th ordinal
greater than y such that L, = ZF~. Define a chain

NP <NP <. .<NP<... <L,

as we defined N, < L,, ) earlier, except that we demand that T, Ae N{", and let
af = N~ w,. Set

v<wy)

Co={w] af =v<ay},

a club subset of w, . Let o be the least element of () C,.Forall n < w, oy =0t
and o = m,(w,), where m,: NP = L, . Moreover o = id [ a, ,(T) = T | o,
7,(A) = AN T, and (hence) m,(y) =7 for some 7 independent of n.

For each n, ;

L,k=“A has no w,-branches”
so

LywkE“ANT o has no a-branches”.

Thus if we can show that f (&) = sup v(n) we shall be done, for it will then follow
<

that no a-branct.l of T|a lying within Ly is contained in A4, so that no
element of T, will determine an a-branch through 4, whence ANT, = @O
a contradiction. ! ’

Certainly, v(n)eS, for all n < w. So we must show that if u = sup v(n,
then u¢S,. Let v =sup v(n). For each n < w, v(n) is the (n-+1)-th ordinz:fgreater

n<a
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than 7 such that L, = ZF ™ (this is easily seen), so the sequence {v(n)| n < w)
is definable from 7 over L,. Thus L, not = ZF ", and we know that v¢S,. Now
suppose i > v.If L, not = ZF~, then weknow that ¢S, . Suppose L, = ZF ™. If
o is countable in L,, then again u¢8S,. Otherwise a = w,. Now it is easily seen
that, working inside L, we can construct the sequence (C, na| n < w) from 7
in exactly the same way that the sequence {C,| n < w) was constructed from 7.
(In particular, we know that {v(n)| n <w)>eL,.) Inside L,, each set C, na is
club in a, so [} (C,na)is club in a. But o is the least member of [} C,, so
H<w n<w

N (C,nd) = O, so this is absurd. The proof is complete, since we have now

n<w

shown that o s# wi‘“.
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