Applications of Luzinian separation principles
(non-separable case)

by

Z. Frolik and P. Holicky (Prague)

Abstract, Using the results of [Fs] and [F-H ] we prove “the first separation principle”,
and use it to add some new properties of analytic and Luzin spaces. Further applications of the first,
and the second Luzin separation principle respectively, extend the sooner results of Frolik {Fsl,
Luzin [L] and Purves [Pu] concerning images of measurable sets under measurable mappings.

This is a continuation of [F;], and [F-H, ,]. Here we introduce Baire sets,
prove “the first separation principle” (1.3), and develop the properties of analytic
and Luzin spaces, for which the first principle and Baire sets are relevant. The Baire
sets in a space are usually defined as the smallest o-algebra containing the zero-
sets (equivalently: making measurable all uniformly continuous functions). Here
the elements of this o-algebra are called w-Baire sets, and in general, x-Buire
sets are elements of the smallest o-algebra containing the zero-sets, which is, in
addition, closed under taking the unions of discrete families of cardinal <x. Finally,
a Baire set is a %-Baire set for some . This terminology makes the wording of the
first principle (§ 1), and also of some other theorems, almost identical with the
corresponding results in separable theory. It may be more appropriate to speak about
»-extended Baire sets or x-hyper-Baire sets (see Remarks 1.1), leaving the usual
meaning to the term Baire sets.

In § 2 the Luzin spaces are characterized externally without using the d-Suslin
operation.

§3 is devoted to point-analytic and point-Luzin spaces; note that point-
w-analytic spaces are called Suslin spaces by N. Bourbaki, and point-o-Luzin spaces
are called Luzin spaces by Bourbaki. These spaces are hereditarily paracompact,
and Baire sets coincide with Borel sets (defined in 1.1). These spaces are characterized
among all analytic or Luzin spaces by existence of a continuous (not necessarily
uniformly continuous!) bijection onto a metric space.

Tn § 4 measurable maps of analytic spaces into point-Luzin spaces are studied.
We know that the image of an analytic space under a usco-compact o-dd-preserving
correspondence is analytic. In § 4 we are trying to weaken “usco” to Suslin measur-
ability.
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In § 5 we prove an adaptation of two theorems of Luzin and Purves to the
non-separable case (see Theorem 5.3).

§ 1. First separation principle. The main result is Theorem 1.3 below which
generalizes the famous Luzin 1st Separation Principle, and also the version for
w-analytic spaces [F,;] and metrizable analytic spaces [Ha,] to analytic spaces. Re-~
call that by a space we mean a Uniform space, and if we speak about topological
spaces we have in mind the fine uniformity generated by all continuous pseudometrics.

1.1. Baire sets. If X is a space, and if x is an infinite cardinal, we denote by
Ba,(X) the smallest collection of sets . which contains Z(X) (= the collection of
all zero-sets in X; i.e. the sets of the form Z(f) = {x] fx = 0} where fis a uniformly
continuous function), and which satisfies the following two conditions (i) and (ii):

(i) A is a o-algebra;

(i) .# is closed under taking the unions of discrete families with the index
set of cardinal <.

The elements of Ba,(X) are called »- Baire sets in X. The Baire sets in X are the
elements of

Ba(X) = { {Ba(X)| «}.

Similarly we obtain the definition of x-Borel sets (Bo,(X)) and Borel sets
(Bo(X)); we just replace Z(X) by the collection of all closed sets (denoted by
F(X)).

Since every zero-set is closed, we have

Ba,(X)<Bo,(X),

and the two collections coincide if Z(X) = F(X), e.g. if X is metrizable.

Remarks. (1) In the case when X is metrizable the Borel sets were introduced
by Hansell in his theses under the name hyper-Borel sets; in his subsequent papers
R. Hansell is using the term extended Borel sets. The first author of this note intro-
duced and studied Baire sets in uniform spaces under the name Hyper-Baire sets,
using the term Baire sets for what we call here w-Baire sets (i.e. following the usual
way from topological spaces).

(2) The x%-Baire sets in a topological space are defined to be the x-Baire sets
w.r.t. the fine uniformity of X, i.e. w.r:t. the uniformity defined by all continuous
pseudometrics on X. Similarly we define Ba(X), Bo,(X) and Bo(X) if X is a topo-
logical space.

It is very important for our purposes, that Ba(X) can be defined without the

assumption of being closed under taking of complements. In fact, the fol]owmg
result is true.

PROPOSITION. Let X be a space. Then Ba(X) is the smallest collection 4 of
sets such that M= Z(X), condition (ii) is fulfilled, and also the following condition is
Sulfilled:

(i) M, = Ms= M.
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Of course, .#, stands for the collection of the countable unions of elements of .#,
and .#; stands for the collection of the countable intersections of elements of .4

The proof is quite easy. To make it more easier we formulate a more general
result (have in mind that the complements of the zero-sets are in Z,(X)).

LEMMA. Assume that /" >Z(X) is a collection of subsets of X. Let M be the
smallest collection of subsets of X such that # >N, and M satisfies (ii) and (iii).
If the complement of each set in A" is in M, then M Is closed under the taking of com-
plements, and hence 4 satisfies (i).

Proof. Consider

C=1{Y] Xed,X\YeH}.
By our assumption %= 4. It is enough to show that ¥ satisfies (i) and (iii) (with .#
replaced by %).

The statement (iii) is qmte easy. Let {C,} be a discrete collection of % sets
from #. There is a uniformly continuous pseudometric « on X such that {C,} is
discrete in <X, oy, and thus there are zero sets Z, in {X, &) with C,=Z, and {Z,}
discrete in <X, «). The sets (X\C,) n Z, = Z,\C, are elements of ¥ =.#, and the
cozero set X\ {Z,} is also in ¥ =.#. Thus both {J {C,} and its complement belong
to . For a partial result see [Fs].

The collection S(X)(=F(X)) of all Suslin sets in X is closed under the discrete
unions, countable intersections and countable unions, and hence we get from the
proposition:

COROLLARY. S(X)>Ba(X), and hence

bi-S(X)>Ba(X).

Of course, bi-S(X) stands for the collection of all bi-Suslin sets, i.e. the sets M
such that both M and X\M are Suslin.

Worning. The collection S(Z(X)) of all Suslin sets derived from the zero
sets does not need to contain Ba(X). The point is that the union of a discrete family
of zero sets does not need to be a zero set. The usual example is the space x* where
both % and 1 are uncountable cardinals; the argument is that the zero sets, and hence
the Suslin sets derived from the zero sets depend on a countable number of coordi-
pates, while the union of a discrete family of zero sets does not need to depend
on a countable number of coordinates. On the other hand, if in a space X the union
of a discrete family of zero sets is a zero set (e.g., if X is topologically fine, or more
generally, locally fine), then S(X) may be replaced by S(Z(X )) in the corollary.

In many considerations the following simple remark is essential.

PROPOSITION. Let Y be a subspace of X. Then:

Ba (Y) = {Bn Y| BeBa(X)},
Bo,(Y) = {Bn Y| BeBoX)}.
Moreover,
(a) if {Y,} is a discrete family of w-Baire sets in'Y, then there exists a discrete
family {X,} of x-Baire sets in X such that ¥, = Y n X, for each a,
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() if {¥,} is a o-dd family of Baire sets in Y, then there exists a o-dd Jamily
{X.} of Baire sets in X such that ¥, = ¥ 0 X, for each a; if { ¥,} is disjoint then {xX}
may be chosen disjoint. k

The proof may be left to the reader; we just remark that it is essential for the
proof that a discrete family on ¥ is discrete in X, and Z(Y) = {Z n Y| Ze Z(X)}.
It should be noted that a similar result for topological spaces fails; indeed if a topo-
logical space ¥'is a subspace of a topological space X then the fine uniformity of ¥
may be quite finer than the relativization of the fine uniformity of X to ¥, and it
may be so bad that Z(Y) is much smaller than {B n Y| B e Bo(X)}, discrete fam-
ilies in X are finite while ¥ contains arbitrarily large discrete families. For example
take for ¥ a discrete space, and the one-point compactification of Y for X.

1.2. Say, that sets 4 and S are separated by a set B if
AcBe XN\S.

SEPARATION LEMMA. Let {X,| a € A} be a o-dd family of subsets of a space X,
|4l Let {Y,} be a countable sequence of subsets of X, and let every pair X,, Y,
be separated by a x-Baire set B,,. Then, the unions

U{X aedl and U {¥,] new}
are separated by a x-Baire set.

Proof. Let {¥X,] aed,kew} be a o-discrete decomposition of {X,} and
{Cal} be a discrete family of zero-sets such that Cpo X, for each k. Put
B = n U U(Banmcak)'
newkew agd
The set B is »-Baire, and separates the two sets.
1.3. 1ST SEPARATION PRINCIPLE. Let X be a space, A be « »-analytic subset

of X, and S a Suslin subset of X with A S = @. Then, A4 and S are separated by
a %-Baire set B.

Proof. Suppose that 4 and S are not separated by a x-Baire set, and that
Ji % > 4 is an analytic parametrization of 4 [F-H,, 3.2]. Let
8= U{N {Sopssl ne o}l oeow®)
be a Suslin stratification of S, i.e.
N {ga]nﬂl new} = {Sa;u+1| new}
for each ¢ e w® and
S uin = U {Sio,...,i“,kl ke w}

for each finite sequence {j, ..., i,} e "t According to Separation Lemma we
. find inductively d = (dy, d;, ..)ex® and a ¢ in ©® such that:

(*) the sets f [x°(djn+1)] and Son+y are not separated for new. (Here

% dln+1) = {eex® eln+1= dn+1}.) For n = n, large enough the compact set

N{SI=dn+1)]| new} = X,
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and the closed set S,,+; are disjoint because Sepmt1 = N Sopnss- Since [ is
upper semi-continuous there is an integer n, >n, such that f[x°(d|n,+1)] is con-
tained in the open set X\S,‘,,DH, and thus it is contained in X\S,l,,1+1 because the
stratification is “monotone”. This contradicts ().

1.4. Here we are going to state several simple consequences of the 1st Separation
Principle.

COROLLARY L. (a) If X is analytic, and if A and S are two disjoint Suslin sets in X,
then A and S are separated by a Baire set. In particular,

bi-S(X) = Ba(X)
if X is analytic.

(b) If A and S are 1wo disjoint analytic subspaces of X, then 4 and S are separated
by a Baire set in X, in particular if ¥ and X\Y are analytic then Y is a Baire set
(however then X is analytic).

Proof. One only needs to know that a Suslin subset of an analytic space is
analytic in the subspace uniformity, and if the relativization of the uniformity of X
to a subset is analytic, then the subset is Suslin in X [F-H,, § 3, 4].

A mapping F: X — Y is called (of « B)-measurable if f~*[B] € o for each B
in 4.

COROLLARY 2. Assume that J cexp Y is closed under taking the operation of
complementation (i.e. if M e then YNMe ). If [: X > Y is (S(X) « M)
measurable, and if X is analytic then f is (Ba(X) « .#)-measurable.

Proof. Apply Corollary 1.

COROLLARY 3. Let {X,| ae A} be a ¢-dd disjoint family of x-analytic subsets
of X. Then there exists a disjoint family {B,,| a€ A, ne w} of u-Baire sets in X such
that {B,,| ae A} is discrete for each n, and X,=|J {B,| new} for each a in A.

Proof. Put Y= ) {X,| aed}. To apply Proposition 1.1(a) we need to check
that each X, is a x-Baire set in Y, and this follows from the 1st Principle because
X, is analytic in ¥, and Y\JX, is Suslin in ¥ as a o-dd union of Suslin sets.

Remark. Note that ¥ in Corollary 3 does not need to be analytic; of course ¥
is analytic in the fine uniformity.

COROLLARY 4. Let {&Z,} be a Luzin sequence of covers. Then the elements of
st =) {a,} are Baire sets.

Proof. The elements of & are Luzin by [F~H,, 4.3(b)]. Corollary 3 applies.
One can also use the 1st principle directly on a given 4 € &7 and the complement
of A.

§ 2. Luzin spaces. Recall [F-H,, 3.1] that by a »-Luzin space we mean a space X
for which there exist a complete metric space M of weight %> w, and a disjoint usco-
compact ¢-dd-preserving correspondence from M onto X. Here we use the Ist
separation principle to prove a nice external behavior of Luzin subspaces. The
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first result implies that Luzin subspaces of any space X are Borel subsets of X. The
second result characterizes Luzin subspaces of a Luzin space in terms of closed and
Baire sets. The two results generalize to Luzin spaces the results of the first author
for w-Luzin spaces, called Borelian by him, and descriptive Borel by C. A. Rogers
[Ro]. Certainly the proof of the first result follows the classical pattern used for pro-
ving that a 1-1 continuous image of a Borel set in a complete separable metric space
is Borel in any metric space.

2.1. TuEOREM. Let L be a x-Luzin subspace of X. Then L is a countable inter-
section of countable disjoint unions of sets of the form F o\ B, where F is closed and B is
%-Baire in X. In particular, L is a %-Borel set in X.

It should be noted that the conclusion can be written in symbols as follows:

Le([F(X)] 0 [Bay(X)])aw
where M ., means the collection of all countable disjoint unions of sets in JM, and
MIn[N]={M~N| Med,NeN}. !

Proof. It seems the most convenient way is to use the Luzin sequence of covers
of L. We shall work directly with the defining parametrization from a Baire space.
Let f be a ¢-dd-preserving disjoint usco-compact correspondence from % onto L.
For each « in »" let L, be the image under f of the Baire interval

{d| din = a}.

Obviously the sets L, are Luzin, and of course each {L,| ae %"} is a disjoint
o-dd family. By 1.4(c) we can find »-Baire sets B in X such that

{BY aex" kew} is disjoint for each 7,

{Bf| aew) is discrete for each n and k,

and
LycU{BY kew} for each a.
We may, and shall, assume that
(Bl kew,aex} refines {BY kew,bex"}

for n=1,2, .., and this means, in particular, that if
BEnBy %@, aex
Now it is to check that

L=N{U{LnBin Bl aex"* kew}| nen}.

Bt 1
s

bex then a=bn.

Indeed, clearly the inclusion < holds, and to check the converse inclusion, if x
belongs to the right-hand side, then
xeN{L, BT A

an

B new}
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and by our choice of BY, necessarily the family {a,} defines a d in x%® such that

a,=dn+1 for each n.

Hence
X € n {Edgn-%ll ne U)} Zf[d]CL .

It remains to check that for each new and each k e w the set

UL, ~ B nB"[ aesx" 1}

is of the form F n B with F a closed set and B a Baire set. The family is discrete, and
hence we can take a discrete family {Z,} of zero sets such that L, n B‘=Z,. Put

B=U{BinZ|a},
F= U{LaﬁBﬁl a}'
2.2. THEOREM. The collection Luz(X) of Luzin subsets of a Luzin space X coincides

with the sets of the form described in Theorem 2.1.

Proof. By Theorem 2.1 each Luzin subspace can be written in that way, and to
prove the converse, it is enough to verify the following:

LEMMA (a). Every Baire set in a Luzin space is Luzin.

Lemma (a) follows immediately from the following description of Baire sets.

Lemma (b). For any space X, Ba,(X) is the smallest collection M of sets such
that A2Z(X), Ms= M, = A, and A is closed under the operation of taking the
unions of discrete families of cardinal <x.

The proof follows from the following useful observation. Write .#,, for the
collection consisting of the unions of disjoint sequences in ..

LemMa (). Let 4 be a collection of subsets of a set X such that M s
Then €5 = €, = € where

=, = M

={Y| Yed,X\Yed}. '
If, in addition, X is a space, € oZ(X), then if 4 is closed under taking discrete unions
of x-elements, then so is 6.
Proof of Lemma (c). (1) First check that if Yy, Y, €% then Y,\Y,e€%.
One should show that ¥;\Y, and X\(Y{\Y,) belong to .#, and this follows from:
YINYy = Y 0 (XNT)),  IN(YANT,) = (I\Y) U (Y 0 1)

(the union is disjoint).
(2) Show that % is closed under finite unions, and then under countable unions.
Then, of course, % is closed under countable intersections because it is complemented.
(3) Theinvariance under discrete unions is shown like in the proof of Lemma 1.1.
Proof of Lemma (b): Let .# be thp collection from Lemma (b). Clearly
# =Ba,(X), Let ¢ be the collection from Lemma (c). If we shaw that each cozero
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set is in %, then Ba,(X)c %, hence 4 = Ba,(X). To do that check that each cozero
set is in
(Z(X))dddrm :

It should be noted that this fact has been observed by J. Jayne. It is enough to check
it for the open unit interval J on the real line. The interval J is a disjoint union of
one F,, set, and one G; nowhere dense set H = () G,, where G,’s are open. It suffices
to find F,, sets F, such that H< F,< G,. Notice that this follows from the simple case
where G,’s are open subintervals of J.

§ 3. Point-analytic spaces. A space X is called point-%-analytic if there exists
a single-valued x-analytic parametrization of X this is equivalent to saying thas
there exists a ¢-dd-preserving continuous mapping of a complete metric space of
weight- <x onto X. Similarly, X is point-x-Luzin if there exists a single-valued
%-Luzin parametrization of X; this is equivalent to saying that there exists
a ¢-dd-preserving 1-1 continuous mapping of a complete metric space of weight <x
onto X.

It should be noted that point-w-analytic spaces are just the completely regular
“Suslin” spaces in the terminology of N. Bourbaki, and point-w-Luzin spaces are
just the completely regular “Luzin” spaces in the terminology of N. Bourbaki.

If follows easily from the proof of [F-H,, Prop. 3.1] that a space is point-z-
analytic iff it is x-analytic and point-analytic. '

3.1. THEOREM. The following three conditions on an analytic (Luzin) space X are
equivalent:

(@) X is point-analytic (point-Luzin);

(b) there exists a 1-1 o-dd-preserving continuous mapping of X onto a metric
space S;

(c) there exists a 1-1 continuous mapping g of X onto a metric space S.

Obviously (b) = (c).

Proof of (c) = (a). Let f: M — X be an analytic (a Luzin) parametrization
of X. Let T be the graph of f (given the subspace topology from M x X)), and let p be
the restriction to T of the projection M x X — M, and let k be the restriction to T
of the projection M x X — X. Then p: T— M is a perfect mapping, k: T — X
is a continuous mapping, and put f= kep~'. Moreover, k is o-dd-preserving
by [F-H,, L. 2.5 and Th. 3.1(a)]. It is enough to show that T'is metrizable, because
then T'is complete in some metric because it is a Cech complete space as a perfect
pre-image of a Cech complete space [F,], and k: T — X is a point-analytic (point-
Luzin) parametrization of X. The reduced product / of p and g« k is a perfect
mapping (because the former mapping is perfect and the latter mapping is continu-
ous). On the other hand, it is obvious that / is 1-1. Hence / is a homeomorphism
of T into M'x S.

Proof of (a) = (b) follows from

Lemma (b). Let & = {J {2,} be a o-discrete base for the collection of all open
sets in a uniform space X (such a base exists if there exists a continuous map f from
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a metric space M onto X such that flopen(M)] has a o-discrete base). Then there
exists a continwous 1-1 o-dd-preserving mapping g onto a metric space S.

Proof. Let g: X — S, be a uniformly continuous mapping into a metric
space S; such that each g,[9,] is discrete. We construct continuous gt X—> S,
such that S, is a separable metric space, and

g=g1%g: X8 x5,

is I-1. .
For each n,mew let g}": X — R be a continuous function such that (put
Dll = U gll):
g = =0 ifxeD,,
=1 ifxeDe@,, and D is distant to D, .
Put

g2 = [[-{g5"}: X R""“(= 53).
‘We shall prove that g is 1-1.

Assume that g;x = g,p, and x # y. We shall find n,me® such that
g2"x # g;"y. Choose disjoint open sets U and ¥ such that x € U, y € ¥. Choose
De @ such that xe D= U. If De 9, then y ¢ D, and we can choose D’ € & such
that

reD’, D'is distant to D,.

Now D' belongs to some Z,,, and clearly
g2'x =0, g3’y =1.
It is easy to check that g, x,g, is s-odd-preserving.

ExampLE. There exists a point-Luzin space X such that there exists no 1-1 uni-
formly continuous mapping of X onto a metric space. Let X = 2 xw, with the
uniformity having the following covers %,, o« € w,, for a basis:

Uy = {0 DY B<a, €2} v 2x{y}] y>a} .

If f1 X — S is uniformly continuous, and S is metric then there exist «, € w, such
that if xest(y,%,,) (") for each n, then fx = fy. Choose o>sup{x,}. Then
7€0,v> = f<1, ) for y>a.

3.2. Here we derive several consequences of Theorem 3.1.

PROPOSITION (a). A metrizable space X is x-analytic (x-Luzin) iff it is point-
®-analytic (point-x~Luzin, resp.).

Proof. Consider the identity mapping X — X, and apply Theorem 3.1.

ProrosiTioN (b). (o) Let {X,| ae A} be a family of point-x-analytic (or
point-x%-Luzin) spaces, and |A|<x. Then the uniform sum X =y {X,| ac A} of
{X,} is also point-sc-analytic (point-s-Luzin).

() The symbol st(y, L) stands for |_J{Me M| ye M}
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(B) Let {X,| ne w} be a family of point-x-analytic (point-x-Luzin) spaces.
Then the countable product X = [[{X,| new} is also. point-x-analytic (point-
% - Luzin).

(v) Let {Y,| new} be afamily of x-analytic(or x-Luzin) subspaces of a space Y,
and let Y, be point-x-analytic (or point-x-Luzin). Then the intersection
Y= N{Y,] new} is a point-x%-analytic (or point-x-Luzin) subspace of Y.

Proofs. If we omit “point” from Proposition (b) then we get statements that
are proved in [F-H,, § 3.1]. According to Theorem 3.1 above there are continu-
ous 1-1 mappings f,: X, -~ M,, g,: X, > M,, and h,: ¥, > M where M,, M,
and M are metric spaces. It is easy to define 1-1 continuous mappings
f 2 X} -2 {M), g [HX) - TT{M}, and h: N{Y,} » M, and apply
Theorem 3.1.

Remark. In a similar way one can prove that a discrete union of » point-
#-analytic (point-»-Luzin) spaces is point-x-analytic (or point-sx-Luzin) if the
union is analytic or ¢-dd-simple.

It follows also that Suslin (d-Suslin) subsets of point-x-analytic (point- %-Luzin)
spaces are point-x-analytic (point-2-Luzin). This corollary to Theorem 3.1 will be
strenghtened in Theorem 3.4.

On the other hand, further easy properties of point-analytic (point-Luzin)
spaces, like invariance under taking countable disjoint unions, do not reduce to the
corresponding properties of analytic (Luzin) spaces and Theorem 3.1. One must
repeat the proofs of [F-H,, 3.1], and check that the resulting correspondences are
single-valued. The invariance under the Suslin operation is left to 3.4, and here we
just note a result which will be needed in 3.3 (Cor. (c)).

PROPOSITION (¢). Countable union of point-analytic subspaces is point-analytic,
countable disjoint union of point-Luzin subspaces is point-Luzin.

3.3. By 1.4 Cor. 1 (a) in an analytic space the Baire sets are just the bi-Suslin
sets, and the collection of all Borel sets may be much larger.

THEOREM. If Xis point-analytic then
Ba(X) = Bo(X). ‘

Proof. It is enough to show that each open set U in X is analytic, because
then U is bi-Suslin, hence Baire. Let f: M — X be a point-analytic parametrization
of X, and let §'= f~*[U]< M has the subspace topology. Since S is open in M, S is
necessarily completely metrizable. The restriction g of f to a mapping of S onto U
is an analytic (in fact, point-analytic) parametrization of U.

COROLLARY (a). Every point-analytic -space is hereditarily paracompact.

Proof is standard. Let ¥ be a subspace of a point-analytic uniform space,
-and let ¥ be an open cover of ¥. For each Vin 7" let Uy be an open set in X 'such
that ¥ = ¥ 0 Uy, and put U = {J {Uy}. Since U is analytic, hence paracompact

by [F-H,, 3.1(a)], there is a o-discrete refinement %’ of {Uy}; the trace of U on Y
is a o-discrete refinement of .
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Remark. Note that paracompactness of a uniform space implies paracom-
pactness of the induced topological space, see [F-H,, §2].

COROLLARY (b). If X is point-Luzin then the following collections coincide:
Ba(X), Bo(X), the collection of d-Suslin sets, the collection of all Luzin subsets.

COROLLARY (¢). In any space X, the collection of point-Luzin subsets is closed
under countable unions.

Proof. Firstly assume that L, is a Luzin set and L, is a point-Luzin subsets
of a space X. The set L, n L, is Luzin in L,, hence a Baire set in L, by Corollary (b),
and hence L,\(L; n Ly) is a Baire set in L, hence a Luzin set by 2.2 Lemma (a)..

Now if {L,} is a sequence of point-Luzin subsets of X, then all

L, = LNV {L] k<n}
are point-Luzin, and
UL} = U {Ly.
Since {L;} is a disjoint sequence, (J {L;} is clearly point-Luzin.
Remark. The union of a countable family of Luzin sets does not need to
be Luzin, see [F,, 7.9].

3.4. Suslin operation. The proof of the following result follows the pattern of
the proof of the corresponding result with “point-” omitted in [F-H,, 3.1].

THEOREM. The class of all point-analytic (point-Luzin) subsets of a space X is
closed under Suslin operation (d-Suslin operation).

Proof. Let

4=U{N {Aa']n+1[ neo}| oeow}

where all 4., are analytic (or Luzin and the union is disjoint).

For se "t denote by Bs the corresponding Baire interval

{o] aln+1=ys},

and consider the subset of 0°x X :
= 1 {U {Bsx 4] sea”'} ne m}

The subspace S is point-analytic (point-Luzin) by 3.2 Propositions (b) and (c).
The projection myx: S — X is continuous and ¢-dd-preserving (by [F-H,, 2.5]),
(one-to-one in the case of disjoint- Sushn operation), and hence 74[S] = A is point-
analytic (point-Luzin).

COROLLARY. Suslin (d-Suslin) subsets of a point-analytic (point-Luzin) space X
are point-analytic (point-Luzin).

Proof. The assertion for a closed set F is trivial because it suffices to intersect:
the images of ‘some point-analytic (point-Luzin) parametrization of X with F.

3.5, Pdint—Suslin sets. The subset § of a wniform space Xis said to be point-
Suslin (point-d-Suslin) if it is the image of some Baire space »“ under 2 o-dd- preserv—-
ing-closed-graph (one-to-one) mapping. . .
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One can prove that any point-Suslin or point-d-Suslin set is Suslin or d-Suslin,
respectively, Theorem 3.4 thus implies that point-analytic (point-Luzin) subsets are
closed under point-Suslin (point-d-Suslin) operation.

The main results about point-Suslin sets are contained in 3.6 (Theorem 2,
Proposition).

LEMMA. Point-Suslin (point-d-Suslin) subsets of an analytic (Luzin) space 4 are
point-analytic (point-Luzin).

Proof. Let f be a o-dd-preserving closed-graph (one-to-one) mapping from
the Baire space x” onto the set S=A. Let g: M — A4 be some analytic (Luzin)
parametrization of A. Then, the map h: M x” — gt f defined by i{m, o) = fo
for fo € gm is a point-analytic (point-Luzin) parametrization, and the projection of
grf onto S is a continuous o-dd-preserving (one-to-one) map by [F-H,, 2.5].

3.6. Characterization Theorems. Here we adapt the characterization of analytic
and Luzin spaces in [F-H,, § 4] to obtain characterizations of point-analytic and
point-Luzin spaces. An analytic (Luzin) sequence {%,} of covers is called point-

analytic (point-Luzin) if the cardinality of (}{ ) {C_k}}, C,e%,, is at most one.

n k$n

The proof of the following lemma corresponding to [F-H,, Lemma 4.2(a)]
is omitted.

Lemma. Let {%,} be a point-analytic (point-Luzin) sequence of covers of S X.
Then S is a point-Suslin (point-d-Suslin) subset of X.

THEOREM 1. The following assertions concetning a space X are equivalent:

(a) X is point-analytic (point-Luzin),

(b) X is the image of a complete metric space M under a o-dr-preserving (one-
to-one) continuous mapping,

(c) X is the image of a complete metric space M under a (one-to-one) continuous
mapping f such that {f[G]| G open in M} has a o-discrete refinement,

(d) there is a point-analytic (point-Luzin) sequence of covers of X,

(e) there is a uniformly continuous (w.r.t. the fine uniformily in the case when X
is a topological space) homeomorphism h from X to P x K where P is a complete meiric
Space, and K a compact space such that h|X) is point-Suslin (point-d- Suslin).

The proof follows that of [F-H,, Th. 4.1]. For (d) = (e) use the above lemma,
and for (e) = (a) use Lemma 3.5.

PROPOSITION. Let S be point-analytic (point-Luzin) in a uniform space X.
Then S is point-Suslin (point-d-Suslin) in X.

The proof follows from Theorem 1 ((a) = (d)), and the Lemma.

We conclude with a consequence of Lemma 3.5 and the above proposition:

THEOREM 2. The class of point-Suslin (point-d-Suslin)-sets in an analytic (Luzin)
space coincides with the class of its point-analytic (point-Luzin) subsets,

§ 4. Measurable correspondences and mappings. If F is a usco-compact o-dd- pre-
serving correspondence of a % -analytic space X onto a space Y, then Y is x-analytic.
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In this section we are going to weaken “usco” to Baire-measurability. It would
be interesting to know, if in the case of a mapping and under the additional
assumption that the spaces are metrizable one can relax “c-db-preserving” to “the
image of open sets has a o-discrete baselike refinement”. This seems to be an im-
portant problem.

It should be noted that Theorem 4 below generalizes the classical Luzin theorem
for separable metric spaces, and also the main result in [F;] for w-analytic spaces,
which has a conclusion that the weight of the range is countable. On the other hand
the result in [F3] was used in the proof of the main result of [F~H,], and therefore
in the proofs of Theorems 3 and 4 below.

Let f: X — Y be a correspondence, and let % cexp X, 4 cexp Y. Then f is
called upper-(M — A)-measurable if f~[N] e # for each Nin 4, and fis called
upper-(M — A)-measurable if 71 (Y, 4> = (X, H> is upper-(N — M)-
measurable. Lower measurability is defined in an obvious way, and will be not used
here. Therefore no confusion is likely to arise when “upper” is omitted; and if both .4
and 4" are Suslin sets, Baire sets or Borel sets we say Suslin or Baire or Borel measur-
able to mean (4 « A7)-measurable.

4.1. Lemma. Let F be a closed-valued correspondence of X into Y, and let {%,}
be a sequence of disjoint covers of Y such that if y e C,€%, for ne w,, then {C,}
converges to y (i.e. for each neighborhood U of y we have C,<U for n large enough.
Then

) gtF = (\{U{FCIxC| CeG}| neag.

Remark. The condition on {%,} is satisfied if {%,} is a point-analytic sequence
of disjoint covers (e.g. point-Luzin sequence or if ¥ is a metric space and the el-
ements of ¥, are of diameter <1/n+1.

Proof. The inclusion < is obvious. For the other inclusion suppose that
{x,y> ¢ grF, i.e. y ¢ F[x]. Since |J = ¥Y—FJ[x] is a neighborhood of y, we have
C,c U for some n (here C;, € G, is defined by y € Cp), and then {x, y> ¢ F~![C,]x C,
because x e F~C,]. If Ce%,, and C # C,, then y ¢ C (because %, is disjoint),
and hence {x,y> ¢ F~'[C]xC. Thus

3> # U (FTICIXC| Ce )

4.2. If we take in Lemma 4.1 o-discrete %, such that each F™{[C]x C is Baire,
Borel or Suslin in X'x Y, then we get that the graph of F is, respectively, Baire, Borel
or Suslin in X'x Y. In particular:

ProposITION. Let F be an upper-(# — Baire)-measurable  closed-valued
correspondence from a space X into a point-Luzin space Y. If M is the collection of all
Suslin, Borel or Bdire sets in Y, then the graph of F-is, respectively, Suslin, Borel
or Baire in Xx Y.

% -~ Fundamenta Mathematicae CXVII
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Proof. There exists a point-Luzin sequenee of covers {#,} on Y; the elements

of %, are Baire sets, and the covers {%,} are o-discrete and disjoint. Lemma 4.1°

applies, and the sets F~*[C]x C are Suslin, Borel or Baire, respectively.

COROLLARY. If F in the proposition is compact-valued (in particular, if F is

a mapping), and if Y is assumed just metrizable (not point-Luzin) then the graph of F
is Suslin, Borel or Baire in Xx ¥, where ¥ is a completion of Y.

Proof. The correspondence F: X — ¥ is closed-valued, and the measurablities
wrt. Y and Y are equivalent.

4.3. THEOREM. Let F: X — L be a closed-valued upper-(Suslin < Baire)-measur-
able o-dd-preserving correspondence.

(@) If X is analytic, and if L is point-Luzin then the spaces grF(<= X x L), and
F[X)(< L) are analytic. Hence F™* is upper-(Suslin — Suslin)-measurable (i.c. F is
upper-(Suslin « Suslin)-measurable). .

(B) If X is x-analytic, F is compact-valued and L is either point-Luzin or metric
then the spaces gtF and F[X) are %-analytic; and F™' is o-dd-preserving.

() If X is Luzin, and if L is point-Luzin then the space grF(< X x L) is Luzin,
and if moreover F is disjoint then F[X](< L) is also Luzin and F~! is a Baire measur-

" able map when restricted to F[X].

(8) If X is w-Luzin, F is compact-valued and L is either point-Luzin or metric
then the space grF is w-Luzin, F is a o-dd-isomorphism, and if moreover F is disjoint
then F[X] is also w-Luzin.

Proof. («) By 4.2 the set grF is Suslin in X% L, and since X x L is analytic as
the product of two analytic spaces [F-H,, Th. 3.1(c)], the subspace grF of X'xL is
analyticby [F-H,, Th.3.1(d)] as Suslin set in an analytic space. The projection grF—~1L
%s o-dd-preserving by [F-H,, 2.5(a)], and hence the image of grF under this pro-
Jjection, which is F[X], is analytic.

To prove the last statement observe that the restriction of F to each Suslin
subset of X satisfies the assumption of (w).

g ) We may and shall assume that L is point-Luzin (because in the case of the
metric space we can take the completion of L without weakening the assumptions).
By (v) the spaces grF and F[X] are analytic, and we have to prove that ﬂley are
%-analytic. It is enough to show that F[X ] is x-analytic because grF is then
:‘z-analytic as an analytic subspace of a x-analytic space. Tt is enough to show that
if {Da.l ae A} is a discrete family of non-void Baire sets in SLX] then the cardinal
of .A is <x. The family {F~*[D,]| ae A} is completely Suslin-additive and point-
finite because F is compact-valued, and hence by the main result in [F-H,]
{F~'[D,]} is 0-dd, and hence the cardinal of 4 is <, because X is %—analyticj
We just proved the last statement of (B).

) (v) The space Xx L or X x Lis analytic for a Luzin or a metric space L, respect-
1v.e¥y: Thus.they are g~dd-simple by [F-H,, Th. 3.1 (a)], and therefore the ¢- discrete
disjoint unions in (x) {when {#,} is a point-Luzin sequence in L or L, respectively}
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are Luzin [F~H,, Th. 3.1(d)]. Thus the graph of F is Luzin. The set F[X]is a con-
tinuous ¢-dd-preserving 1-1  projection of grF by [F-H,, Lemma 2.5(a)] for .F,
disjoint, and hence F[X] is Luzin.

The last statement follows by the first separation principle (Theorem 1.3).

(8) The statement (y) implies that grF is Luzin. By (p) it is »x~analytic, hence
%-Luzin [F-H,, Th. 3.1(b), Corollary (a)]. The statement concerning F[X] follows
easily from (y) and (B). Finally F is “a o-dd-isomorphism” by (f).

4.4, THEOREM. (o) Let F be a (Suslin « Baire)-measurable o-dr-preserving
mapping of a x-analytic space into a point-Luzin (or metric) space L. Then the spaces,
grF and F[X)] are x-analytic, and F: X — F[X1 is a Baire-quotient (i.e. B F[X]
is a Baire set iff F~*[B} is a Buaire set), in particular F: X — L is Baire-measurable.

(B) Let F: X — L be a one-to-one Baire measuruble o-dr-preserving (i.e. o-dd-
preserving) mapping of a w-Luzin space X into a point-Luzin space L. Then F[X]
is point-%-Luzin, and F: X — F[X] is a Baire isomorphism, and also a o-dd-iso-
morphism.

Proof. (o) The first assertion is proved exactly like (o), (B) in Theorem 4.3,
just for the conclusion that “F[X] is analytic from gr[F] is analytic” one uses
[F-H,, L 2.5 (b)] instead of [F-H,, L 2.5 (a)]. The second assertion follows from’
the first one and from the first separation principle (Th. 1.3) as follows: If B is a Baire
set in f[X], then so is F[X\B, hence both f~1[B] and f ™[/ [X]\B] = X~NfB]
are Suslin, hence Baire. If f~1[B] is Baire, then so is X\f~![B], hence the sets are
Suslin, hence by the first assertion, B and f [X]\B are Suslin, hence the two sets are
Baire sets in F[X] by the first separation principle.

(B) follows from Theorem 4.3 (8) and Theorem 4.4 (o).

Theorem (B) implies:

COROLLARY. If a metrizable space X is Baire-isomorphic to a x-Luzin space,
and if X is analytic (or more generally Hansell in terminology of [F-H), then X is
%-Luzin, hence point-x-Luzin.

Remark. Let Q be a Q-set, i.e. an uncountable subspace of the reals such that
each subset of Q is a Baire set. Let X be Q with the discrete topology. Then Q and X'
are Baire isomorphic, X is point-Luzin, while O is not even analytic.

§ 5. Bimeasurable mappings between complete metric spaces. Let f@ X — Y
be a Baire-measurable o-dd-preserving mapping. We know (Theorem 4.4 (B))
that if X and ¥ are point-Luzin and if f is 1-1, then the images of Baire sets are Baire
sets. Here we relax the assumption “1-1” as much as possible (see Theorem 5.3),
generalizing the classical results of Luzin [L] and of Purves [Pu]. It should be re-
marked that it is enough to study the case when X and Y are complete metric spaces.

‘We follow the proofs from Kuratowski [Ku, pp. 402-407] to prove Lemma 5.2.
The statement (o) generalizes the well-known result of Mazurkiewicz-Sier-
pinski [M~S], and allows us to generalize [Pu]. The statement (8) generalizes [L].

Let us start with the seccond separation principle.
2%
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5.1. Co-Suslin sets; Second separation principle. Recall that the complement
of a Suslin set need not be Suslin. The Suslin sets which have Suslin complements
in some space X are called bi-Suslin in X. The complements of Suslin sets are called
co-Suslin.

We will use some assertions concerning co-Suslin sets,

PROPOSITION. The class of co-Suslin subsets of a space X is closed under
countable intersections, ahd under unions of families having a o-discrete base.

Proof. The first part of the proposition follows from the fact that countable
union of Suslin sets is Suslin.

Let {C,| ae A} be a family of co-Suslin subsets of X, which has a ¢-discrete
base & = |J {#,| ne w} with all &, discrete. For any B e & find some C, such that
BcC,; denote this C, by Cj.

There are zero sets Zz>B such that {Zy| Be4,} are discrete, and
{Zpn Cy| Be B} forms a o-discrete cover of | {C,| ae A}. The complement
of U {Zp n Cy| Be %} equals to

N{U {Zs\Cy| Be B,} U (X\U {Z5| Be B,})| new}

which is a countable intersection of o-discrete unions of Suslin sets, and therefore
it is a Suslin set.
Recall that S (bi-S(X)) stands for the class of sets that arise from bi-Suslin sets
by Suslin operation. The second separation principle [R-W, Theorem 14] says:
THEOREM. (0t) Let 4 and B be in S (bi-S(X)). Then there are co-Suslin sets C, D
in X that satisfy .

ANBcC, B\AcD, CnD=@.

(B) Let 4, be in S (hi-S(X)). Then there are co-Suslin sets H, in X that satisfy

'AII\U {Aml In # n}CH'IX bl
and

HoH,=0 for m+#n.

In fact only the assertion («) is proved in [R~W]. However assertion (B) follows
casily in the same way as in [Ku, p. 401] for the case of a Polish space. Let C,, D,
separate A4,, and | {4,| m # n} as in (). Put

*Hn = Cn n ﬂ {Dm| m # }1} .

CorOLLARY (). Let {S,| ae A} be a o-dd-family of elements of S (bi-S(X)).
Then there is a digjoint o-discrete family {C,,| ae d,ne w} of co-Suslin sets in X
such that ‘

SNU S beanfal}eU {Cal new}.
Proof. Let {S,| acd,new} be some o-discrete decomposition of {8.}.

There are Baire sets B,, = S, with {B,,| a € 4} discrete. Put B, = B,,\\J{B,.| m<n},
and S% = S, A BX.
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Denote 4, = 4 {S¥| ae 4}, and find co-Suslin sets C, like in Theorem (B).
Put C,, =.C, n B}, Since {C,} is disjoint the family {C,| a€ 4,nec o} is also
disjoint. Let x & S;\U {S5| & # a}. Then x e 4,\U {4,| m # n} for some ne w.
1t follows that x e C, N By = C,,. ‘

COROLLARY (b). Let {4 sew**,new} be a family of elements of S
(bi-S(X)) that satisfy

A, =U {4, iexn} for sext,
and
{4, sex"*} is 6-dd for neo.

Then there are disjoint o-dd families {C¥| se€x"*'} of co-Suslin sets such that

ANU (4] 1 #5, t,sex™}aCy,

and
C¥cCluyey for o sex™ neo.
Proof. Find C,,,, sex'*?, m,newn, as in Corollary (a). Put
Cs = U {Cs,ml me w} B
and

C¥=N{Cylj=1,..,n+1} for seurtt,

The family {C¥| sex"*} is ¢-dd because its members are in the family of
finite meets of n+1 o-dd families {Cs{j} for j=1,..,n+1 [F-H,, 1.4(e)].

5.2. Sets of “A-values”. ‘

LemMa. Let f be a Borel (i.e. Baire) measurable o-dd-preserving mapping from
a complete metric space M into a complete metric space P. Then ‘

(c). the set 4 = {y| f~'[y] is uncountable} is Suslin (= analytic) in P,

(B) the set Z = {yeP|f'ylisa singleton} is co-Suslin (= “co-analytic”)

in P, .
(y) the set I = {y| f~*[y] has an isolated point in M } is co-Suslin in P,
(8) the set C = {y| f~'[y] is non-empty at most countable} is co-Suslin in P.
Proof. (o) The graph of fis analytic(Th. 4.4(a)). There are some Baire space %%,
and a continuous o-dd-preserving mapping ¢ = {@;, @) from a closed subset F
of »® onto grfaMxP.

According to [F-H,, 2.5(a)] the “projection” mp: gr f - P is g-dd-preserving.
Thus the 5 [y] are closed and separable in gr f, and ¢~ ![nz*[¥]] are separable
closed subsets of Fex®. Use [Ku, p. 353] for ol [np 1[¥]] where y is fixed. Thus
the set {x| f[x] = y} is uncountable if and only if there is a sequence §' of elements.
of »® which is dense in itself, and @,[d] = y for de S, and ]S is one-to-ome.

Now the set

A=1{)A¢eH)Ynew)y =g, and Vim £ n) e, (1] # @4€T}
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where H is the set of all sequences & = (£") of elements of x® (& = (&4, &1, )
which are dense in itself in the product topology of (x°)“. It is easy to show that

Y=y, & ePxHl Ynew)[y = ¢,[¢"] and Y (m # n)g["] # g[¢"]}

is a G, subset of P x (x°)®. According to 3.3 Corollary (b) Y is analytic, and our state-
ment is proved by showing that the projection 73 of ¥ to P is ¢-dd-preserving. In
fact it suffices to consider the set

Y=y, &ePxH| Ynen)y = ¢.¢"}
in the space Px H.
Let {D,} be discrete in Y". We can easily reduce this general case to the case
when the projection ngy: ¥Y'— H maps {D,} to a discrete family.
In fact we find o-discrete covers %, ¥ of P and H, respectively such that
UxV D, # @ for at most one a e, whenever Ue, Ve¥ . According to
[F-H,, 1.4(g)] we can consider the family {z3 *[U] ~ D, ae A} for U fixed.

Let r,: (x”)*— x* denote the projection to the nth coordinate (r,[(£")] = &).
The projection

w3, &) = N {@aramaly, Ol new}.
Since {my4[D,]} is discrete it suffices to prove that the map

ale] = () {21 lE]l new}

is o-dd-preserving. Put o is a countable “meet” of a,: X,— P where o, = [
(] " ’
X,=x"forne », and we use 2.4(d,) from [F-H,] that says that countable meets
of ¢-dd-preserving maps from metric spaces are ¢-dd-preserving.
Remark. Notice that we have only used the analyticity of gr f, however it is
Luzin by Theorem 4.4(b).
(!3) The graph of f is Luzin, and there is a 1-1 continuous o-dd-preserving
mapping ¢ from a closed subset F of some Baire space »* onto gr f ([F-H,, 3.2]).
Let p be the projection of gr f= M x P to P again. We can consider p o ¢ instead

of f, and therefore we can suppose that f is continuous 1-1 ¢-dd- preserving map
‘'with domain F.

Let I(s) denote the set {de F| d|n+1 = s}. The set

Z = U {fdNFIFN}l de F)
= U{N {S @+ )N IFNIln+ 1)) ne w}| de F} .

:Denote
A@) =flI) 0 F1 and  B(s) = f[F\I(s)] for sex'*t,
Thus
Z=U{N {A@n+1\B(dln+1)| newlf de F},
and

Bin+1) = U {A(eln+1)] eln+1 # dln+1}.
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Using Corollary 5.1(b) we find co-Suslin sets C*(s) for sex""* such that
’ Z'= {0 {C*@m+1)| dint+1ex*} new},

where C*(d|n+1)<=f[I(dn+1)]. Thus {C*(s)| s €x"**}is ¢-dd, and Z is co-Suslin
by Proposition 5.1.
(y) Let 4 be some o-discrete base for open subsets of M: Denote fp the restric-
tion of f to B for Be 4. .
The set v
I=U {{yl f5*Iy] is a singleton}| Be &} .

The assertion (y) follows because f is ¢-dd-preserving, and (B) can be applied
to f (use Proposition 5.1).

(8) The set C = {yeP| f~*[y] is not uncountable, and has an isolated point}
= N4, and this is a co-Suslin set.

5.3, Characterization of bimeasurable o-dd-preserving mappings.
The main result reads:

TuEOREM. The Borel (= Baire)-measurable ¢-dd-preserving map f from a point-
Luzin space L' into a point-Luzin space L' is (Borel) bimeasurable iff

() {yeL’| f~y] is uncountable} is o-discrete.

Proof. Any point-Luzin parametrization ¢ of a point-Luzin space is 1-1, (Borel)
bimeasurable [F-H,, Th. 2(a)], and ¢ and ¢~ ! map o-discrete sets to o-discrete
sets again. Therefore we can consider complete metric spaces M, P instead of L', L",
respectively.

Let the condition () be fulfilled, and B be a Borel subset of M. According to
Lemma 5.2 () the set

{yeP| f~[)] n B is non-empty at most countable}

is co-Suslin thus co-analytic [F~H,, Th. 3.1(d)], and in the same time according to
Theorem 4.4(c), analytic. Use the first separation principle [Th. 1.3] to finish this
part of the proof. Assume that f does not fulfil the condition (). It means that the
set

A={reP|fyis uncountable}

is not o~discrete, The set A is point-analytic according to Lemma 5.1 (a), and thus it
contains an uncountable compact set K (even Cantor discontinuum — see Lemma
bellow). Now we apply [Pu, Theorem] to f}f ![K] to obtain a contradiction.

The following lemma is a generalization’ of the classical result of Hausdorff
and Alexandrov; it should be noted that for the case of a Suslin set in a complete
metric space the result is due to Elkin. However, all proofs are essentially the same.

LomMa. Assume that a point-analytic space A is not ¢-discrete. Then there is
a subset C of A which is homeomorphic to_the Cantor space 2°.
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Proof. Let ¢: F(cx") » A be some point-analytic parametrization of A.
Let I(s) have the meaning as in the proof of Lemma 5.2(B). We use the following
two facts:

1. If M is a non-c-discrete subset of A then there are m, ne w, s »"*! and
tex"* such that Mnf[I(s5)] and M nfII(H)] are non-c-discrete, and
SIS afI(t)] = @ (Sketch of the proof: Find open U, ¥=d with U n M,
V' o M non-o-discrete, and Un V= @. {f[I)] sex"",new} form a o-dd
base for open sets in A4).

2. If M nfI(s)] is non-o-discrete for sex™, and n>m then there is an
s'ex” such that M n f[I(s")] is non-o-discrete.

Now ‘we construct by induction a set Ccx® of sequences

d=(d°,d°", doiis, ),

and sequence 7; € @ such that 4™ ¥ ey for je o, i;€{0, 1}, and

, FU@E", ..., d*] A fIAS, ..., d5)] = @

for (ig, ..., 1) % (g, .., 1)- o
Obviously the mapping ¢ (i, iy, ...) = (d", 4", ...) is 1-1, and continuous.
The same is true about fo: {0,1}” — C, and thus fe @ is a homeomorphism.
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