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affine space over GF(p) is polynomially equivalent to some medial idempotent
quasigroup and the variety of all affine spaces over GF(p) is equationally complete.
So, we infer that S, is equationally complete because of the following fact: if 2 is
an algebra of a fixed typz 7, and if the algebra  can also be considered as an algebra
of a type 7, (with same algebraic operations), then HSP() is equationally complete
with respect to 7, if and only if it is equationally complete with respect to t,.
It follows from [1] that for different primes p and ¢ the varicties S, and S, are
different atoms in the lattice of subvaticties of all idempotent medial quasigroups.
Now we are in a position to complete the proof of the theorem. Suppose IR,
is equationally complete and suppose that M, = 2"—1 is not prime. Then there
exist two different primes p and ¢ such that p|2"—1 and ¢|2"—1. By Lemma 1 we
infer that G(p, n) and G(q, n) belong to the variety M,. Therefore the varieties .S,
and 'S; are contained as non-zero subvarieties in M, which contradicts the fact
that M, is equationally complete.
Assume now that M, is prime. To prove that 9, is equationally complete it is
enough to show 9, = HSP((G; -)) for every nontrivial groupoid (G; -) from M,.
Let (G;-) e M,. Then by Lemma 2 there exists an abelian group (G; +) of
exponent d|2"—1, where d>1 and

d+1
(G xp) = (G; 5 (x+y)) .
Since 2"—1 is prime, we have d = 2"—1 and hence
HSP((G; -)) = HSP((G; 2" *(x+)) -
The latter variety is equal to the variety S,n_, since the sets of identities of the
groupoid (G; 2" (x+)) and ({o, ..., 2"—2}; 2"~ *(x+)) are equal (the latter
groupoid is polynomially equivalent to the affine space over GF (2"~ 1)). By Lemma 1
we find that S,n_; =M, and Syn_; = HSP((G; -)) forall (G; +) € M, with card G>2.

Using the well-known Birkhoff theorem, we infer that M, = S,n_, and hence M,
is equationally .complete.
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Solution of a problem of Ulam
on countable sequences of sets

by

Andrzej Pelc (Warszawa)

Abstract. Let E be a set of cardinality 2 and {d4,: n € w} an arbitrary sequence of subsets
of E. Let 4§ denote the g-algebra of subsets of E generated by the family {4,: n € w} and g* the
o-algebra of subsets of E* generated by the family {4, X Ap: 1, m € w}. S. M. Ulam stated a problem
(see [3]), whether there exists an injection @: E — E* transforming 4§ into 48* and conversely.

We give a negative answer to this question and formulate a condition on {4,: » € 0} under
which the answer is positive.

§ 0. We use standard set theoretical notation and terminology.

By E we always denote a set of cardinality 2°. If AcE then we put 4! = 4,
A® = ENA. If of = {4,: new} is a sequence of subsets of E then the function
Qg E—2° such that ¢ (x)(n) =1 = xe 4, is called the characteristic function
of . For every fe 2 the set o (f) = o5' » {f} = () 43 is called a component

n
of & and f the index of o ( f). If e € E then S(e) denotes the component containing e.
Clearly the components are pairwise disjoint and their union is E. Conversely,
every pairwise disjoint family of cardinality 2° with union E is the set of com-
ponents of some sequence .
We define generalized Borel classes over &:

2et) = {UX: X},
5 = {U X: IXI<0, X< Y (236 I

OY(et) = {ENX: X e ZY(2)},
B(t) = U (ZN) v OUL)).

<oy
2B(sf) is the o-algebra generated by «f. If &, is a o-algebra of subsets of E; and %,
a o-algebra of subsets of E, then'a function &: E; — E, iscalled (&, , &,)-preserving
ifBe#, = &+(B)eB, and Be B, = & ' »(B)e &,. In case when E; and E,
are subsets of 2% and 4, is the family of Borel subsets of E; (i = 1, 2), we say that ¢
is Borel preserving instead of saying (%4,, #,)-preserving.
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It i¢ 'well known (cf. [1]) that if E; and E, are uncountable Borel sets then there
exists a Borel preserving bijection @: E; — E,. E. Szpilrajn proved in [2] that the
function ¢4 E — Rg(¢,) is (% («), Bor)-preserving, where Bor denotes the family
of Borel subsets of Rg(¢y).

Throughout this paper we fix a pairing function J for natural numbers:
J: wxw:t‘%w and functions K, L such that K: o > 0, L: @ = o and Vneow
J(K(n), L(w) = n. 0 denotes the function f'e 2° constantly equal 0. Given a sequence
o = {A,: new} of subsets of £ we define a sequence #/* = {4}: ne o} of sub-
sets of B2, Ay = Aggy % Arg, for ne w. A function : E — E? is called preserving
Jor o iff it is (B (&), B(L*))-preserving. v

In this terminology we can formulate Ulam’s problem as follows: Does there
exist a preserving injection for every sequence & of subsets of E?

§ 1. First we prove some technical lemmas.

LeMMA 1.1. Let o be a sequence of subsets of E. If Be B(s#) and e € B then
S(e)cB.

Proof. By induction on the hierarchy Z3(«), II3(s?). Let B e Z%(sf). In this
case

B ="9mAin ="E)QU {(f): fe2&f () =1}
and the conclusion follows. Assume that the lemma is true for
BeU {Z)(«) v I)(): n<E}.
Take BeZi(«#), B= X, Xc ﬂg{{z‘},’(&f) U IIY(#)}. Let ee B, hence ecB,

for some B; € X. It follows from the inductive hypothesis that S(¢)=B;<B.
Assume finally that the lemma is true for BeZ?(.sa’)’. Take B, EH?(.:J),
B, = ENB. Let ee By. If S(e)< B, then we are done. If not, there exists ' € S(e)
s.t. €' € B, but in this case S(e) = S(¢')=B, hence e € B, contradiction.
Remark 1.2. Notice that Lemma 1.1 remains true for x-complete algebras
generated by &/, where % is arbitrary. '
Let E; and E, have cardinality 2° and &, be a sequence of subsets of E;,
i=1,2).
Lemma 1.3, The JSollowing pairs of statements are equivalent:
a) (i) There exists a (B(ofy), B(sd,))-preserving function &: E, — E,.
(ii) There exists a Borel preserving function ¥': Reg(py) = Re(p,,) such
that |t (P ()| <1ty (f)] for every fe Re(p.p).
b) (i) There exists a (B(sA,), B (st ,)-preserving injection &: Ey — E,.
(ii") There exists a Borel preserving injection ¥ Rg(@u) = Re(@y,) such
that |t o(¥ ()| = 11 (F) for every feRg(py,).
©) (") There exists a (B(ot), B (s ,))-preserving bijection : E, > E,,
(ii"") There exists a Borel preserving bijection ¥: Rg(@u,) = Re(p.,) such
that | (¥ () = |4 1(f)| for every feRg(p.y,).
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Proof. We prove only part a). The proofs of part b) and c) are similar.

@) -+ (ii). It follows from Lemma 1.1 that images of components are com-
ponents. Let ¥: Rg(pn,) > Rg(9.,) be such that &+ (,(f)) = oZ,(P(f)). We
show that ¥ is Borel preserving. Let B be a Borel subset of Rg(¢,). By Szpilrajn’s
theorem @} * (B) € B(«,), hence @ * (¢! * (B)) € B(s7,) and

¥ x (B) = @u, * (@ + (0 + (B)))
is a Borel subset of Rg(¢p,,) again by Szpilrajn’s theorem. Similarly if B is Borel in
Rg(@u,) then @u, * (07" * (o7 * (B))) = ¥~ x (B) is Borel in Rg(py,).

(i) = (i). The family {#/,(f): fe Rg(p,)} is a disjoint partition of E, (for
i=1,2). Let &;: of,(f) = (¥ (f)). The existence of such a function follows
from |,(P(F))I<let {( ). Put ® = U{P;: fe Rg(p,,)}. Observe that d: E, — E,
and is (B(&y), B(H,))-preserving. H

LemMa 1.4, Let of = {A,: ne w} be a sequence of subsets of E. For an arbitrary
component S = A*(f) of #* and e = <{x,y> e S the following holds:

a) if f=0then S = {z,t) e E*: ¢ z) = 0 or g(t) = 0},

b) if f# 0 then S = S(x)xS(y).

Proof. a) Take z, t) such that ¢ ,(z) = 0 or ¢ (f) = 0. Assume e.g. @ (z) = 0.
The proof in the other case is similar. We have z ¢ 4, for alln e w and (z, t) ¢ 4, x 4,,
for all te E, mew, new. It follows that {z,¢) € § and one inclusion is proved.
Take {z,t> such that ¢(z) # 0 and ¢,(t) # 0. There exist n, m e w such that
z€A,, ted,, hence {z,t1> e 4, x4, = A}"(,,,,,,). In case {z,t) € S we would have
f(J(n, m)) = 1, contradiction with f = 0. This proves the equality.

b) First we prove S<S(x)x S(y). Take n such that f(n) = 1, thus xe 4 Kny»
y€Arm. Let {z,t) €S and assume {z,t) ¢ S(x)xS(), e.g. z¢S(x). We have
{z,t) € Ag(my X Ar(my. If there exists me w s.t. z€ 4,, and x ¢ A4, then, in view. of
2z € Agemy, t€ Ay we would have (z,1) € 4, X Ay, and (x,y) ¢ 4, X Ay (. Con-
tradiction because {x,y) and (z,t) are in the same component. In case z ¢ 4,
x € 4,, we argue similarly. Thus the inclusion is proved.

For the proof of S(x)xS(y)<=S take {z,t> € S(x)xS(y). For all m,new .
we have (z,1>ed,x4,=(zed, &ted)= (xed, &yed,)={x,y>ed,x4,,
hence {z,t)e S and we are done. H

§ 2. The following theorem gives a negative answer to the problem of Ulam.

THEOREM 2.1. Let k>1 be a natural number and sf a sequence of subsets of E.
Assume that for every fe2®|(f)| =0 or k<|of (f) <k® Then there does not
exist a function ®: E — E* preserving for o.

Proof. If follows from Lemma 1.4 that all non-void components of &/* have
cardinalities >k* The conclusion follows now from Lemma 1.3 part a). B

Remark 2.2. Let E = 2% and 4, = {fe2”: f(n) = 1}. Then clearly the set
{4,: ne o} generates the g-algebra of Borel subsets of 2%, However

{d,x4,: n,mew}
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does not generate all Borel subsets of 2°x2°. Namely it does not generate the
singleton {<0, 0>}, because in view of Lemma 1.4 its component has cardinality 2°.

The next result shows that for a wide class of sequences the answer to Ulam’s
problem is positive.

THEOREM 2.3. Let o = {A,: ne w} be a sequence of subsets of E. Assume that
every non-void component of & is either an infinite or one element set. If o/ (0) is
non-void assume that there exist fy % fo, f; # 0 (i = 1, 2) such thar | ()< | (0))],
| ()l = |Z(0)|. Then there exists a preserving injection ®: E — E* for o.

Proof. Consider the following function ¥: 2° — 2°, '

P(f)n) =1=f(Km)=1&F(LM)=1,
for all f€2% new. Clearly ¥ is continuous and one-to-one, hence it is a Borel
preserving injection.

First we prove that ¥ x (Rg(p4)) = Rg (9., *). Take feRg(p,,) arid let x € o (f).
Hence {x, x> € Z*(¥(f)) and thus ¥(f) e Rg(p., *), which proves the inclusion.

Next we prove ¥~ ! (Rg(py %) = Rg(p,). “c” follows from the above.
To show “c=” take fe2” such that ¥(f)eRg(p,m). Let {x,») e L*(¥(f)).
Consider two cases:

1° ¥(f) = 0. Then f= 0 and either @ (x) = 0 or ¢ (») = 0. Hence 0 € Rg(o,,)
and we are done.

229(f)#0. Let ¥(f)n)= 1, hence {x, > € Agu X Army- Let pq(x) =g,
¢4(») = h. We show that f=g = /. Indeed g(K(n) = 1 and h(L(m) = 1. On
the other hand f(K(r)) = 1 and f(L(n)) = 1. For every m € o we have f(K(n) = 1
&f(m) =1=Y(NHIK®N,m)=1={x, e dguyxd, = g(KH) = 1 &h(m)
= 1. Hence f(m) =1 = h(m) = 1 and we get f = h. (Similarly f = g). It follows
that fe Rg(p,). We have proved ¥*(Rg(¢,))<Rg(@.+) and

P71 x (Reg(eam) = Re(e.) -
Now it is easy to show that
¥ = ¥} Reg(0w): Re(pa) - Rg(¢ )
is a Borel preserving injection. This is not obvious because in general
Reg (@) # ¥ * (Rg(p.) -
Take an arbitrary Borel subset B of 2°.
P (BARg(u) = 718 (B) ¥ (Rg(p.0) = ¥ w (B) M Rg(o)
is Borel in Rg(p).
Fx (B Rg(pa) = ¥ * (B) N ¥V + (Rg(p.)) = ¥ % (B) 1 Rg(p,00)
is Borel in Rg(¢,u). The last equality follows from
¥+ (27) N (Re(@u)\¥ * (Rg(pa))) = 8.
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Next take f; and f, as in the assumptions (in case when o (0) # &) and let
F= 0w x (05! = {fi} x 05" * {f2]). Define ¥: Rg(¢.) - Re(p.0):

g(f)={?<f) iff#0,

if f=0,
Clearly ¥ is Borel preserving since ¥ was. It is an injection. Moreover it follows
from Lemma 1.4 and the assumptions that
| () = (B ()

Indeed if ' 0 we have

() = L ([)xA(f)
and if f= 0 we have

AU ()) = L ([)xA(f).
The conclusion follows now from Lemma 1.3 part b). B -

THEOREM 2.4. Let of = {4,: new} be a sequence of subsets of E. Assume
that Rg(p.y) is an infinite Borel set and all non-void components of sf have cardi-
nality 2°. Then there exists a preserving bijection for .

Proof. It follows from the assumptions that for every feRg(o,), g€ Rg(@.)
we have |/ (f)| = |«/*(g)|. Hence in view of Lemma 1.3 part c) it suffices to prove
the existence of a Borel preserving bijection ¥: Rg(o,) — Rg(oyy). Clearly
IRg(px) = |Rg(p)l (easily by Lemma 1.4, because Rg(p) is infinite) thus we
are done if we prove that Rg(p..) is Borel. Let

F={fe2”: Vm,neo|[fm)=1&fm)=1= flJ(Km),LMm))=1&

&f (J(E@), Lmy) = 1]},
G ={fe2°: Ag3h[geReg(p) & heRg(o,) &
&Vmeo[lgm =1=3kf(J(m, k) =1)&
(hm) =1 =31F (U, m) =1]]}}.
& is a closed set and if Rg(p,) is Borel then G is Borel as well because another
definition of G is

LG ={fe2”: YgVh|Vmeow[lgm =1 =3kf(J(m k) = 1)&

&(h(m) =1 =31f 0, m) = 1]] = geRe(p,) &heRe(p,y)}.
hence G is A4} with a Borel parameter. Thus it suffices to prove that
Rg(pu) = F nG. Let feRg(pys) and {x,y)>ed*(f). If fm)=Ff(n) =1
then x, ¥> € Agmy X Apgmy and {x, p) € Agy) X Ay hence obviously

$x, ¥> € Ay X Arim

and {x, y) € Ag(iy X Ay Which proves fe &#. Now we prove that feG. If f 0
then in view of #*(f) % @ we have &/ (f) # &, hence fe Rg(p,) and we can
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take g = h = f. Assume dnf(n) = 1. Take g and h such that x € &/ (g), y € & (h).
Let g(m) = 0, hence x¢ 4, and for every k (x,y>¢ A, xA4,. We infer that
F(Jn, k) = 0. Let g(m) =1, hence xed,. On the other hand we have
{x, 7> € Agemy X Ary» hence y € Ay, and we get {x, > €A, X Arm, 50

FUm, L) =1.

For h we argue similarly and thus one inclusion is proved. Now take fe # n G
and appropriate functions g, s eRg(py). We claim that if xeof(g), ye o (O]
then (x,y) € #*(f) and hence fe Rg(¢y). Indeed for every mew we have:

{x, pd e Al = x, P> € Agmy X Aremy = X € Agimy &Y € Apmy
=g(Km) =1&h({Lm) =1
= Ak f(J(K(m), k) = 1&31f(J{, L(m) =1
=f(J(Km),Lim) =1=f(@m) = 1.
This proves that Rg(p.«) = # n G and finishes the proof of our theorem. B

Tt would be interesting to find a necessary and sufficient condition for the
existence of a preserving injection for a sequence in terms of its components. We
would like to state this problem as a natural remainder of Ulam’s question.
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Monotone decompositions of
hereditarily smoeth continua

by

'Z. M. Rakowski (Wroclaw)

Abstract. It is proved that if a Hausdorff compact continuum X is hereditarily smooth at
a certain point (see below), then there is an upper semi-continuous decomposition D of X into
continua such that the quotient space X/D is arcwise connected and hereditarily smooth and D is
minimal with respect to these properties. This result generalizes theorems obtained by Gordh [3]
and by Maékowiak [6].

1. Introduction. A continuum is a compact connected Hausdorff space. A con-
tinuum I is irreducible between its points a and b if no proper subcontinuum of I con-
tains them. The symbol I(e, b) always denotes a continuum irreducible between a
and b. We use the following notation: cl4 (int A) denotes the closure (the interior)
of A. A continuum X is smooth at a point p [4], [7] provided that for each subcon-
tinuum K of X such that p e K and for each open set ¥ which includes X, there is
an open connected set U such that KcUc V. The following is well known [7].

PRrROPOSITION 1. Let p be a point of a continuum X. Then the following conditions
are equivalent:

(i) X is smooth at p, .

(ii) for each convergent net x,& X with limx, = x and for each continuum
I(p, x) irreducible between p and x there are continua I(p, x,) each one irreducible
between p ‘and x, such that LimI(p, x,) = I(p, x),

(iii) for each subcontinuum K of X containing p and for each convergent net
{x,, ne D} with limx, = x € K there is a net {K;, i E} of subcontinua of X such
that each K, contains a certain x, and p and LimK; = K (if K is irreducible, then it
is possible to have each K, irreducible also).

A continuum X is hereditarily unicoherent at a point p [3] if the intersection of
any two subcontinua of X, each of which contains p,’is connected. Any Hausdorff
compactification «J of the set J consisting of the interval [0, 1) of reals and of
a circle S such that [0, 1) 0 S = {0} is a continuum which is smooth at each point
of J but not hereditarily unicoherent at any point of «J\J. A continuum X is heredi-
tarily smooth at a point p if each subcontinuum of X containing p is smooth at p.

'
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