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Boolean spectra and medel completions

by
M. C. Bunge* and G. E. Reyes* (Montréal)

Abstract. By combining Cole’s theory of spectra and localizations with Comer’s version of
the Feferman-Vaught theorem, we give a new version of Macintyre’s theorem on the existerce
of model completions of certain theories of (von Neuman) regular rings. The proof is topos-theoretic
and in it, the two ingredients of a regular ring, regarded as a field ina topos of sheaves on a Boolean
algebra, are clearly separated. Results of Macintyre, Carson, and Weispfenning, are immediately
recovered.

Introduction. In this paper, we use topos theoretic methods to give a new version
of Macintyre’s theorem on the existence of model completions of certain theories of
(von Neumann) regular rings (cf. [10] for historical remarks and further information).
Since several versions now exist, we shall point out some specific features of ours
(considered desirable by Macintyre in loc. cit.). )

We take the point of view, common to workers in topos theory, that the basic
notions of the theory are those arising from the internal logic of a topos, rather
than those tied down to the set-theoretical scaffold such as stalks, points, etc. (used
in previous proofs). In particular, ours is a stalk-free approach. Our framework is
the theory of spectra and localizations (cf, § 1), framework which allows us to state
those features of the theories of ring representations used in previous proofs, (such
as Pierce’s [12] or Keimel's [7]), as axioms on morphisms arising from spectra. As
a consequence, it is possible to isolate the two ingredients of, say, a regular ring
(viewed as a field in a topos of sheaves over a2 Boolean algebra) rather neatly and
follow their contributions to the truth of the main theorem. This theorem, as well
as a few related results, is proved in §2 by using Robinson’s test on model-complete-
ness (as in [8]). This possibility arises thanks to the functoriality of ring represen-
tations (built in our spectra). The missing link between truth in a sheaf (on a Boolean
algebra) and truth in its global sections is provided by Comer’s version of the
Feferman-Vaught theorem (cf. [2]) rather than Carson’s lemma used in previous
proofs.

This paper grew out of two independent sources: a preprint by the first author
“Spectra and model companions”, distributed in the summer 1978, and a set of
notes written by the second author in the summer 1976.

* Both authors acknowledge support from the National Research Council of Canada.
1 — Fundamenta Mathematicae CXIII/3
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While the second author has profited from discussions with André Joyal (partly
contained in [6]) the first acknowledges the influence of George Loullis through
conversations as well as her reading of a manuscript of his, based on his Ph. D.
thesis at Yale and completed shortly before his untimely death in the fall 1978.
We are also grateful to M. Barr, M. Coste, P. Johnstone, M. Makkai, R. Seely and
H. Volger for useful comments on the preprint mentioned above.

Our standard references will be [5] for topos theory and [11] for categorical
logic.

We dedicate this work to the memory of George Loullis.

§ 1. Spectra and Boolean representation theories. Our framework, as mentioned
in the Introduction, is the theory of spectra or localizations (cf. [1], [3], [4]) for
a quotient T, — T of geometric theories with an admissible class 4 of morphisms
of models of T. Only Grothendieck toposes will be considered and we shall assume
the following condition throughout:

r
(*) If Sets A is a topos and M is an-#-model of 7, then I'i is a model of T,.

We let Spec: To—Top — A-Top be the right adjoint to the inclusion functor.
Let us recall, that, whenever M is a set-theoretical model of Ty, Spec(Sets, M)
= (8, M) is the classifying topos of the theory of extremal morphisms (in the
factorization given by extremal-admissible maps) of models of T, with “domain” M

and codomain a model of T in some topos. We let AM k—l: M e &, be the generic
extremal morphism (or localization).

To obtain Pierce’s representation via spectra, we let T, = theory of non-
trivial regular (commutative) rings with 1; T = theory of fields, and 4 = mono-
morphism. Similarly, the ¢hoice T, = theory of non-trivial regular f-rings with 1;
T = theory of ordered fields and 4 = order preserving monomorphisms, yields
Keimel’s representation specialized to regular f-rings (cf. [7]). Notice that (%) is
satisfied in these cases.

Our first axiom requires £, to be a spatial topos (as in most applications of
spectra) but whose underlying topological space is the space of a Boolean algebra
(as in both cases above: cf.’ [9]).

AxtoM (B). Given a set-theoretical model M of T, there is a Boolean algebra By,
such that &y = She(By), i.e., the topos of sheaves on By for the finite cover
topology (a finite family covers b e By, if its supremum is b). :

Notice that B, can be recovered from &y as the complemented subobjects
of 1 (since & is coherent). Furthermore M > By, is functorial. In fact, if

a 4 o
M — N & Mods,(Ty), the composite AM > AN~ N e Modgy(Ty) gives (by
universality) a morphism

(Pus Be)
(ShchN: N) — Shfc(BM: M) in A'TOP ]
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with p; 4 (P« P} left exact (i.e., p, is a geometric morphism, and A,: p*if — N

admissible. Obviously, p; induces a Boolean homomorphism BM: By.

For later applications, we need to know that g, is a monomorphism whenever «
is an extension, i.e. a morphism of models of T, which reflects (as well as preserves)
the primitive relations. (including =) in the sense that (in Sets, say)

{a(ay), ..., a(@)) e N(R) < {ay, .., a> e M(R).
We state the definition as follows: let T be a geometric theory and & an arbitrary

topos. The map M 5 N eMod,T is an extension if for every primitive relation R
(including =) of the language of 7, the diagram

Mn_d:_)_Nn

1 1
M(R) — N(R)
obtained by the definition of « being a morphism, is a pull-back.

Our next axiom states this condition (the “conformality” condition of [12,
Lemma 6.3] or [8, Definition 5.5]).

Axiom (O). f M 5 N e Modg,(T,) is an extension, then p, is a surjection
(i.e., py is faithful).

To obtain a genuine representation by global sections, we require the following
condition on sectional representation for any set-theoretical model M of Ty.

AxioM (SR). The canonical morphism M Zriz , obtained from AM il‘—:IVI
by adjunction, is an isomorphism.

For Pierce’s representation this is [12, Theorem 4.4], while for Keimel’s rep-
resentation this is [7, Theorem 7.4], specialized to. the case of non-trivial regular
f-rings.

Our last axiom expresses the “canonicity” of the representations (cf. [12, The-
orem 5.3] and [7, Theorem 6.13]) and may be stated as follows: starting from
a She(B)-model M of T, we obtain (by the universal property of spectra) a morphism

3 I3 ~
(Sh[c(B): M) I Shfc(Bl'ﬁs FM)

since (due to assumption (x)) I'M is a model of T).

AxioM (I). For every Shy(B)-model M of T, the canonical morphism (ri, fi)
is an isomorphism. In particular B= Bz and r}t}ﬁ ~M.

DEermITION. Let T, — T'be a quotient of geometric theories with an admissible
class 4 of morphisms of models of T and satisfying (x). We call the corresponding
spectral theory a Boolean representation theory if axioms (B), (SR), and (I)_are
satisfied.

For quotients T, — T with an admissible class A as above, satisfying (%), and

whose spectral theory is a Boolean representation theory, we may separate the two
1=
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ingredients of Modg,,(T,) quite neatly (as mentioned in the Introduction). Indeed,
if #* is a subcategory of the category of Boolean algebras & and T'— T'* is a quotient
(with 7* geometric), we let (#* T*) be the category whose objects are couples
(B, M) with Be #* and M a Shy(B)-model of T'* and whose morphisms are

(2.9 . .
couples (B, M) 22 (B, M) such that B A B’ e #* and the canonical morphism

g*M 5 M’ e Modg,, (s (T*) (composition of morphisms is defined in the obvious
way).

PROPOSITION. The functor @: Modgy(To) — (B, T) defined by &(M)
= (By, M) and o (M 5 N) = (g,, h,) is an equivalence of categories.

Proof. Axiom (SR) and the properties of the factorization given by extremal-

admissible maps (cf. [1], [4]) together imply that & is fully faithful, whereas the
essential surjectivity (or denseness) of @ follows from Axiom (I).

Remark. If M— Ne Modg,(T,) is an extension and axiom (C) is satisfied,
then in the couple ®(0) = (g,, 1,); g, i8 a monomorphism.

§ 2. Macintyre’s theorem and related results. To state our main theorem, we
recall some definitions (cf. [6], [9], [13]). A coherent theory T is model complete
(resp. positively model complete) if for any existential {resp. coherent) formula ¢
there is an existential (resp. coherent) formula ¢’ such that T+ 4 = @vo' and
Troap' = |. (The pretopos associated to T is Boolean in the sense of [6],
precisely when T is positively model complete.)

Remark. It follows immediately from:the above definition, that a coherent
theory T is positively model complete if and only if for every formula ¢ there exists
a coherent formula ¢’ which is (classically) T-equivalent to ¢. The following lemma,
due to Michel Coste, is a strengthening of this remark.

LeMMA. Let T be a positively model complete coherent theory. Then, for any
Sformula @ there exists a coherent formula @' which is intuitionistically T-equivalent
to @. In particular, for any topos & and morphism a: M — N of T-models in &, given
any formula @, the diagram

an

M

N A
lleline lelx
N

Proof. By induction on ¢.

Comer’s version of the Feferman—Vaught’s theorem may be stated in two parts
(cf. [21, [14]).

ProPoSITION 1. Let T be a positively niodel complete ‘coherent theory and let B
be-a Boolean algebra.

commutes in &.
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@) If M is aShg(B)-model of T and ¢ is any formula, then there is a factorization

gn ot

\\B//

in the topos She(B), where B also stands for the subsheaf of Q in Shy(B) whose value
at an element b of the Boolean algebra B is given by {aAb| a € B}.

) If M - NeModg, (T and ¢ is any formula, then the diagram
(given by (1))

an

M ————> N
ﬂ‘?"\M\ / @N
"4
commutes.

Proof. (i) is proved by first remarking that for coherent ¢, the subobject
of M" classified by {|¢l|[ is complemented, and then using the lemma, whereas
(ii) follows from (i) and the lemma.

PROPOSITION 2. Let T be a positively model complete coherent theory and B
a Boolean algebra. If ¢ is any formula in the language of T there is a formula ¢* of
the language of the theory of Boolean algebras as well as a finite sequence Wy, ..., Yy
of formulas in the language of T with the same number of variables as ¢ such that:

given any Shy(B)-model M of T and any global section 1~a+ M
TMEo@ld] iff BF@*W@llas s Wn@lli] -

Furthermore, if ¢ is existential, o* may be chosen existential.

Finally, let us say that a full subcategory . of the category Mod(7) of models
of a coherent theory 7" is model complete (resp. positively model complete) if for every

extension (resp. every morphism) M—i NeMod(T), a (preserves and) reflects
existential formulas, i.e., for any existential formula ¢ and a sequence a of elements
of M,
MEela,..,a] iff NEoela(a),..,a(a)].

(This definition replaces an earlier one that was incorrect as pointed out by
C. Mulvey and E. Nelson.)

Assume from now on that we have a quotient Ty — T" with a class 4 as in the
definition satisfying Axiom (C).

THEOREM. Let B* be a model complete full subcategory of # and let T— T*
be a quotient with T* a coherent positively model complete theory. Then (&*, T*)
is model complete (considered as a full subcategory of Modsy, (To)=(%, T)).
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Proof. Let M o Ne(%* T*) be an extension (which we may assume to be
an inclusion) and let ¢ be a coherent formula such that N k ¢[4], where @ is a se-
quence of elements of M. We apply Proposition 2 (identifying N with I'¥) to con-
clude

By F o™l 1(@|g . WW@IIR] -

On the other hand, Proposition 1(ii) gives
AW @5 = WA@ g = W@ -

P
Since the Boolean homomorphism By, — By € #* may be chosen as the inclusion
(cf. the remark at the end of § 1) we conclude that

By B o*IIW @l oo IWm@llggl, Lo MEgld],
by using Proposition 2 once again.

- Remark. If #* is an elementary class, then so is (#*, T*) and its theory is
model-complete.

In particular, let #* = the class of atomless Boolean algebras and let T* be
the theory of algebraically closed fields. A simple argument (cf. [9]) gives that
(8*,T*) is the theory Tg of integrally closed non-trivial regular rings with 1 and
no minimal idempotents. Similarly for T* = the theory of real closed fields, we
obtain that (#*, T*) is the theory T of non-trivial regular f-rings with 1 and no
minimal idempotents such that x AQ = 0 = y(x = »*) and all monic polynomials

of odd degree have roots. Hence, both of these theories are model complete.

The following results complement our main theorem and pave the way for the
applications.

We shall say that a full subcategory . of the category Modg(T) of models
of a geometric theory T is cofinal if for every M e Modg,(T) there is an extension

M > N e Modg,(T) with Ne 4. N

We shall now assume (for our next theorems) that the quotient T, — T satisfies
(besides our assumptions) the following conditions:.

(¥)' T, has an axiomatization of the form 4 = ¢ or ¢ = |, where ¢ is a con-
junction of atomic formulas '
(x#) If MeModg,(T), then every M — M, e Modg,(Ty) is an extension.

Notice that both conditions are satisfied in our applications.

THEOREM. Let B* C—+ B be cofinal and let T— T* be a quotient such that
ModT* €— ModT is cofinal (more precisely, we assume that the statement “every
model.of T can be extended to one of T*” is a theorem of ZEC set theory). Assume,
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Jurthermore, that any B € #* can be extended to a complete Boolean algebra in ®*.
Then, (#*, T*) €— Modg,,(Ty) is cofinal. .
LemMA. Let T be a coherent theory, B a complete Boolean algebra and let

o
Sh.,(B) £ She(B) be the subtopos of She(B) given by the = topology. If
i

i
M 5 N e Modsy, (T, then iM —» iN'& Modgy,qa(T).

Proof. Since Sh,(B) satisfies the axiom of choice (i.e. epis split), i preserves
images and it is enough to show that i preserves v (i preserves A, 4 automatically
since it has a left adjoint). But this follows, by using characteristic morphisms, from
the fact that B ©—» Q & Shy(B) preserves v, wherever B is complete. (In topological
terms: in an extremally disconnected Stone space, the regular open sets coincide
with the clopen sets and the supremum of two clopen is just their union).

Remark. In [8], Loullis proves that i preserves all finitary logic (i.e. ¥, —, ~1).
Indeed, i preserves all higher order logic because of the following (easily checked by
adjointness).

ProrosITION. If é’éa: F is a subtopos of F (i.e., a is left-exact, a - i and ai = 1d),
then i preserves Il. i

Proof (of the theorem). Let M eModg,(To). By assumption, there is
BM.L B*e & with B* a complete Boolean algebra in #*.

We obtain geometric morphisms

Sbr(By) @ She,(B¥) = Sho(BY) .
[N

Since ag*M is 2 model of T in Sh,,(B*) and this topos is a model of ZFC set
theory, there is

ag*M = M* € Modgy ,z(T)

with M* a Sh.(B*)-model of T*,
By adjointness, we obtain a map
M — g4 iM* € Modgy, (5,1(T0) -

(By the lemma, iM* is a model of T* and by the assumption on Ty, g, iM* is 2 model
of T, since gy preserves |, as can be easily checked). By the assumption (+x), this
map is an extension (since this topos has enough points, it is sufficient to check it
in Sets). )

Taking global sections, we obtain an extension

M>>T(M*), with (iM% e(B* T%.

Using the same techniques, we can prove (under the same hypotheses)
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THEOREM. Assume that #* ©— B has the amalgamation property, and let T — T*
be a quotient such that Mod(T*) has the amalgamation property (more. precisely,
we assume that this statement is a theorem of ZFC). If every B € #B* can be extended
to a complete Boolean algebra in B*, then (#*, T*) has the amalgamation property.

My
Proof. Given M in (#*, T#) <>Modg.(Ty) we obtain (by (C)),
M,
BM:
Boolean monomorphisms By We now amalgamate with a complete
BM1
Boolean algebra in #*
/ BN
Y
BM B*

S
BMz/

and we proceed as before. Details are lengthy, but straightforward.

Remark. In particular, for #* =% and T* =T, we obtain that
(4, T)y~Modg,,(T;) has the amalgamation property, provided that Modg,(T)
has it. From this, we obtain immediately the results of Carson and of Weispfenning
mentioned in [9] and [10], whereby the theory of non-trivial commutative regular
rings, respectively the theory of non-trivial commutative regular f-rings, both have
the amalgamation property. We conclude (for the theorems in this section) that in
each case referred to-in the remark after the main theorem, T is the model com-
pletion of T In addition to these examples, the first author has obtained (J. Algebra
68 (1981), pp. 79-96) similar applications to certain theories of differential rings.
In the same paper, transfer theorems on the existence of prime model extensions
are given also in the context of spectra and localizations.
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