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Abstract, In this paper we shall prove, using a result of Kasahara [4], a fixed point theorem
for multivalued mappings in topological vector space which is a generalization of Matusov’s fixed
point theorem from [5].

Recently Matusov proved the following fixed point theorem [5] which is
a gencralization of the well known Tihonov fixed point theorem.

TueoreM 1. Let X be a Hausdorff topological vector space, K be a nonempty,
convex and compact subset of X and f: K— K be a continuous mapping. Then there
exists at least one fixed point of the mapping f.

Let X be a topological vector space, K X, 2 the set off all nonempty subsets
of K and 2% the set of all convex subsets of K.

Further, let % be the fundamental system of open, balanced neighbourhoods
of zero in X.

DEFINITION. We say that the mapping f: 4 — 2% (A= X) is u-continuous iff for
every V; € % there exists ¥, € % such that the following implication holds:

For every x,, x, € 4 such that x,—x, e V, and every y, €f(x,) there exists
¥, € £(x;) such that y —y, e V.

Now, we shall prove for u-continuous multivalued mappings a fixed point
theorem which is a gencralization of Matusoy’s fixed point theorem. In the proof
we shall oblain also a result on almost continuous selection property for u-continuous
multivalued mappings.

THEOREM 2. Let X be a Hausdorff topological vector space, K be a nonempty,
convex and compact subset of ®-type of [6] of X and f: K— 25 be a closed u-
continuous mapping. Then there exists at least one element x € K such that x & f (x).

" Proof. First, we shall show that the mapping f has the almost continuous
selection property, i.c., that for every e % there exists a continuous mapping
gyt K— K such that:

O] gp(x)ef(x)+V, for every xeK.
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Let Ve 4. In [4] is proved that X is a paranormed space (X, ||-]|, #) over a top-
ological semifield R,, where:

R, is the set of all mappings from 4 into R with the Tihonov product topology
and the operations addition and scalar multiplication as usual,

iI-]]: X— P,, where P, is the cone of nonnegative elements in R,,

@: Ry~ R, is a positive, continuous, linear operator such that the following
conditions are satisfied:

@ 1|x]]=0 for every xe X and ||x|| = 0 < x =0,

i) [JAx]} = JA[-[lx]l, for every x e X and for every A in the scalar field of X,

(iii) [{x+y|[<Blx+]p|) for every x, ye X.

Further, if U is a neighbourhood of zero in R, then the set {x| ||x|| e U} is
a neighbourhood of zero in X. Suppose that ¢>0 and u = {1, 15, ..., f,}c=4 so
that

lx~ylle U,, = x—yeV
where
Uy:= {hl he Ry, h(t)| <& for every t,ep}.
Since te mapping &: R,—~ R, is continuous, positive, linear mapping therc exists
a neighbourhood V,(y, &) of zero in R, such that
=yl e ¥i(u, &) = @(llx=yl)e U, .

Further, let ¥, e % be such that the following implication holds:

For every xy, x, € K such that x; —x, € ¥, and y, e f(x,) there exists v, € f (ix,)
such that. ||y, —p,ll € Vy(u, &).

Since K is compact subset of X there exists a finite st {z, z,, ..., 2,} < K such
that

K | {z;+V,}.
i=1

Let {w;}i=; be a partition of unity associated to the finite open covering
{z;+Vy}=1. Then w(x)>0 implies that x—z;e V,. Further, let y,ef(z)
(=1,2,..,n) and

n

gy(x) = 2‘1 W)y, .
Let us prove that (1) is satisfied. Namely, we shall prove that for every x ¢ K there
exists z(x) € f(x) such that
@ llgv(®) =zl € U,
and so

gy(X)—z(x)eV.

Let xeK. and ie{1,2,..,n} be such that w(x)>0. Then x—ze& V, and since
yi€f(z) it follows that there exists u,(x) &£ (x) such that [lyi—u(X)| e Vi(y, ).

icm®
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Ifie{l,2,..,n}is such that w(x) = 0 then u,(x) is an arbitrary element from f (x).
Then

def "
z2(x) = ¥ wlx) u(x)
i=1

and it is obvious that z(x) e f(x) since the set f(x) is convex for every x e K.
Further, we have similarly as in [5] (K is of ®-type):

Hay(x)—z(ONI() = H_i:[l“;(.\’)(yi——ui(x))”(fj)
< 2wl (lly=ul) @)

"
< Y wix)e = ¢
i=1

for every #; € u which means that (2) is satisfied. So, it follows that the relation (1)
is satisfied. Further, the mapping g,: K— K is continuous and from Matusov’s
fixed point theorem it follows that for cvery Ve % there exists xy & K such that

xp o= gp(x) ef(xp)+ V.
Since K is compact there exists a convergent subset xy such that limxy = x,.
The mapping f is closed and so we have that "
xg € (%),
which completes the proof.

In Corollaries 1, 2, 3 K is of ®-type.

CorOLLARY 1 [5]. Let X be a Hausdorff topological vector space, K a nonempty,
convex and compact subset of X and f: K— K a continuous mapping. Then there
exists at least one fixed point of the mapping f.

Proof. Since K is compact and f is continuvous it follows that f is also
a u-continuous mapping and a closed mapping and from Theorem just proved
it follows that there exists at least onc fixed point of the mapping f.

COROLLARY 2. Let X be a Hausdorff topological vector space, W be a closed
neighbourhood of be X, K be a compact, convex subset of X so that be K. Let
F: W K-> 25 be a closed u-continuous mapping such that the following implication
holds:

xedWnEafe(l,w) = px+(1—Fb¢F(x).
Then there exists xoe W K so that x, € F(xg).
Proof. As in [3]:
Xo = {x| xe Wn K, Ate[0, 1], xe tF(x)+(1-1b}.
It is easy to see that Xy, is closed subset of K and since X is compact it follows that X
is compact also. Further, W n K is closed and

EWAKNX, =0,
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Since X is complete regular topological space, there exists a continuous mapping
A: X — [0, 1] such that:

160 = 0 forxelky,
() = 1 forxedWnlX.

As in [3] let

[1=AG)]F(x)+A(x)b  for xe Wn K,
o) = {b for x e K\W.

It is easy to see that the mapping G satisfies all the conditions of Theorem 2 and so
Fix(G) # @. If x,e G(xo) then xoe X, and so A(xp) = 0 which implies that
G(xo) = F(x,). This means that x, € F(x).

COROLLARY 3. Let E be a Hausdorff topological vector space, K be & nonempty,
closed and convex subset of E and T: K—2¥ a closed u-contimuous mapping on
every compact subset of K so that the following conditions are satisfied:

(i) There exists C<K such that C<=coT(C).

(i) For every closed and convex subset Q such that coT(Q) = Q it follows that Q
is compact.

Then there exists xo € K such that x, e T(x,).

Proof. The proof is similar to the proof of Theorem 1 from [I]. Let
F ={0|0=C, 0 =c0Q, T(Q)=0}. The family & has the following property:

©) QecF = coT(QeF.

Let Ky = () Q. Asin [1] it follows that K 5 @ and from the implication (x) we
QeF

conclude that:
Ky = coT(Ky) .

From (i) it follows that X, is compact. Since T|K,: Ko— 25 is u-continuous
mapping using Theorem 2 we conclude that for every ¥ e & there exists a continuous
singlevalued mapping ¢y: Ko— K, such that ¢p(x) e T(x)-+V, Vxe K,. The rest
of the proof is equal as in Theorem 2.

Remark. This corollary is a generalization of Theorem 3 from [1] for single-
valued mapping.
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