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Chain conditions and products
by

Fred Galvin* (Lawrence, Ks.)

Abstract, In unpublished work, R. Laver has shown that the continuum hypothesis implies
that there are two partially ordered sets (or topological spaces) satisfying the countable chain con-
dition, whose product does not satisfy the countable chain condition. We give a simple proof of
Laver’s result, and we prove some generalizations.

§ 1. Introduction. For convenience in defining infinite products, a partially
ordered set is always assumed to have a least element, denoted by 0. If P, and P,
are partially ordered sets, the Cartesian product P, x P, is partially ordered by the
rule

(x> X)) €(V1. ¥2) & X <P AX S,

More generally, given partially ordered sets P; (ieI), the (weak) product 11»
iel

consists of all functions fe X P, such that £(#) = 0 for all but finitely many i e 1,
iel

partially ordered by the rule .
f<g = Viel f()<g0).

Let P be a partially ordered set, and let » be a cardinal. Two elements x, y € P
are compatible if there is an element z € P such that x <z and y<z; otherwise they are
incompatible. P satisfies the x-chain condition (x-c.c.) if there is no set of x pairwise
incompatible elements in P. The ,-chain condition is also called the countable
chain condition (c.c.c.). A topological space X is said to satisfy the x-c.c. if every
family of pairwise disjoint nonempty open sets of X has cardinality <ux; in other
words, if the x-c.c. is satisfied by the partially ordered set consisting of the non-
empty open sets of X, ordered by reverse inclusion.

MA (Martin’s axiom) and MAy, are the axioms A and Ay, of Martin and
Solovay [14, pp. 149-150]. Recall that MA is a weakened form of the continuum
hypothesis, while MAy, contradicts the continuum hypothesis.

If % is a cardinal, C(x) is the statement: if P and Q are any partially ordered sets
satisfying the x-c.c., then their product Px Q also satisfies the %-c.c. (C(x) is

‘% This work was supported in part by an NRC grant at the University of Calgary.
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34 F. Galvin

equivalent to the statement: if X and Y are any topological spaces satisfying the-

%-C.C., then their product X x Y satisfies the % -c.c. Moreover, if % is an uncountable
regular cardinal, then C(x) implies that an arbitrary product of partially ordered sets,
or of topological spaces with the Tychonoff product topology, will satisfy the %-c.c.
provided each factor does. These points will be discussed in § 2.)

The question, whether C(,) is true, was raised by Marczewski [13, p. 141],
and again by Kurepa [12, p. 108]. Kurepa showed that C(;) implies Souslin’s
hypothesis; in fact, if P is a Souslin tree, then P x P does not satisfy the c.c.c., al-
though P of course does. K. Kunen, F. Rowbottom, and R. M. Solovay (indepen-
dently) showed that MAy, implies C(x,); see [2, p. 75] and [17, p. 17]. R. Laver
showed (private communication) that the continuum hypothesis implies the negation
of C(x,). Laver’s proof uses the partially ordered sets constructed by Baumgartner
in [1], and is said to be somewhat complicated; in this paper we give a simple direct
proof of Laver’s result(*). In view of Jensen’s proof of the consistency of
ZFC+GCH+SH [3, p. 113], Laver’s result shows that Souslin’s hypothesis is
definitely weaker than C(x;); this answers a question of Kunen [17, p. 63] and
Tall [19, p. 333], [20, p. 614]. Finally, Roitman [16] has shown that C(x,) is false in
certain Cohen models of set theory.

In § 2 we summarize the well-known facts connecting partially ordered sets with
(extremally disconnected compact Hausdorff) topological spaces. In § 3 we prove
Laver’s theorem in its generalized form: if 2* = ™, then C(x*) is false. In § 4 we
construct more general examples; ¢.g., assuming 2% = x*, for every n<w there is
an extremally disconnected compact Hausdorff space X such that X" satisfies the
n¥-c.c. but X"*! does not. In § 5 we show that the partition relation x — []%
implies C(x). .

§ 2. Topological spaces, partially ordered sets, and products. Most of the results
in this paper can be stated cither as theorems about partially ordered sets or as
theorems about topological spaces. Using the (well-known) facts ‘collected in this
section, one can easily derive the topological formulations. from the partial order
formulations, and vice versa. The reader who is only interested in the partial order
formulations should skip this section, except for Corollary 2.10 and Lemma 2.11.

By a topological space we mean simply a (nonempty) topological space, with no
separation axioms assumed. If X is a topological space, then 7(X) is the collection
of all open sets of X, and t*(X) = t(X)\{&}. A family & of sets has the v-inter-
section property if ( &' # @ for every &' = & with || <v; thus, the No-intersection
property is the finite intersection property.

Let 5, A, u, v be cardinals. A topological space X satisfies the condition P(x, v)
if T¥(X) is the union of x families, each having the v-intersection ‘property. The

: () Professor Laver has asked me to be more precise about the history of this result. Laver
first proved that, assuming CH, the c.c.c. is weaker than property K (defined in § 2); I found a simpler
proof of Laver’s result; later I noticed that my method could be used to get a counterexample to-
C(x,), whereupon Laver\[pointed out that his construction also gives this ' :
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predensity of X is the least » for which X satisfies P (%, 80); the density of X, denoted
by d(X), is the least x such that t*(X) is the union of % families, each having a non-
empty intersection. X satisfies the condition Q(x, 1, 4, v) if there is a partition
+¥(X) = U 7, such that, for each ordinal o<x, there is a cardinal A,</ such

a<x
that, for any sets Uger,(£<J],), there exists Acl, such that [4] = p and
{Uy: &£ e A} has the v-intersection property. Thus, O(1, x%,2, 3) is the x-chain
condition; Q(x,2%,2,3) is the (x, A)-chain condition; Q(x,%,2,3) is the
(%, <X)~chain condition; Q(1, 8,, %y, 3) is property K; a regular infinite cardinal x is
a precaliber for X if X satisfies Q(1,x*, %, 8,), and a caliber if X satisfies
O, %, 2, xh). '

In fact, this paper is only concerned with the -chain condition; the other
notions defined in the preceding paragraph will not be mentioned outside of this
section. However, I want to state the results of this section in some generality, so we
can refer to them in [7]. ‘

2.1. LemMA. Let X be a topological space, let i be a cardinal, and suppose there
is a family & of subsets of X such that every member of & contains a member of

(X)), every member of v¥(X) contains ‘@ member of &, and every subfamily of &

that has the finite intersection property also has the p*-intersection property. Then:
(1) if X satisfies P(x, 8) and |X|<p, then d(X)<x;
(@ if X satisfies Q(x, A, p, %), then X satisfies Q(x, A, u, u™).
2.2. COROLLARY. Let X be a compact Hausdorff space.
() If X satisfies P(x, 8g), then d(X)<x.
@) If X satisfies Q(x, A, u, ), then X satisfies Q(x, L, u, u*).

Let X and Y be topological spaces. We write X< if there is a mapping
@: 17(X) —1t*(Y) such that, for any n<o and any U, ..., U, ezt (X),

Un.nlU=8=0oU)n..neU)=6.

We write X' = YV if X<Y and Y X. Clearly < is a quasi-ordering and = is an
equivalence relation.

2.3. LEMMA. Let X and Y be topological spaces such that X< Y, and let %, A, u, v
be cardinals, v< 5. :

(1) If Y satisfies P(x,v), so does X.
@) If Y satisfies Q(x, A, u, v), so does X.

The Gleason sbace [9] of a topological space X, denoted by GX, is the Stone
space of the Boolean algebra of regular open sets of X; alternatively, it can be defined
as follows. The points of GX are the maximal subfamilies of (X) with the finite
intersection property; the basic open sets are of the form {pe GX: Ue p} where
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U e 1(X). The pseudoweight of X, denoted by n(X), is the minimum cardinality of
a family #<=1*(X) such that every member of 77(X) contains a member of X.
X is semiregular if the regular open sets of X form a base for the topology.
2.4. LEMMA. For every topological space X:

(1) GX is an extremally disconnected compact Hausdorff space;,
2 GX=UX;
®) w(GX)<Sn(X), with equality if X is semiregular.

The forcing topology on a partially ordered set P has basic open sets of the form
{xeP: x>a}, aeP. When a partially ordered set P is regarded as a topological
space with the forcing topology, we denote it by Xp. A partially ordered set P is
said to satisfy the condition P(x,v) or Q(x, i, u, v) if the topological space Xp
satisfies it. In particular, P satisfies the x%-chain condition if and only if X, docs

A family & of sets is hereditary if AcBe¥ = Ae .

2.5. LEmMMA. For every topological space X, there is a partially ordered set P
such that Xp = X; moreover, we can take for P a hereditary family of finite sets
ordered by inclusion.

Proof. Let P = {pct(X): |pl<s, and (\p# D}. The mapping
@: 77 (X) - t¥(Xp), defined by ¢(U) = {peP: Uep}, establishes X< X,. For
each U e t¥(X}), choose p € Uand putyy (U) = () p; the mappingy: 1+ (Xp) — t*(X)
establishes Xp< X

The product of partially ordered sets is the weak direct product defined in § 1;
the product of topological spaces is the usual Tychonoff product.

2.6. LeMMA. Let P; (i € I) be partially ordered sets, P = ] Py; then Xp = H Xp,.

iel

2.7. LemMa. Let X;, Y; (i€ I) be topological spaces.
Q) I X<Y fordliel then [IX,<T] Y,

iel iel
Q) If X,=7Y, forall icl, then HX Mr.
i iel

2.8. THEOREM. For every cardinal x, the following statements are equivalent:

(1) there are two partially ordered sets satisfying the %-c.c., whose product does not
satisfy the x-c.c.;

)  there are two topological spaces satisfying the x-c.c.,
satisfy the x-c.c.;

whose product does not

(3) there are two extremally disconnected compact Hausdorff spaces satisfying
the x-c.c., whose product does not satisfy the %-c.c.

Proof. Suppose P and @ are partially ordered sets satisfying the %-c.c., while
P x Q-does not satisfy the x-c.c. Le., X, and X,, satisfy the x-c.c., but Xpx g does
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not. By Lemma 2.4, GX, and GX, are extremally disconnected compact Hausdorff
spaces, GXp = Xp and GX;, = X,. By Lemma 2.3, since Xp and X, satisfy the
%-c.c., s0 do GXp and GX,. By Lemmas 2.7 and 2.6, we have GXpx GX, = XpX
x Xg = Xpxg (in fact, Xpx X, = Xp,o}; by Lemma 2.3, since Xpyo does not
satisfy the x-c.c., neither does GXpx GX,,. This proves (1)=-(3). Obviously (3)=-(2).
To prove (2)=>(1), suppose X and Y are topological spaces such that X and Y
satisfy the x-c.c., but X'x ¥ does not. By Lemma 2.5, there are partially ordered
sets P and Q such that Xp = X and X, = 7, and then Xpy g = Xpx Xy = XX Y
by Lemmas 2.6 and 2.7. By Lemma 2.3, X, and X, satisfy the x-c.c., but Xpyo
does not; i.e., P and Q satisfy the x-c.c., but Px Q does not.

The next lemma is a special case of a theorem of Noble and Ulmer [15, Theo-
rem 1.3, p. 331; Corollary 1.4(i), p. 332].

2.9. LeMMA. Let x be an uncountable regular cardinal, and let X; (iel) be
topological spaces; then || X, satisfies the x-c.c. if and only if [] X; satisfies the

iel ieF

x-c.c. for every finite Fcl.

2.10. COROLLARY. Let % be an uncountable regular cardinal, and let P; (i€ I)
be partlally ordered sets; then [| P, satisfies the x-c.c. if and only-if ] P; satisfies

iel ieF

the x-c.c. for every finite F<1I.

Thus, for uncountable regular %, if the %-c.c. is preserved by products of two
factors, then it is preserved by arbitrary products. The proof of Lemma 2.9 is based
on the following fact, which we will also need for our constructions. :

2.11. LEMMA. Let % be an uncountable regular cardinal, and let F, (a<x) be
finite sets. Then there exist Acx and F such that |A] = »x and '

a,fed,a# B => F,nFy=F.

For a p'roof of this lemma (in a more general form due to Erdds and Rado)
and a discussion of its history, see [2, Theorem 3.2, p. 62] and [2, pp. 79-80].

§ 3. The basic construction. In this section, assuming 2* = »*, we construct
partially ordered sets P, and P, such that P; and P, satisfy the x*-clc, but Py x P,
does not.

If A and B are sets and x is a cardinal, we write A®B = {{a, b}: ac 4,b e B},
A = {XcA: |X| =}, [A]"* = {XcA: |X|<x}. Given a cardinal 1 and a set
K<[AP, we define P(4, K) = {Fe[A]"™: [FP<K}; P(A, K) is partially ordered
by inclusion.

3.1. LemMA. Let A be a cardinal. If Ky, K,<=[A]
P, K)XP(A, K,) does not satisfy the A-c.c.

Proof. Clearly, {({a}, {o}): <A} is a set of 4 pairwise incompatible elements
of P(A, K)x P(A, K,).

3.2. LEMMa, Let x be an infinite cardinal and let A be a set. Suppose that, for
each o<, we have a set I, with |\I,} = x and finite sets E§CA (& e1,) such that, for

and Ky N Ky = @, then
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every ae A, |{tel,; aeEE}]<.\*o. Then there are pairwise disjoint sets A, A
(v<x) such that

Vv<x Vo<u|{¢el;: EicAd} =x.
The proof of Lemma 3.2 is a straightforward induction of length .

3.3. THEOREM. If % is an infinite cardinal such that 2* = x*, then there are
partially ordered sets P, and P, such that P, and P, satisfy the »*-c.c., but PyxP
does not. ’

Proof. By Lemma 3.1, it will suffice to construct disjoint sets K;, K, =[x"]?
such that P(x™, K;) and P(x*, K,) satisfy the x*-c.c. In fact, we are going to define
disjoint sets K;(@), Ky(«)co for every a<x'; we then put

K, = {{B, a}: a<x*, BekKfo)}.
Let (F ,L:§u<%+) enumerate all %-sequences of pairwise disjoint finite subsets of %™ ;
..9" u =.(F s E<s). The sets K;(«) and K,()) will be constructed simultaneously, by
induction on a, so as to satisfy the condition:
() if ie{l,2}, u<a, UFjea, Xele]™™, and |{{: FIQXcK} =, then
E<n ’

{¢: Fio X<k, and FicK@) =, ie., {&: Fi®(X U {e}) =K} = x.

Supposg that K,(f8) and<IN<2(19) have already been defined for all f<a. Note that,
if UF;cxand Xe[a]*™, then {¢: FE@X <K} is well-defined, since it depends

E<n
only on K, n [o]?, which is already determined. Let ((in, Ho> Xp): @<x) enumerate
al'l triples (i, p, X) satisfying the hypotheses of () for our fixed o(:. Using Lemma 3.2,
with 4 =a, I,={& F5E®XQCK;,,}= and Ej=F,, we obtain disjoint séts’
Ki(0), Ky(w)co satisfying the requirements of (*). )

We hgve defined disjoint sets K, K, <[ *]? satisfying (*); now we have to show
t‘hat the partially ordered sets P(x*, K;) and P(x", K;) satisfy the x*-c.c. Let
i€ {1,2} and suppose E*e P(x*, K) for &< x*; we have to show that, for sorr;e .ordi-
nals £<n<x¥, we have E°U E"e P(x*, K), i.e., [ESu E"*cK,. B,y Lemma 2.11
we can assume that there is a set E such that E¥n E" = E for ¢ <p<u®. Then’
the sets F*= ENE (<x*) are pairwise disjoint. Moreover, since [E*u E"P
=[EPUIETP U ('F§®F") for {<n<x*, and since [E%]2 U EE"}chh it will
;%ﬂ;cngofOfli.n:Hofriufls g<n<x® such that F’QF'cK,. Choose p<x" so that

Choose f<x* so that < § and €L<) FicB. Since the sets F* are pairwise disjoint,

®
we C;.;‘l choose an ordinal 7 so that x<n<x* and F" A B = B; hence u<a and
e;gc wcw for all we F™. Let F' = {uy, ..., o}, 0 <...<at,.

] Now, by applying (*) n times, with 1, G, ..., O, SUccEssively playing the role
of e and @, {o;}, ..., {&s, ..., &,—,} the role of X, we see that

He<x: FiQF'cK} =x.
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In- particular, there is some £<x<n such that F*®F"cK;; this completes the
proof.

3.4. COROLLARY. If % is an infinite cardinal such that 2 = x™, then there are
extremally disconnected compact Hausdorff spaces X, and X, such that Xy and X,
satisfy the w*-c.c., but X, x X, does not.

Proof. Theorems 3.3 and 2.8.

The character of a topological space X at a point x e X, denoted by x(X, x),
is the minimum cardinality of a neighborhood base at x; the character of the space X
is x(X) = sup{x(X, x): x e X}. Thus, Xis first countable if y (X)< xo. The following
refinement of Corollary 3.4 was pointed out by E. van Douwen (private communi-
cation) and is included here with his permission.

3.5. THEOREM. If x is.an infinite cardinal such that 2% = x*, then there are zero-
dimensional Hausdorff spaces X, and X,, of character <x, such that Xy and X,
satisfy the w*-c.c., but X, x X, does not.

Theorem 3.5 may be proved by using the sets X; and K, constructed in the
proof of Theorem 3.3. The points of X; are the maximal sets Acxt with [P < K;;
the basic open sets are of the form {4 e X;: Fcd}, Fe [#*7%™. The fact that
7 (X)) < follows from the fact that | 4| <x for all 4 € X;. Alternatively, Theorem 3.5
follows from Corollary 3.4 and the following lemma, which was also pointed out by
Van Douwen.

3.6. LEmMA. Let A be an infinite cardinal. Suppose there are topological spaces X
and X, such that Xy and X, satisfy the A-c.c., but Xy x X, does not. Then there are
zero-dimensional Hausdorff spaces Yy and Y, with (Y3, Y)<A for all y e Y;, such
that Yy and Y, satisfy the A-c.c., but Y1 x X, does not.

Proof. Choose U?ett(X,) and Uieth(X,) (x</) so that the rectangles
U®x U are pairwise disjoint. For i {1, 2}, the points of ¥; are the maximal sets
Ac) such that {Uf: o€ A} has the finite intersection property; the basic’ open sets
are of the form B = {4 & ¥;: Fc A}, Fe [A]*™. It is easy to check that ¥y and Y,
are zero-dimensional Hausdorff spaces and satisfy the A-c.c. To see that ¥; x Y,
does not satisfy the A-c.c., observe that the rectangles BB < B (n< ) are pairwise
disjoint nonempty open sets of ¥;x ¥, Now consider any AeY,. If a,fic4,
o % B, then U? n UL # @ while (Ufx U3) n (Ul x UB = @; hence Ui n Ub = @.
Le., the sets Uj (& A4) are pairwise disjoint. Since X, satisfies the A-c.c., we must
have |4|<A. Since {#]: Fe [4]¥%°} is a neighborhood base at A, it follows that
%(¥y, A)<A. Similarly, x(Y5, A)<4 for A& Y,.

Van Douwen’s arguments also apply, to a certain extent, to the more general
examples of § 4. For examplc,'as Van Douwen has remarked, assuming 2% = »t,
for every n<w there is a sero-dimensional Hausdorff space X of character <x such
that X" satisfies the %*-c.c. but X"** does not.

§ 4. More general examples. The main result in this section says thatt3 assuming
2% = »*, we can construct families of partially ordered sets or topological spaces
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so that prescribed products fail to satisfy the %" -c.c.; for example, we can construct
spaces X, Y, Z such that X'x Y2xZ> does not satisfy the »*-c.c., while YxZ¢,
X% ¥YxZ® and X°x Y®xZ?* all satisfy it. Still assuming 2% = 5%*, we construct
a partially ordered set P such that P satisfies the x*-c.c., but the set P* of all
pairwise compatible finite subsets of P, ordered by inclusion, does not; in this case,
some (finite) power of P must fail 1o satisfy the x*-c,c. We obtain similar results for
the 2™-c.c. assuming MA. :

Let A be a cardinal. A set K<=[A]* will be called big if, given any n<w and any
Hy, .., H,c 2P, if KeH, n...n H,, then P(, H)x...xP(A, H,) satisfies the
A-c.c. The following lemma is a strengthening of the result of Erdss, Hajnal, and
Rado [4, Theorem 17, p. 145] that 2% = %* implies »* +> [x*]3. .

4.1. LemMA. If x is an infinite cardinal such that 2* = u™*, then there are x*
Dpairwise disjoint big subsets of [x*1]%.

Proof. Let (#,: p<x*) enumerate all x-sequences (F*: £<x) of finite sub-
sets of %™ such that, for every ae ™, [{¢: ae F¥}|<so; &, = (Fi: £<x). As in
the proof of Theorem 3.3, we can use Lemma 3.2 to construct pairwise disjoint
sets K,c[x" PP (v<u*) satisfying the following condition for every w<cx™:

(®  if v<e, p<o, U Fico, Xel«]*™, and |{¢&: Fi®X<K,}| = %, then
&<
He: Fi®X U {a) ek} =« .

Now consider any v<x*; we have to show that K, is big. Let n<w and suppose
Hy,y s Hye 0¥ 1%, K,cH; A ... H,; we bave to show that '

POt Hy) X .. x P(x*, H)

satisfies the %*-c.c. Suppose (E%, v EDeP(x*, H)x...xP(x", H,) for £<x*;
we have to find ordinals é<py<x* such that

(EfUEL, ., EXU ED e P(x*, H)X ... x P(x", H),

ie., [Efu EcH, for 1<i<n. By Lemma 2.11, we can assume that there are sets
Ey, ..., E, such that Ef n El = E; for 1<i<n and é<n<x™. Let Ff = ENE;;
since [Ef U EJ1* = [Ef]? U [EJ]? U (FEQF}) for & # n, and since [Ef]* U [E]P <H,,
it will suffice to find ordinals é<n<wx* such that FEQFIc H, for 1<i<n. Let
Fo=Ff .. U FS; since Ky=H, n ... n Hy, it will suffice to find ordinals &<y <s*
such that FE®F'c K,. Since the sets F§ for fixed 7 are pairwise disjoint, we have
[{¢: ae FP}|<nfor every a e »¥; hence there is an ordinal u<x" such that F,‘f =F¢
for all £<x. Choose f<x™ so that u<pB, v<pf, and Fﬁcﬁ; choose 7 so that
i<x

x<n<x* and F'n B = &. Now, as in the proof of Theorem 3.3, we can use the

condition (+) to show that F*®F'<K, for some &<x. This completes the proof of
Lemma 4.1. '
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4.2. LEMMA. Assume MA. and let x<2™. Suppose we are given a set A and finite
sets Ech (E<w, g<) such that, for every g<x and every a€ 4, |{¢: ae Ef}[<x~'0.
Then there gre pairwise disjoint sets A,cA (n<w) such that !

Vn<oVo<x |{&: EicA} = x,.

The proof of Lemma 4.2 is a straightforward application of Martin’s axiom.

4.3. LEMMA. Assuming MA, there are s, pairwise disjoint big subsets of [2™°]2.

Proof. Let (#,: 1<2%% enumerate all w-sequences (F°: ¢ <w) of finite sub-
sets of 2% such that, for every o 2, l{€: ae F‘:}[ <Ng; Fp= (FE: é < ). Imitating
the proof of Lemma 4.1, with Lemma 4.2 taking the place of Lemma 3.2, we can
construct pairwise disjoint sets K, [2%°]? (n <w) satisfying the following condition
for every a<2™:

() if n<wo, p<a, U Fice, Xe[u]™, and |{&: Fi@XcK,}| = %, then
. (<o

& FioX u faP ek} = % -

Now, as in the proof of Theorem 3.3 or Lemma 4.1, we can use (x) to show that the
sets K, are big.

It should be noted that Lemma 4.3 is only useful in case 2% is weakly inaccessible.
If MA holds and 2™ is not weakly inaccessible, then we have 2%¥° = x* = 2* for
some % [14, Theorem 1, p. 164], and it follows from Lemma 4.1 that there are 2™
pairwise disjoint big subsets of [2%9]2, The conclusion of Lemma 4.3 can not be im-
proved without some additional assumption, since Martin and Solovay have proved
that, if the existence of an uncountable measurable cardinal is consistent, then MA is
consistent with the assumption that 2™ carries a nontrivial &, - saturated 2¥°- complete
ideal [14, p. 175]. Now, by a theorem of Solovay [18, Theorem 5, p. 406}, if oo
carries such an ideal, then 2%°— '[2“"]?&15 in particular, there is no family of , pairwise
disjoint big subsets of [2M]2

4.4, LEMMA. Let A be an infinite cardinal, and let & be a family of pairwise disjoint
nonempty finite subsets of 2* Then there are sets N,= ) (w<2?) such that, for every

finite set A=2’, we have () N, = @ if and only if A contains a member of .
aeA

Proof. By a theorem of Hausdorff (see [11] or [2, Theorem 3.16, p. 76]), there
are functions f,; 2*— {0, 1} (v<Z) such that, given any finite set 4<2* and any
function g: A — {0, 1}, there exists v<2 such that f,(e) = g() for all xe 4. For
v<A, define B, = {a: f(®) = 0} and C,= B\ U {Se&: S=B,}. Finally, for
a<2* let N, = {v<l: xeC,}. Consider any finite set Ac2*; we show that

N N, # @ if and only if 4 contains no member of &. First, suppose v € ﬂA N,
aed . e
then A<= C,, and it is clear from the definition of C, that C, contains no member

of &. Conversely, suppose that 4 contains no member of &. Then we can choose
v<A so that f, vanishes identically on 4, but does not vanish identically on any
of the (finitely many) sets S'e & such that S 1 4 # &. Then A=C,,i.e,ve [} N,.

2ed
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In fact, the assumption in Lemma 4.4, that the members of & are pairwise
disjoint, could be weakened considerably; however, the lemma as stated is sufficiently
general for our purposes.

4.5. LEMMA. Assume that either w>%, and L = 2% = x*, or else \ = x =y,
and MA. holds. Let & be any family of pairwise disjoint nonempty finite subsets of 2*,
Then there are partially ordered sets P, (n<2) such that, for any indexed family
wy<2* (i e I), the product [] P, satigfies the 2*-c.c. if and only if the set {u;: ie I}

' iel

contains no member of &.

Proof. By Lemmas 4.1 and 4.3, there are pairwise disjoint big sets
K,=[2]* (v<4). By Lemma 4.4, there are sets N,cA (x<2%) such that, for every

finite set A=2*, we have ()N, = @ if and only if 4 contains a member of &,
[1=F 8
For a<?2* let P, = P(2%, H,), where H,= | K,. Now suppose a,;<2* for ie J;
veNg

we have to show that the product [] P,, satisfies the 2%c.c. if and only if the set
! il
{01 ie I} contains no member of <&,
Suppose {u;: iel}oA4de5; then 4 = {u;: ie I} for some finite set [y,
Since 4 € &, we have [} N,, = @; moreover, since the sets K, are pairwise disjoint,

ielo
we also have (| H, = @. For £<2" define fye [] P,, so that f(i) = {£} for ie I,
ielg iel

S§) = & for i e INI,. Then { f;: £<2*} is a set of 2* pairwise incompatible elements
of T]P,.
iel

Now suppose {;: ie I} contains no member of &; we have to show that
ig P, satisfies the 2%c.c. By Corollary 2.10, it will suffice to show that _HFP,,,
satisfies the 2"-c.c. for every finite set F=/. Since {a;, .., o;;,} contains no m;nber
of &, we have Nai, NN N,,i" # .. Choose v EN% NN Nﬂt,.; then
KyeHy n..nH, . Since K, is a big subset of [2*]>, it follows that
P(2%, H,i!)x...x}’(z", Hﬂz,,) satisfies the 2*-c.c., i.e., iHF P,, satisfies the 2%-c.c.

iy’

This completes the proof of Lemma 4.5.

The next lemma generalizes Lemma 4.5 by eliminating the requirement that the
family & consist of pairwise disjoint sets. s
. A6 LeMMA. Assume that either x>, and )\ = 2% = 3", or else A = u = No
and MA holds. Let & be any family of nonempty finite subsets of 2*. Then there are
partially ordered sets P, (x<2") such that, for any indexed family a,<2* (ie I), the
product -HIP“’ satisfies the 2"-c.c. if and only if the set {a;: ie } contains-no member

1€

of &.

Proof. Choose a 1-to-1 mapping ¢: & — 2%, and define

I = {Sx{p()}: Se#}.
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Then &’ is a family of pairwise: disjoint nonempty finite subsets of 2*x 2*. By

Lemma 4.5, there are partially ordered sets P, g (0, B<2* such that, for any indexed

family (o, ;) € 2*x2* (ie I), the product [] P, , satisfies the 2*-c.c. if and only
el

if the set {(z;, B;): i€ I} contains no member of &’. Now the partially ordered sets
P, = T] P, (@<2*) have the desired properties.

f<24

Given partially ordered sets P; (ie I), we define the sum

?;11’1 ={se iI—IIP,-C {i: £ # 0}<1},
partially ordered by the rule
F<g = Yielf(H<g().
In other words, Y P; is the union of copies of the P;’s which have the same zero
fel

element but are otherwise disjoint; for i %/, nonzero elements of P, are incomparable
with nonzero elements of P;.

4.7. THEOREM. Assume that either x>ty and & = 2% = x*, or else 1 = x = 8,
and MA holds. Let & be any family of functions f: 2* — w such that
O<|{o: f=) # 0} <Ko \

Sor each fe & . Then there are partially ordered sets P, (0.<2*) such that, for every
cardinal-valued function g defined on 2, the following statements are equivalent:

(1)  TIPI“ does not satisfy the 2%-c.c.;
a<24
2 3AfeF Va<2? f0<9()

Proof. For fe &, let S; = {(x, ) e 2*x w: r<f(w)}; then & = {S;: fe F}
is a family of nonempty finite subsets of 2*x w. By Lemma 4.6, there are partially
ordered sets P, (<?2* r<w) such that, for any indexed family (x;,r)€2*xw
(ie D), the product [] P,,,, satisfies the 2*-c.c. if and only if the set {(o;, r)): ie I}

iel

contains no member of &. For a<2* let P, = Y P,,.
r<o

We have to show that (1) and (2) are equivalent for every cardinal-valued function g
defined on 2*
Suppose (1) holds. Then, by Corollary 2.10, some finite partial product of ] PI@

<2t

(considered as a product of P.’s) fails to satisfy the 2*-c.c.; i.e., there exist n<w
and oy, ..., az,,~<2;L such that each a<?2* occurs at most g(x) times in the sequence
gy wors Oy, and P = Py % ... X P, does mot satisfy the 2"-c.c. Now P is the union of
countably many subsets, each isomorphic to Py, ,, X ... X Py, ,, fOr some ry, ..., 1, <@;
hence there exist 7, ..., r, < such that P, , X ...x P, ,, does not satisfy the 2*-c.c.
Then we must have S, {(¢;, ry), s (%, ,)} for some fe #. It follows that each
a<2* occurs at least f(x) times in the sequence o, ..., &,. Hence f(e)<g(e) for
all a<2”; i.e., (2) holds.
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To see that (2)=(1), we observe that the product [] P, does not satisfy

(a,r}eSy
the 2*c.c., and is embedded in [] PZ® in such a way that incompatible elements
a<2h
of P, . remain incompatible in [] P¥. This completes the proof of
(a,r)eSy

a<2A
Theorem 4.7.
4.8. COROLLARY. Assume that either x2 Ny and A = 2* = x", or else . = x = §,
and MA holds. Let % be any family of functions f: 2*— w such that

0<lfa: £ @) # 0<%

Jor each fe F. Then there are extremally disconnected compact Hausdorff spaces
X, (0<2* such that, for every cardinal-valued function g defined on 2*, the Jollowing
statements are equivalent:

V) I X2* does not satisfy the 2*-c.c.;
@ JfeFVa<f(@)<g@).

Proof. Let P, (x<2% be the partially ordered sets given by Theorem 4.7 for
the same x, 4, and #. Put X, = GX, . By Lemma 2.4, each X, is an extremally
disconnected compact Hausdorff space, and X, = X, . By Lemmas 2.7(2) and 2.6
we have ILXﬁ‘“) = HZ(XP“)”‘“) = Xpwhere P = [] P,. 1t follows by Lemma 2.3(2)

a< a< 2

9< 24

that [] X5 satisfies the 2*-c.c. if and only if [] P, satisfies it, i.e., if and only

%< 2A a<2h
if (2) holds.

4.9. COROLLARY. dssume that either %22 %q and 2* = %™, or else » = 8, and MA
holds. Then, for every n<cw, there is an extremally disconnected compact Hausdorff
space X such that X" satisfies the 2%c.c. but X" does not.

Proof. In Corollary 4.8 take & = {f} where f(0) = n+1, f(x) = 0 for
0<a<2?,

The next theorem shows that, in the case A = 2% = %*, Theorem 4.7 is best
possible, in the sense that we could not replace 2% by a larger cardinal,

4.10. THEOREM. If A is any infinite cardinal, then there do not exist partiall Iy ordered
sets P, and Q, (a<(2)7*) such that P,x Q, fails 1o satisfy the A-c.c. for a< (28",
while P,x Q, satisfies the A-c.c. for a<f<(2})*,

Proof. Suppose that P,x Q, fails to satisfy the i-c.c. for a<(h*. For
each «, choose a subset P, =P, such that: P, x Q, confains a set of 1 pairwise incom-
patible elements; any two elements of P, which are compatible in P,, are also
compatible in P,; and |P,<A. Since there are only 2* nonisomorphic partially
ordered sets of cardinality A, we can choose a<f<(2M* so that P, and P,', are iso-
morphic. Hence P, x 0 is isomorphic to P, x Q- Since Py x @, does not satisfy the
A-c.c., neither does P, x Q. Since incompatible elements of P, x Qp remain incom-
patible in P, x Q;, it follows that P,x Qg does not satisfy the A-c.c.
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Recall that, if P is a partially ordered set, then P* consists of all pairwise com-
patible finite subsets of P, partially ordered by inclusion.

4.11. LeMMA. Let A be a cardinal with f1>w, let r<w, and let P,, ..., P, be
partially ordered sets. If Pix..xP} satisfies the A-c.c. for every n<w, then
P¥x ...x P} satisfies the A-c.c.

Proof. Suppose (Ff, ..., Ff) € PY ... x P} for £<); we have to show that, for
some ordinals & <5 <A, we have (F{ U F, ..., FE U F") e P¥x ... x P*. Since of 1> w,
we can assume that, for each ie {1, ..., r}, there is a number m;<w such that

|Ff| = m, for all £<A. Let n; = ("";H), and choose a 1-to-1 mapping

@i {7, kY 1i<hesm) — {1, . n)
Write Ff = {xil, <ois X7 ). Since the elements of F¥ are pairwise compatible in P;,
we can choose yf = (¥} 1, ..., ¥ ,) € Pl¥so that x{ , X5 K IE guiny FOr 1Sj<k<m,.
Let y* = (3, ..., ¥ e Pitx ... x P™ By hypothesis, Pi' x ... x P}" satisfies the A-c.c.;
hence »* and " are compatible for some é<n<l. We have to show that
(F§ U F, .., FE U F) e PYx .. x P}, i.e., that x} ; and x7, are compatible in P, for
Igigr, 1<j<m;, and 1<k<my. In fact, let h = ¢({], k}); then x{jsﬁ,h and
x] < 4. Since ){,, and y], are compatible in P;, so are xf' jand x7g.
4.12. LemMA. Consider the following statements for a fixed cardinal i:

(1) there are partially ordered sets Py, Py, and P, such that Pyx P}, P§x P53, and
P x P} satisfy the A-c.c. for every n<w, but Pyx P, x P, does not satisfy the
A-c.c.}

(2)  there is a partially-ordered set P such that P satisfies the A-c.c., but P* does not;

(3)  there are partially ordered sets P and Q such that P and Q satisfy the A-c.c.,

but Px Q does not.

If ofA>w, then (1)=>(2)=>(3).
Proof. First suppose there are partially ordered sets Py, Py, P, as in (1). Define
a subset P = Q, U Q; U Q,<PgxPsx P, where

Q, = {(Fy, Fy, Fy)) e P§x Py x P3: F, = @} .

Then Qq, @, and Q, are isomorphic, respectively, to P} x P}, Py x P3, and P§x P},
It follows from Lemma 4.11 that Q,, Q,, and @, satisfy the A-c.c., and con-
sequently P satisfies the A-c.c. Choose pairwise incompatible elements (x5, x§, x5)
€Pox P xP, (<), and define
Ef = {({Xﬁ}, dg,9), (ﬂ, {xi}: 9, @, 0, {xi})} .

Then {E%: <2} is a set of A pairwise incompatible elements of P*. Now suppose
there is a partially ordered set P satisfying the 1-c.c., such that P* does not satisfy
the. A-c.c. Then, by Lemma 4.11, there is a number n<w such that P" does not
satisfy the A-c.c. Let n be the least such number, and let Q = P*"%; then P and Q
satisfy the A-c.c., but Px Q does mot.


GUEST


46 F. Galvin

4.13. THEOREM. Assume that either x> 8, and 2" = x™, or else » = %, and MA
holds. Then there is a partially ordered set P such that P satisfies the 2"~c. c., but p*
does not.

Proof. By Theorem 4.7 (or Lemma 4.5), there are partially ordered sets Py, Py,
and P, satisfying (1) of Lemma 4.12 for A = 2%,

§ 5. A positive result. Let us define a special case of the “square bracket” partition
relation of Erd 6s, Hajnal, and Rado [4, p. 144]. For cardinals » and 2, the symbol

A— [1]% denotes the following statement: for any partition [4]* = U K, where
il
4] =4 and |I| =%, there exist B<A and iyel such that |Bl = A and

[Bf= |J K. For n<w, the relation 1 — [Al7+ 1 is easily seen to be equivalent
iel\{ip}
to the following: for any partition [4]* = |J K; where |4] = A and [] <8, there
iel

exists B4 and J ! such that |B = 4, |J|<n, and [Bl*c |J K.
167

€

In this section we prove that, if two partially ordered sets (or topological spaces)
satisfy the A-c.c., where 1 is a cardinal such that 1 — [A]3, then their product also
satisfies the A-c.c. The only nontrivial case is when A is a regular cardinal such that
24— [A13 but 4 +> [4]3; unfortunately, 2 do not know if the existence of such cardinals
Is consistent with ZFC. It is known that 4 — [4)? does not hold if A is 8y, 2% or
of 2%; in fact cf2%° 4 [cf283, [8, Lemma 4, p. 170], 2% 4+ [2%)%, [8, Theorem 1,
p. 170, and ; > [%,12 [8, Theorem 2, p. 1711

5.1. LEMMA. Let ) be a regular cardinal such that }. — [213. If a partially ordered
set P satisfies the J-c.c., then P also satisfies the condition Q(1,2%, 2,3), i.e., every
subset of P of cardinality )\ contains a pairwise compatible subset of cardinality .

Proof. Let P be a partially ordered set satisfying the A-c.c., and let 4=P,
|4] = A. The conclusion is trivial/if 1 - [A3, so we assume that A > [A13; then,
by a theorem of Hanf [10], there is a linear ordering < of 4 such that no subset

of 4 of cardinality A is well-ordered by < or >. Choose a 1-to-1mapping ¢: 4 — A.
Define

Hy = {{x,y} e [4]*: x<y and p(x)<p()};
H, = {{x,p} e [4]*: x<y and P>k
Ky = {{x,»} e[4]*: x and y are compatible in P};
K, = {{x,y}e[4]*: x and y are incémpatible in P}.
Then [4]? - H UH, =K, UK,, so we have
[P = (B, n K v (Hy 0 Ky v (H; n K)u(H,nKy).

By 1— [1]3, there is a subset B<A with |B] = 4, such that [BJ* is covered by 2
of the 4 classes H; n Ky, H, n Ky, Hy 0 Ky, H, 0 K,. We can not have [Bl*< H,
or [BP<H,, as B would then be well-ordered by < or >, respectively; therefore
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we have [BI* =(H, n K)) U (H, n K;) for some i,je {1, 2}. We want to show that
[B) =Kj, i.e., that = j = 2. Suppose, on the contrary, that i = 2 or j = 2. We
must also have i =1 or j = 1; otherwise we would have [BI*cK,, contradicting

" the assumption that P satisfies the i-c.c. Thus {i,j} = {1, 2}; by symmetry we can

assume that i = 1 and j = 2. This means that, if X,y € B, x<y, then x and y are
compatible in P if and only if ¢(x)<p(y). By a lemma of Erdss and Rado
[5, Lemma I, p. 446), there are sets C, D= B such that |C] =|D] = A and c<d
for all ce C, de D. Since 1 is regular and ¢ is 1-to-1, we can choose c;e Cand
dee D (£<2) so that ¢(c)<e(d)<e(c,) for E<y<i. For each &<, cg and dy
are compatible in P, since c;<d, and ¢ (c)<¢(dy); let x; P be a common upper
bound for ¢y and d; in the partial ordering of P. Since P satisfies the A-c. c., x, and
x, must be compatible for some é<n <. Then ¢, and d; are compatible; but this
is a contradiction, since ¢,<dy and ¢(c,)>¢(dy).

5.2. TuEOREM. Let A be a cardinal such that J.— [A13. If two partially ordered
sets Py and P, satisfy the J-c.c., then their product P, x P, satisfies the A-c.c.

Proof. If 4 is regular, the result follows easily from Lemma.5.1. We assume,
then, that A is singular, cf A = x<1. Let P, and P, be partially ordered sets satisfying
the A-c.c., and suppose there are A pairwise incompatible elements

E<h.

Choose a mapping @: 4- 2 which is not constant on any set of cardinality A.
Define

(3,25 e P, x P,

Hy = {{&, n}e U 0(D) = o)};
Hy = {{&.n} e A 0 # o}
K = {{f ,nhe AP 2§ and X are incompatible};
K, = {{&, 1} € [A]*: x§ and x} are incompatible} .
Then [A]* = H, U H, = K; U K, so we have
P = (Hyn K) U (H 0 Ky) v (Hy 0 K) w(H 0 K.
By A — [A]3, there is a set B A with | B| = A, such that [BI*c(H; n K) U (H, N Kp
for some 7, j e {1, 2}. By symmetry we can assume that i = 1. Then [B]* n H;cK;
ie,if &, ne B, & # n, and (&) = @), then x§ and x7 are incompatible. Now, by
a‘theorem of Erdds and Tarski [6, Theorem 1, p. 320], since P, satisﬁes‘ the A-c.c.
and A is singular, it follows that P, satisfies the Ay-c.c. for sorqe cardinal 1y<4.
Since |B| = J, there is a subset By« B with |By| = 4o, such that ¢ is constant o.n %‘3‘0.
Then {x$: & By} is a set of 4, pairwise incompatible elements of P;, contradicting
the fact that P, satisfies the A5-c.c. .
5.3. THEOREM. Let A be a cardinal such that A — [Al3. If two topological spaces X
and X, satisfy the A-c.c., then their product X, x X, satisfies the A-c.c.
Proof, Theorems 5.2 and 2.8.
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Continua whose hyperspace is a product
by
Sam B. Nadler, Jr. (Morgantown, WV)

Abstract. Let X be a nondegenerate metric continuum, By the Ayperspace of X is meant C(X)
= {A: A is a nonempty subcontinuum of X} with the Hausdorff metric. An investigation is made
of when C(X) is homeomorphic to a cartesian product of nondegenerate continua. Some examples
are given using techniques in infinite-dimensional {topology and some unsolved problems are
stated.

1. Introduction. In [21] are some results concerning the structure of all
finite-dimensional continua whose hyperspace and cone are homeomorphic. Among
other results, I showed that there are exactly eight such hereditarily decomposable
continua [21, (1.1)] and that for such continua which are indecomposable, each
proper subcontinuum is an arc. In [25] we showed that any finite-dimensional con-
tinuum whose hyperspace and suspension are homeomorphic must be an arc.
Using [15, 5.4], 9.7 of [10] may be restated as follows:

(1.1) TueoreM [10]. Let X be a locally connected continuum. If C(X) is a finite-
dimensional cartesian product of (nondegenerate) continua, then X is an arc or a circle
(and conversely).

The above-mentioned results provide the principal motivation for the following
question:

(Q) For what continua X is C(X) homeomorphic to a cartesian product (of
nondegenerate continua)?

In this paper I give some answers to (Q). The next section is devoted to giving
some general results, and some complete answers to (Q) in some special cases. In
Section 3, I consider the situation when X is locally connected and C(X) is an
infinite-dimensional cartesian product. The section contains several examples and
Theorem (3.15) which hopefully [see (3.19)] will lead to a characterization com-
pletely answering (Q). )

I adopt the following notation. The term nondegenerate means consisting of
more than one point. The letters X, ¥, and Z always denote continua (a continuum
is a nondegenerate compact connected metric space). I refer the reader to [15] for
preliminary information about the space C(X ). Whenever I say C(X) is a cartesian
product, T mean that C(X) is homeomorphic to the cartesian product of
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