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A class of infinite-dimensional spaces. Part II:
An Extension Theorem and the theory of retracts

by

John H. Gresham (Fort Worth, Tex.)

Abstract. A class of infinite-dimensional spaces, called C-spaces, is defined.
DEFINITION. A space X has property C (is a C-space) if for every sequence {(Zi}f—i-l of open
covers of X there is a sequence {‘\Li}ivil of families of open sets such that (i) each family U is

o0
pairwise disjoint, (i) if U €W, the U C G for some member G of Ci; and (i) U‘\l«; is a cover
i=1

i=
of X. The sequence {Wi}i=; is calld a C-refinement of {C)Zy.

THEOREM. A countable-dimensional metric space is a C-space.

Using the dimension theory developed for this class of spaces in this paper Part I and tech-
niques involving nerves of specially chosen covers the following theorem is proved.

THEOREM. Let Y be a metrizable locally contractible space. Suppose that X is a metrizable,
A a closed subspace of X such that the boundary of A has property C, and f: A-Y a continuous
function. Then there exists a neighborhood U of A in X and a continuous extension F: U~Y of the
map f. If Y is also contractible, we may take U = X.

COROLLARY. A contractible locally contractible metrizable C-space is an ANR (AR).
Examples limiting the conditions of the theorem are referenced.

The problem of when continuous functions defined on closed subspaces can be
extended has provided one of the most fruitful areas of research in topology. Among
the early important theorems in this regard are Tietze’s Extension Theorem and the
No Retraction Theorem, the latter equivalent to Brouwer’s Fixed-point Theorem.
Later developments have included Dugundji’s Extension Theorem and the following
theorem of Kuratowski and Dugundji [4].

THEOREM. If Y is a locally n-connected (LC") metric space, n>0, X metric,
A g closed subset of X with dim(X—A)<n-+1, then every continuous Sfunction
/- A— Y can be extended to a neighborhood U of X. If Y is also n-connected (C™),
we may take U = X,

As can be seen from the foregoing, there is a relationship between dimension
and extendability of maps. However, Borsuk’s space [2] limits the dimension con-
dition in the theorem above. In particular, we may let Y be locally contractible (LC),
let X—A be countable-dimensional, and the conclusion of the theorem may fail.
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Nevertheless, the principal result of this paper is that if we retain the local contract-

ibility of Y and instead let 4 be countable-dimensional, the map f can be extended.
Many of the results upon which this paper depends are found in Addis and

Gresham [1}. For convenience, we shall state those needed here. All spaces are

assumed to be metric.

DEFINITION. A space X has property C (is a C-space) if for every sequence
{#.}21 of open covers of X there is a sequence {#,}{2; of families of open sets
such that

(i) each %, is pairwise disjoint,
(i) if Ue4,, then UcG for some member G of %,

o
@il) U #; is a cover of X. .
i=1

The sequence {%};2, is called a C-refinement of {4}, .

THEOREM. A countable-dimensional metric space is a C-space.

THEOREM. F, subspaces of metric C-spaces have property C.

THEOREM. A4 metric space X is a C-space if and only if X% [0, 1] is a C-space.

In particular, we shall use the fact that Xx [0, 1) is a C-space if X is.

A fundamental idea in our proofs is to build a map from the nerve of some
carefully chosen cover of a C-space, and then compose this map with the barycentric
map from the space into the nerve. The first result is a technical lemma which provides
the basic construction when the range space enjoys a strong local connectivity
property. We use K to denote a polytope, K™ its n-skeleton, and |K| the space of
the polytope with the weak topology.

o)
DEFINITION. A polytope K is said to be a C-polytope if K® = U %, where
. i=1

each %, is a family of vertices such that if ¢ is a simplex in X, then no two vertices
of ¢ belong to the same %;.

Finally, if X is a metric space and pe X, N(p) will denote the open g-ball
centered at p. Further, if 4< X, Bd4 and IntA are, respectively, the boundary and
interior of A.

Lemma 1. Let (Y, d) be a uniformly LC metric space. Let n be a fixed positive
integer and let {¢;};2, be a nonincreasing sequence of positive real numbers such that for
each i, N, 1y.(y) is contractible in N (9)s 122. Suppose K is a C-polytope and
a map Go: |K®|— X is given with the property that d(Gy(G,), Go(U,)) <nepr
where Uy, € Uy, Uy € Uy, To<iy, and (U, U,) is a 1-simplex in K. Then G, can
be extended to a map G: |K| — Y with the property that if © is a simplex in K, say
T = Uy, Uy, oo, U, and ig<iy<...<iy, then .

G@ =N, (Go(Uy). .

Consequently, for all e K, diamG(z)<2e 1
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Proof. For each vertex U, in %; let
[2°8 N(n'(-i)ﬂi-rl(GO(Ui)) x I — No(Go(U)

be a fixed homotopy such that yy,(x, 0) = x and Yy(x, 1) = Go(U)). Assume in-
ductively that for all integers r<m a map G,: |K'| — Y has been given in such a way
that .

o GlIK™ =Gy,
() if 0 = Uy, ., Upd €K', ig<iy<...<i, then G,(a)cNgiu(G,(U,-o)),

)  if o = (U, Uy ..., U,y € K, G, is defined on o by considering o as the cone
of U;, over {Uy, ..., U;,) and then using inQIG,_I((Ui‘, s U )1 in the
natural way (note that (1) and (2) are used to insure that l#mn is defined on
G (Ui ey Up DY ).

We note that the induction starts easily for m = 1. Given (U,,, U;,) in K%,
ip<iy, we know that d(Go(U,,), Go(U,,))<ne;. 4 S0 that we can use Y, and define G,
on (U, Uy, by :

Gy(tU,+(1 =) U,,) = ¥y, (Go(U), 1),

Now let 7= (U, Uy, ., Uy, ) €K™, and we may, as always, assume
ip<i;<..<I, since K is a C-polytope. By the inductive assumptions,

Gm—- 1(< Uix L] Uim>) < Neil(GO(Uix)) < Nti0+ 1(GO(U1'1)) ‘

ref0,1}.

Thus
d(Go(Us), G t({Usys s U, D))
<d(GolUs), GoUi)+(Go(U3): G Uiy s Ui, )
<nEipiyteiper = (M+H1DEer -

Therefore we may use 1,[/,,‘.o to define G,, on 7 according to (3) and by doing so for
each 7 in K™, we obtain a map G,,: |K"] — Y satisfying (1) and (2) as well. By in-
duction, the conclusion now follows. Q.E.D.

The following lemma will be used to ensure that the hypotheses are purely

- topological.

Lemma 2 (Dugundji and Michael [5]). If (X, d) is a locally contractible'metric
space, then there is a compatible metric g for X such that g=d and (X, @) is uniformly

locally conmtractible.
LEmMa 3 (Hanner [7], p. 352). 4-map from a closed subset of a metric space into
the space of a polytope has-a neighborhood extension. -
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LeMMA 4. Let (Y, d) be a metric LC space, let X be a metrizable C-space, and
let f* X — Y be a map. If ¢>0 then there exists a map h: XxI— Y such that
(a) dh(x,0), f(x)<e  for all (x,1),
(b) h(x,1) =f(x) forall x,

(©) if XxI[0,1) is a closed subset of a metric space Z,
then b X x [0, 1) has an extension H to a neighborhood of X x
without (c) the conclusion is trivial.)

Proof. By Lemma 2 let ¢ be a compatible metric for Y such that ¢>d and
(Y, @) is uniformly LC. We now work strictly with ¢. Let {&,}{2, bc a sequence of
positive real numbers such that

[0, 1) in Z. (Note that

(1) for every y in Y, N,,(») is contractible in N, _,(»),

(2)  3g;<g;-q, and

(3). 2 <e.

Let N = {1,2,3,..} and define a function g: NxN— N by
g(a,b) = L(a+b—1)(a+b-2)+b.

This is “Cantor’s diagonal function”, and has the property that g(a, b)=b. For
each n>1 set J, = [0, n/(n+1)). For each k, let , be an open cover of X such
that if Be ,, then diam(f(B))<¢,. Now define a cover %, of Xx [0, 1) by
(gn = U [g‘(n,k)
k=1

where €1y = {BXJy: Be By, 1)
Since X'x [0, 1) is a C-space (see above) we let {%,}:; be a C-refinement of
{®,}n=1 and define

Hingy = {UeU,: UcG for some G in G} .
For each i = 1,2, ..., set ¥, =
open subsets of Xx [0, 1) and ¥ = U ¥, is a cover of Xx[0, 1).

0219-.“). Then ¥ is a pairwise disjoint family of

. Let p: Xx[0,1)— X be the prOJectmn map. We now observe that if V,e ¥,
then dlal'.n(fp(V,))'(E Indeed, V;€ U yny where g(m,n) =i and so V,cG for
some G in @,y. Now G = BxJ, for some B in B, = %, and so

Jp(V)cfp(BxJ,)=f(B).

Hence diam(fp(V;)) <diam(f(B))<s, by definition of ;.

Let b: Xx [0, 1) — |4 (¥")| be the standard barycentric map into the nerve
of the cover ¥". We now define a map Fy: |#°(%7) — Y by setting Fo(V) to be
a fixed element of fp(¥). (Here we think of ¥ as both a vertex in the nerve and a set
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in the space.) Now suppose {¥,,, ¥}, is a one-simplexin 4" (¥"), Ve ¥, Vi, e V4,
and ip<i;. Then VNV, #& so that fp(V,o)nfp(Vil) # . Therefore

o(Fo(Vi)s Fo(Vi)) ey tey, <2 -

By Lemma 1 (using n = 2) there exists a map F: |47 (¥")| — Y extending F, with
the property that if © = (¥, ¥y, oy Vi, 0 € AP, 19 <iy <...<iy, then

F@) < N, (FoViy)) -
Now we define h: XxI— Y by

Fbix, 1) if 1<,
F it or=1.

The function 4 is already continuous at points (x, £), £<1. We verify continuity at
the points (%o, 1). Let y>0be given. We wish to find a neighborhood U/ x W of (x,, 1)
so that A(Ux W)a Ny(h(xe, 1)) = N{f(%0)). Indeed, let M be a positive integer
such that g, <2y for m> M. Let U be a member of %, containing x,. We claim that
the neighborhood Ux (M[(M+1), 1] of (x5, 1) meets the requirements. Suppose
(x,)e Ux (M/(M+1), 1].

Case I. t=1. Then A(x,t)=f(x). Since xeUeBy,
Q(f(x),f(xg))sdiamf(U)SeM<}y<y so that A(x, t)e Ny(h(xo, 1)).

Case I t<1. Suppose b(x, 1) € (Vigy ooy Virs I <...<iy. Since b is barycen-

h(x, 1) = {

and x5e U,

tric, (x,1)€ ﬂ ., and in particular (x,t)e Vi, = %) where g(m,n) = ip. By
definition of 5]/(,,,’,,) we have 7<n/(n+1), and because M/(M+1)<t, we must con-
clude that n>M. By the definition of g, g(m, n)=n and so iy = g(m, n)>M. By
the property of F,
Fb(x,t)e N, (fo(Vi) -
Therefore
o(Fb(x, 1), h{xo, 1)
<o(Fb(x, 1), Fo(Vig)+o(Fo(Vi)..f () +e(f (), 1 (x0))

) o+t ey <3ey <y . ‘
Thus & is continuous. .

By its definition, # satisfies (b) of the conclusion. We now show that A satis-
fies (a) and (c).

To show (a), it suffices to show g(h(x £), f(x))<e since d<g. If £ = 1, there
is nothing to prove. Assume that #<1 and that b(x, )& (Vi ... S Vi), ig < <
Then (x,t)e V;, and

a(Fb(x, 1), F () <e(Fb(x, ), Fo(Vip) +e(Fo(Vip), /()

<& t+8;, = 28;, <28 <E.

§ — Fundamenta Mathematicae T. CVIL/3
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To show (c) assume that X x [0, 1) is a closed subset of a metric space Z. From
the proof above we have the commutative diagram
A )
YN
/ N
Xx[0,1) - Y
: B X%[0,1)
By Lemma 3 there is a neighborhood U of Xx[0,1) in Z and an extension
b: U— N (¥) of b. Then Fb extends A| X x[0,1) to U. Q.E.D.
‘We now state and prove the main result of this paper. :
THEOREM. Let Y be a metrizable 1.C space. Suppose that X is a metrizable space,
A a closed subspace of X such that BAA has property C, and f: A — Y a map. Then
there exists a neighborhood U of A in X and an extension F: U— Y of f. If Y is also
contractible, we may take U = X.

Proof. It suffices to show that #|Bd 4 has an extension f defined on a neigh-
borhood W of BdA4 in X. Then U = W u Int4 is a neighborhood of 4 and we

define F: U— Y by
Fli) = {f(u) ‘if welntd,
@ if ueW-—Intd.

F'is then a continuous extension of f to the neighborhood U of 4. Without loss of
generality, we may assume that 4 is a C-space and prove the theorem for this case.

Let d be a metric for Y. Using ¢ = 1 we can find 2 map h: AxI— Y satisfy-
ing (a), (b), and (¢} of Lemma 4. Now consider Ax [0, 1) as a closed subset of
Xx[0, 1). Then there is a neighborhood W of 4% [0, 1) in Xx [0, 1) and a map
H: W— Y which extends h|4x[0,1). Let i: X— Xx[0, 1) be the imbedding
i(x) = (x,0) and set U = i~*(W). Then U is a neighborhood of 4 in X. We shall,

eventually, define F: U— Y extending f but we must proceed carefully to insure
continuity of F.

Let ¢ be a metric for X and metrize X% [0, 1) by
o((x,8), (v, D) = ax, ) +|s—t].
We define a subset ¥ of W as follows:
V = {(u,1)e W: for some (x,?) in Ax[0, 1)
o, 1), (x, 1)) <1~1t and d(H(u, 1), H(x, 1)) <1 —1}.

Then ¥ contains 4% [0, 1) and is open. To see the latter assertion, fix (u, f) e V.
Let (x,t)e Ax[0,1) be as in the definition of V. Set

a=o((u,1, (1)),

B =d(H(u,1), H(x, 1)),
e=(1-t)~a,
y=(1-0-4.

icm

A class of infinjte-dimensional spaces. Part Il 243

Find >0 so that H(Nyu,1)SNy,(H®,1)). Let I' = min{e/2,4,y/2}. Then
we can routinely verify that W~ Np(u, )<= V. ) )

Now let &, = 1—1/2""* for each n>1. By the compactness of [s,, 5,+1] We
can find an open neighborhood U, of 4 in X such that

Ax [;nu sn+1]CUnX [Sns S,,+1]CV.

We may also assume that U,> U, for all n. v
By Urysohn’s Lemma there exist maps ¢,: U— I such that

en(U_ Un) = {0} and E"(U,,+ 1) = {l} .

Define e(u) = Y. 27 "e,(u). Tilen e: U—Tisa map with the following properties:
] .

n=

)] e(w=1 1ifued,.
(2) ew=0 ifu¢ly,
3) (u,e@)eV ifuelUy—4.

(1) follows because A< U, for all n. To verify (2), observe that if x ¢ U; then
x ¢ U, for all n so that e,(x) = 0 for all n. It will require somewhat more work to
0
demonstrate (3). First we must note that [} U, = A. Indeed, if x is in U, for all n,
n=1
then (x, ¢) belongs to ¥ for all z in [0, 1). Thus o((x, 1), A% [0, 1))<1—¢ for all
t<1 whence o(x, A) = 0 and x € 4 since A is closed. Therefore if ue U;~4 then
ue U;—U,,, for some i. Here are two key facts:

o ‘ if n<i then wueU,., and e,@) =1;
®) if n>i then wu¢U, and e,(u) = 0.
Thus

e() = (12+1/4+ ..+ 1/27 D+ (1/2)esw)
= (1~1/2 1)+ (1/2e()
and
e(@) e [1-1/277, (A=1/27)+1/27 = Isi; 41 -
It now follows that (u, e(w)) e U;x [s;, 5411 V. .
This work has all been donein order to define F: U — Y'in a continuous manner.

We .define F by . .

H(u, e(u if ueU—-A
r = [H @) :

f@ if ueA.
F is certainly continuous at the interior points of 4 and at the points of the open

set U—A. We need only show continuity at the points of the boundary of 4. It
suffices to show that if {u,} is a sequence in U;—4 such that u,— ae A, then

g
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F(u) — F(a)(= f(a)). For each n the point (u,,e(u,))e V' so that there exists
(%, 77) in A x[0, 1) with R

O'((ll,,, e(un)), (xrn tl’t))< 1 _e(un)
and
A(H{u,, (), H(x,, t,))<1—e(w,) .

Now u,— ae A so that e(y,) = e(a) = 1 and

Q) (ty, €)= (a, 1),

@) (s € @), (s 1)) =0,

@®) d(H(u, e (), H(, 1)) — 0.

By (6), (7), and the definition of ¢ we have

® (s 1) (@, 1)

Hence

(10) H(x,, t,) = h(%,, t,) = h(a, 1) = £ (@) .

From (8) and (10) we have
F(u,) = H(u,, e(u,)) — im H(x,, t)) = f(a) .

If Y is also contractible, then we may extend F to all of X as follows. Let ¥ be an
open neighborhood of 4 with A=V« Ve U. By Urysohn’s Lemma let g:X—10,1]
be a map such that g(4) = {0} and g(X—V) = {1}. Let H: Yx[0, 1]— Y’be
a contraction of ¥ to a point p and define F: X— Y by

F(x) = {P
H(F(x), g(x)
F is the promised extension of F to X. Q.E.D.

COROLLARY. Since a countable-dimensional metric space X has property C, the
theorem provides an extension for f in the case where A is finite-dimensional or count-
ably infinite-dimensional.

if x¢ ¥,
if xeV.

CoRrOLLARY. A locally contractible (contractible) metri ;
ctibl trizable C-

ANE (hmy ) e C-space is an
. Previously. William Haver [8] has proved a rather special case of this corollary
with the condition that X be a countable union of finite-dimensional compacta
See also [9]. .
A ﬁnal note is that the metrizability conditions cannot be omitted from both X
and Y in the theorem, Saalfrank [11] has given an example of a compact Hausdorff

LC space of dimension 1 such that X is not a nei
. - ghborhood retract of
cube in which it can be embedded. et of e Tychonof
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