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Abstract. Kunen proved that every normal " -saturated ideal is strong. In fact, his proof
is valid for normal precipitous ideals, where a %-complete ideal is precipitous iff the associated
Boolean ultrapower is well-founded. We provide a characterization of those precipitous ideals
which are strong. This characterization has several corollaries on the structure of precipitous ideals.

1. Introduction. One of the major results in the theory of saturated ideals is
Kunen’s theorem [1] that if 7 is a normal » " -saturated ideal on the cardinal » then [is
strong, i.e., in L[], I n L[I] is a prime ideal (and hence % is measurable in LI
and L[I] is the x-model L[U]). Obviously the normality condition is not a necessary
one since any non-normal measure ultrafilter is strong, The purpose of this paper
is to give a complete characterization of those (x-complete) »*-saturated ideals
on % which are strong. In fact, the characterization is valid for a wider class of ideals,
namely precipitous ideals.

As corollaries of the main theorem we derive several results on the structure of
precipitous ideals. For example, all precipitous ideals admit a decomposition into
strong ideals. We also show that in L[U], the %-model, all precipitous ideals are
atomic.

The paper is organized as follows. We discuss the basic properties of ideals at
the end of this section. In Section 2 we review some of the theory of »-models.
In Section 3 we prove the main theorem and in Section 4 various corollaries of it
are derived. The proof of the main theorem uses techniques developed by Kunen 11
and Solovay [7], and a familiarity with these papers would be helpful.

Some of the results in this paper appeared in the author’s doctoral disser-
tation [8] and were announced in [9]. The author wishes to express his gratitude to
his adviser, James E. Baumgartner, for his constant encouragement and interest
in this work.

We use standard set-theoretic notation. The term ideal on x is reserved for
a proper, non-principal, %-complete ideal on x, i.e., a collection I=# (%) such
that {o} e Tif a<x, % isnotin I, if AS B e I then A € T and if {4,: a<Atcland A<x
then | {4,: o<} e An ideal on x is normal if whenever {4,: a<x}<l then
{ﬁ%x: for some a<f, fed,} el An almost disjoint family (with respect to an
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ideal 7 on %) is a collection {d;: <A} S#(%)—1I such that if a<f<ld then
A, N Bge I An ideal I is said to be A-saturated, for a cardinal A, if every almost
disjoint family has cardinality less than A. Equivalently, I is A-saturated if the
associated Boolean algebra & (x)/I has the A-chain condition. We use sat I to denote
the least cardinal A such that I is A-saturated. Also, we use I* to denote the filter
on % dualto I, ie., I* = {A=x: x—A e I'}. Likewise if Fis a filter on %, F* denotes
the ideal dual to F. ‘ .
DermNeTION 1.1. If T is an ideal on x» and 4e & (x)—1 then

I'd = {Bex: Bn Ael},

i.e., It4 is the ideal on x» generated by I together with x— 4.

Note that I<It4 and if I is normal or A-saturated then so is Ipd.

Much of the theory of ideals is proved using the Boolean ultrapower construction
introduced by Solovay in [7]. If I'is an ideal on » let #(I) (or just 4 if it is clear which
ideal is meant) be the Boolean completion of 2(x)/I. The canonical generic set, G,
in P#® is an ultrafilter on #() N ¥ and may be used to form Ult(V, G), the
ultrapower of ¥ using G-equivalence classes of functions from x to ¥ which liein ¥,
within ¥®. Then in ¥ there is a canonical elementary embedding j: ¥ — Ult(V, G).

DerINITION 1.2. An ideal I on % is called precipitous if the associated Boolean
ultrapower is well-founded, i.e., if [UIt(V, G) is well-founded |® = 1. If I is pre-
cipitous we identify Ult(¥, G) with its transitive collapse.

We refer the reader to Solovay [7] for the details of this construction. For more
on precipitous ideals see Jech and Prikry [3]. Note that if 4 e #(x)—1T then there
is a natural complete epimorphism =: B(I)—BItA4) (induced by n([C])
= [Cn 4] if C=x) which induces m,: VED - UM Moreover, for qe pED
and ¢(x) a formula of set theory, :

1l @II®D) = [|@(nya)]| 2014,

Thus if ||¢(@)]|®P >[4] then || (7, a)]|*" M = 1. It follows thatif I is precipitous
and 4e P(x)—1I then IhA is precipitous.
The following theorem, due to Solovay [7], ties together the above notions.
THEOREM 1.3. (a) If x bears a x*-saturated ideal then » bears a normal ™ -satur-
ated ideal.

() If I is a x™-saturated ideal on % then I is precipitous.

On fact about this ultrapower construction which we shall use is the following: '

if I is a precipitous ideal on s, j: ¥ — Ult(V, G) is as above and § is a strong limit
cardinal with of § # % then ||j(5) = ||® = 1.

Kunen [1] has shown that »*-saturated ideals are related to large cardinals by
proving that if x bears a »*-saturated ideal then % is a measurable cardinal in an
inner model. Jech (unpublished) proved that this conclusion follows from the weaker
hypothesis that » bears a precipitous ideal.
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DeriNnitioN 1.4 (Kunen [1]). An ideal I on x is strong if, in L[I], I n L[I] is
a prime ideal, i.e., I n L[I] is dual to a measure ultrafilter in L[7]. (Note that this
definition differs from Kunen’s in that I~ L[I] is not required to be normal.)

TeEOREM 1.5. (a) (Kunen [1]) If I is a normal %™ -saturated ideal on » then I is
strong. Hence L[I] is the %-model (see Section 2).

(b) (Jech) If I is a precipitous ideal on % then % is measurable in an inner model.
Hence the »-model exists.

2. Areview of x-models. Recall that if’ M is a transitive model of ZFC containing
all ordinals in which “the universe is constructible from a normal ultrafilter on x”
is true, then M is called a x-model. Silver {6] proved that the GCH holds in
a %-model and Kunen [1] used the machinery of iterated ultrapowers to develop
an extensive theory of such models. In this section we summarize the results about
sx-models which we shall need.

Tueorem 2.1 (Kunen [1]). Let M be a x-model. Then, in M, % bears a unique
normal ultrafilter U and if W is a measure ultrafilter on 3 then W is isomorphic to U,,
the n-fold power of U, for some finite n. )

The external structure of x-models is summarized in the following theorem,
also due to Kunen. Recall that if- W is a measure ultrafilter on % in N, a transitive
model of ZFC, then Ult,(N. , W) denotes the (transitive collapse of the) uth iterated
ultrapower of N using W.

THEOREM 2:2. (2) If a x-model exists it is unique.

(b) If W is a measure ultrafilter on % then L{W] is the %-model.

(c) If M is the x-model with normal ultrafilter U and N is the A-model, where
Azx, then N is Ult (M, U) for some ordinal a.

Thus we shall use L[U] to denote the x-model (assuming it exists) and U to
denote the unique normal ultrafilter on % in L[U]. Furthermore, i, will be used to
denote the canonical elementary embedding from L[U] to Ult,(L[U], U).

There is another characterization of measure ultrafilters in L[U] which, though
much less simple to state than that in Theorem 2.1, will be useful to us.

DEerFINITION 2.3. Let U be the normal ultrafilter on x in L[U] and let { be any
ordinal with {>x. Then U* is the measure ultrafilter on x in L[U] defined as follows:
choose « such that i,()>¢ and let U = {x € (%) n L[UT: { e i,(x)}. It is easy to
see that this definition is independent of the choice of «.

THEOREM 2.4 (Kunen [1], Paris [5]). In L[U] every measure ultrafilter on % is
equal to U* for some {<i,(x).

This theorem allows us to define a function of ordinals which will be very im-
portant to us.

DerINITION 2.5. Assuming the existence of the x-model, define a function
K: {a: azx}—i,0c) by setting K({) equal to the least ordinal such that
Ut = UK(C).

4 — Fundamenta Mathematicae CVI
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THEOREM 2.4 shows that K is well-defined. Note that K(K () = K(0).

We shall also need a technical lemma from [1] concerning embeddings of
»x-models which differ.from the canonical embedding.

Lemma 2.6. Suppose k: L[U]= Ult(L[U], U) is an elementary embedding
such that i

@) k(@) =« if a<x, and

(i) if 6>« is a strong limit cardinal of cofinality strictly greater than x (in the
sense of V) then k(6) = 6.

Then for any x e P (%) n LU, k(x) = i ().

This lemma is proved by showing that all subsets of % in L[U] can be defined
from ordinals which are fixed points of both k and i,.

3. The main theorem. An important property of a normal precipitous ideal 7 on
is that in the ultrapower formed within ¥# the ordinal # is represented by the identity
function on x, which we denote by id. More precisely, ||[id]g = #||? = 1. The
" theorem below generalizes Theorem 1.5 by showing that a precipitous ideal is
strongif the identity function represents a unique ordinal, not necessarily x. In
order to obtain a true characterization, it turns out that we must consider K([id])
rather than [id], where K is as defined in Definition 2.5.

DermaTioN 3.1, If I is a precipitous ideal on » let
Z() = {¢: IX(dD = L)|">0} .

Note that |Z(J)|<sat I, if {eZ(]) then K({) = (, and if I is normal then
Z@) = {3,

‘THEOREM 3.2. For a precipitous ideal I on x, I is strong iff |Z(I)| = 1. Moreover,
¢ is the least ordinal such that I~ L[U] is dual to U* iff Z(I) = {{}.

Proof. Suppose Z(I) = {{}. Form Ult(¥, G) within V%, letting j: ¥V — Ult(V, G)
denote the canonical embedding. Note that by Theorems 1.3 (a) and 1.5 the %-model
L[U] exists. We shall show that L[I]<L[U] and that I n L[U] = U*". This implies
that I is strong for if x e #(x) N L[I] then x € L[U] whence either x or x—x is
in U* Thus either x or %—x is in I Since K({) = {, it remains only to show that
I LUl = U* (for then I~ L[U]e L{U] whence L[I1<L[U]).

Work within V%, Let k = j}L[U] and let ¢ = j(x). Then k is an elementary
embedding from L[U] to L[kU], the o-model. Applying Theorem 2.2(c) shows
th%t L[kU] must be Ulty(L[U], U) for some (#-valued) ordinal f such that
ip(x) = o. Since k is induced by the ultrapower embedding j, it follows that (see
remark following Theorem 1.3) k leaves fixed any cardinal A which, in ¥, is strong
limit and not cofinal with . Therefore, by Lemma 2.6, k agrees with i on
P(¢) n LU

Now, to show In L[U]= U" consider xe#P(x) " L[U]. Then xel iff
[x] = |lid]e € k@I? = 0 iff ||[id]g & 4(X)]| = O iff

1% e U = gt - g = (pH)| = 0
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iff x¢ U iff xe U*. Thus I~ L[U] = U" and the proof of one implication is
complete.

For the converse, suppose I is a strong precipitous ideal on » and { is the least
ordinal less than 7,(x) such that 7 ~ L[U] is dual to U%. Then ||K[id] = ||* = 1
for suppose ||K[id] = 5||® = [4]>0. Then by the remarks following Definition 1.2
K [id] = 3]]®“t = 1 and so the implication above yields that 7t4 is strong and
INA N L[U] is dual to U®. But ISI}A and, since I n L[U] is a maximal ideal,
I'A N L[U] = I~ L[U). Hence, since K(8) = 6, 6 = { and the theorem is proved.

We remark that Z(I) can be defined without reference to Boolean-valued
universes, though it is tedious to do so. With this in mind, Theorem 3.2 can be re-
garded as equating a metamathematical property of an ideal (strength) with a com-
binatorial property.

4. The structure of precipitous ideals. If Iis a precipitous ideal on » then there
is a maximal almost disjoint family {4,: « <A} with respect to / and an enumeration
{L,: a<i} of Z(I) (possibly with repetition) such that ||K[id]g = LJ17>[4,]-
Hence by Theorem 3.2 each I+ 4, is a strong ideal. Thus we have proved the following
corollary.

COROLLARY 4.1. If T is a precipitous ideal on » then there is a maximal almost
disjoint family {A,: a<2A} such that each I} A, is a strong ideal.

Note that I is recoverable from the I} A, since x lies in Jiff x lies in each I} A,.
We remark that one cannot choose the A, so that each A4, is normal unless 7 itself
is normal. '

If » is a strongly compact cardinal then any (x-complete) ideal on x can be
extended to a strong ideal, in fact to a prime ideal. The following weaker statement
is true for all cardinals and is clear from the previous corollary since each I'td, is
a strong extension of I.

COROLLARY 4.2. If I is a precipitous ideal then I can be extended to a strong
precipitous ideal.

Theorem 3.2 provides some information about the structure of ideals in the
x-model, L[U]. It is not hard to see, by standard methods, that the only cardinal
in L[U] which bears a precipitous ideal is the measurable cardinal #. The following
corollary shows that even on x, the prime ideals are essentially the only precipitous.
ideals.

COROLLARY 4.3. In LU, the %-model, all precipitous ideals I on x are atomic,
i.e., there is a maximal almost disjoint family {A,: a<A} such that each It A, is
prime.

Proof. Work in L[U]. If I'is a precipitous ideal on x choose {4,: a<A4} as in
Corollary 4.1. Then ItA, n L[It4,] is prime so ItA, n LIIt4,) = IY4,n LIU]
= J}4, is prime. "

Corollary 4.3 also holds in L[U], the universe constructible from a coherent
sequence of ultrafilters as defined by Mitchell [4]. That i{ does not hold of measur-
4%
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able cardinals in general has been shown by Baumgartner who proved the following
theorem by the methods of Kunen-Paris [2].

TuroreM 4.4. If it is consistent that a measurable cardinal exists then it is con-
sistent that there is a measurable cardinal » which bears an atomless »™-saturated
ideal I (I is atomless if for any Ae P (x)—1, IMA4 is not prime).

Sketch of proof. Using Theorem 2.1 of [2], assume M is a model of ZFC such
that, in M, D, and D, are distinct normal ultrafilters on the measurable cardinal .
Choose X € D, — D, such that for all « € X, « is a regular cardinal. For i = 1, 2 let
Jit M — Ult(M, D;) be the canonical embedding and let P be the Easton partial
ordering in M for adding a single generic subset of each o in X, Then j, P = Px O
where Q is x¥-closed and j,P & PxP,x R where R is x*-closed and P, is the
partial ordering for adding a generic subset of » to Ult(M, D,). Now, if G is
Px Qx R-generic over M then arguments as in [2] can be used to show that, in
M[G], Dy extends to a.normal ultrafilter on % and D, extends to the dual of a non-
atomic »"-saturated ideal on x. .
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On Postoikov-true families of complexes
and the Adams completion

by

Aristide Deleanu (Syracuse, N. Y.) and Peter Hilton (Seattle, Wash.)

Abstract. Let G, be the homotopy category of pointed r-connected CW- complexes, let U be
a non-empty collection of objects of Gy, and let S(V) be the family of those morphisms s: X—Y
in G, such that s*: [¥, F]-[X, V] is bijective for every ¥ in U’ In the case where r>>1, it is proved
that the Adams S()-completion exists if, essentially, \¥' has the property that, whenever V'
belongs to U, then so do the Eilenberg-MacLane spaces K(mpV, k), k = n, n+1, n+2; nzr+1.
An extension of the result is obtained in the case where r = 0 and the objects of U’ are assumed
to be nilpotent, by using the characterization of a nilpotent space in terms of the principal refinement
of its Postnikov tower. It is pointed out that this framework is adequate to obtain the Sullivan
p-profinite completion, where p is a prime. Finally, one considers the general non-simply-con-
nected case, where one does not insist that the objects of U’ be nilpotent. Here, non-simple ob-
struction theory is needed, and therefore the Eilenberg-MacLane spaces must be replaced by
certain spaces L(4, k), obtained by a significant modification from the spaces ‘R(A, k) constructed
by C. A. Robinson as representing objects for cohomology with local coefficients. The Sullivan
P-profinite completion is obtained among the applications, where P is an arbitrary family
of primes.

0. Introduction. We consider, for a fixed r, the homotopy category %, of pointed
r-connected CW -complexes, and a non-empty collection #” of objects of 4,. With -
respect to ¥~ we form the family S = S(¥7) of those morphisms s: X' — Y in %,
with respect to which every ¥ in 9" s left-closed, that is, those morphisms s such
that ‘

s* (Y, V]—>[X, V]

is bijective for every ¥ in #". The family & is plainly saturated, a,nd we may ask
whether the (generalized) Adams S-completion [, 3] exists .

We introduce a condition on %7, of a rather natural character, which comes
close to guaranteeing the existence of the Adams completion and which is certainly
verified in the two cases of principal importance — the p-profinite completion and
the P-localization, where p is 2 prime and P is a (possibly empty) family of primes.

() In this case, the Adams completion has been called by Harvey Wolff the U -localization.
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