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8 . One Hundred Volumes of “Fundamenta Mathematicae”

Distribution by language:

Volume English French | German | Italian | Russian Total

1-32 129 609 169 8 —_— 915
33-100 1488 158 45 - — 44 1735
1-100 1617 767 214 8 44 2650

These statistics give some indication of the number of papers and authors,
their classification and the changes that have taken place. There is, however, a certain
arbitrariness in the calculation of the figures. Classification is, in itself, partly subjec-
tive. Equally, too, the assignation of an author’s nationality is doubtful, especially
as his status is liable to change due to emigration. Real difficulties were caused by
papers written jointly by authors coming from different countries. Consequently
the statistical data above should be treated with reservations.

) As we mentioned before, Professor Mazurkiewicz (d. 1945) and Professor
Sierpiniski (d. 1969) were the editors of “Fundamenta Mathematicae” from the moment
of the appearance of its first volume. Since 1952 the publishing of the journal is in
the hands of the authors of the present note — Kazimierz Kuratowski, Editor in
Chief, and Karol Borsuk, Deputy Editor.

Parametric inductive definitions and
recursive operators over the continuum *

by

Douglas Cenzer (Gainesville, Fla.)
@

Abstract. In this paper we consider the possible closure ordinals |I'| and sets CI(I") of non-
monotone recursive inductive operators I” which define subsets of the continuum N N, For an upper
bound, we show that any A} operator has A} closure; it is well-known that |I'|<%; even for Z! oper-
ators. On the other hand, we construct a recursive operator I” with |I'| = %, and show that any II,1
or 2T set is reducible to the closure of some recursive operator. Using the notion of a parametric
operator (essentially a class of operators, one for each real parameter,’over the natural numbers N),
we extend this last result in several ways.

Introduction. A great deal of research has been done in recent years on the
general subject of inductive definability. The volume Generalized Recursion Theory
cited in [3] is an excellent source for background in this area.

Briefly, an inductive operator I' over a set X is a map from P(X) to P(X) such
that for all 4, A<I'(4). I' determines a transfinite sequence {I*: ¢ an ordinal},
where for all o, I = U{['(I™: t<c}. The closure ordinal |I'| of I" is the least
ordinal ¢ such that I®** = I'”; clearly |I'| always has cardinality less than or equal
to Card(X). The closure CL(I') is I'7l the set inductively defined by I'.

For a class. C of operators, the closure ordinal |C] is the supremum of the |I']
for I' in C and the inductive closure C1(C) is the class of subsets 4 of X which are
reducible to CI(I') for some I' in C. (The precise notion of reducibility depending
on X.) ’

The general problem in the field of inductive definitions is to characterize, for
a given class C of operators, the ordinal [C| and the class C1(C).

A common restriction placed on an inductive operator I' is that it be monotone,
that is, for any 4 and B, 4 =B implies I'(4) =I'(B). This is a strong condition and
makes monotone inductive operators easier to deal with than their non-monotone
counterparts. Monotone inductive definitions over the continuum were studied
in some detail in [2]. (We follow the usual convention of identifying the continuum
with the Baire space “w.) . :

For operators over the natural numbers, monotone and non-monotone 19 in-
ductive definitions led fo the same closure ordinal (o,, the first non-recursive ordinal)

* Some of the results of this paper were announced .in [1].


Artur


10 D. Cenzer

and the same inductive closure (IT7). Tt was therefore quite surprising when Rich-
ter [4] demonstrated the great differences that arose at the II9 level. Richter’s results
actually generalize at the IT} level for operators over the continuum.

But in fact, interesting things start happening right at the recursive level. It
was shown in [2] that the class of positive 27 operators has closure ordinal o and
inductive closure X7 itself. As the following principal theorem indicates, the class
of non-monotone recursive operators over the continuum is much richer.

TueorREM. (2) |47} = §;; (b) I} U 21 g Cl(4D) = 43.

One direction of (a) is a corollary to a simple cardinality argument showing
|Z3|<8;. The other direction of part (a) and the first half of (b) will be proven in § 1.
The Iatter result will be strengthened in § 2 with the introduction of the concept of
parametric inductive deffnitions. Finally, § 3 will conclude the proof of the Theorem;
we show in fact that Cl(d})=4s.

1. The operator @. In this section we define an operator @ over the continuum
with the following properties:

M . 0°={u: @Pa@) = 0}

(2) There is a recursive relation P such that P(©) but for all n<w, “TR(O". v

The existence of such an operator @ leads to the following general result which
says that the class of recursive operators effectively includes all arithmetic operators.

ProposITION 1.1. (2) |43[>143]; (b) Cl(4H=2Cl1(42).

Combining this with the result from [2] that |/19-monotone| = 8, and
Cl1(22?-monotone) = IT}; we have the main conclusion of this section.

PrOPOSITION 1.2. () |4%] = 8,; (b) Cl(4)=112.

The definition of the operator @ is quite simple.

DeFNITION 1.3. 0 € O(4) «» ¢(0) = 0v(Ap)a(p+1) e 4.

The following lemma is easily verified.

LemMA 1.4. For all n<o, 6" = {a: @p<nia(p) = 0}. H

Before defining the desired relation P of (2) we need to consider the sequence
of reals {y,: n<w}, given by

0, if pzn;
YulD) = .
1, if p<n.

These make up a canonical set of reals for differentiating the levels @" in the following
sense:

(3) For all m, n<w, y, € O" iff m<n.

Now let F: oxP(“0)—{0,1} be given by F(m, A) = yi(p,..) and let
(m) = F(m, 0") for n>0. Then f,(m) = 1 iff y,,, € @ iff m+1<n iff m<n—1
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(for n<w). Thus for 0<n<w, f, = 7,-; and therefore f, & @", whereas f,, = y, and
therefore f,, ¢ ©°.

But this provides the desired relation P. Just let P(4)>p, € 4 A (Am)F(m, 4) ¢ 4.
1t is immediate from the above discussion that P(@%) but for all n<w, "1P(O™.
(Note: it is instructive in considering the above argument to look at the “member-
ship table” for the {y,} and {@"}. This will consist of w1 rows and columns with 0’s
(for ¢) on the main diagonal and below and 1’s above. The relation T1P(©") can be
seen along the super-diagonal.)

Having now established (1) and (2), we give the following as an example of
their use.

PROPOSITION 1.5. |49]>w.

Proof. Just let I' be defined by the following:

ael'(d) « ac@UA)VP4).
It is clear that |I'| = w+1 and CI(I') = “p. A

‘We now present the proof of Proposition 1.1 that any arithmetic operator can
be duplicated by a 4 operator.

Proof of Proposition 1.1. For simplicity’s sake we consider only I1? oper-
ators; the proof generalizes easily to arbitrary arithmetic operators. Let T be given
by a e T(4) < (Vp)F(p,u, A) = 1, where Fis a recursive mapping. For any set 4
and any n<o, let (4), = {a: {n, ) € A}. Define an operator I" by putting

Q0,0 el(d) « ac0((4),) and <(l,ad>el(4d)« P((A)o) e T((4),) .

1t is clear that for all ordinals o, T® = (I'®*?),, so that {I'] = w+|T) and CI(T)
is reducible to CI(I"). But I' is a A? operator, since under the assumption P((4)o)
we have ae T((4),) iff (Vp)F(p,a, 4) # 0 iff Ap)F(p,a, (4)y) ¢ (4)o. W

Proposition 1.2 now follows, so we see that Cl1(4?) is a fairly large. This fact
can be demonstrated further after the introduction of the concept of parametric
inductive definitions in the next section.

2. Parametric inductive definitions. The simplest type of inductive definition
over the reals would be one in which the real variable appeared only as a parameter.
For example, if R is a II 9 relation such that for all «, Iy, deﬁned by
ne(d) « R(n,«, 4),is an inductive operator over , then there is an obvious I}
operator I' such that for all #n and «, ne CLU(T,) iff <n, &) e CI(I). A similar fact
holds if II{ is replaced by any standard definability class.

It turns out that for II$ -monotone this process can be reversed: I I is a JT; mon-
otone operator over “o, then there isa H‘l) relation R such that for all «, I',, defined
by nel,(4) < R(n,a, A), is a monotone operator over o and ae CL(IM iff
1eCI(I,). We say that the I', parametrize I'. :

This follows from the previously mentioned result that any II ? monotone oper-
ator over the continuum has IT} closure and from the following lemma (see [3],
p. 233). :
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LemMA 2.1. If Q is-a II} relation on “w, then there is o uniformly n? class of
operators T', over o such that for all o, Q(a) iff 1eCU(T,); furthermore, O ¢ any
Ci(I,). m

In general, we say that 4=“w can be.inductively parametrized in C if there is
a {I,: ae“0} in C and a recursive F such that for all o, « € 4 iff F(«) & CI(I').
For any definability class C, let PCL(C) be the class of subsets of “w which can be
inductively parametrized in C.

By the above remarks, PCI(IT{) = II} = CI(II3-monotone). Lemma 2.1 can
also be applied to obtain X} sets.

Given a IT} set Q and a class of operators I', as in Lemma 2.1, it is important to
notice that for any fixed «, the operator I', has a countable closure ordinal. Thus
we can obtain the typical Z} set “w-Q with the following operator T, defined by:

{m,ay € T(A) < me L ((4))vIm =0AT((4),) = (AaArll,a>¢A],
where (4), = {p: <p,ape4d}.

For each a, T constructs C1(I",) in code with « and then puts in 0, ) if and
only if 1 ¢ CI(T"), i.e., iff « ¢ Q. By Proposition 1.1 T can essentially be duplicated
by a A? operator. We have thus proven the following.

PROPOSITION 2.2. 2} =Cl(4]). B

Hopefully the proof of Proposition 2.2 provides some insight into the rather
more complicated proof of the following central result of this section.

TrEOREM 2.3. PCI(IT}) U PCL(ZH = Cl(4)).

Proof. We are given a set D of reals and uniformly IT} class of operators
{A?: o € ®w} such that for any &, « € D « 1€ Cl(d,). Let 4, be given by the IT} re-
lafflc?n Q, so that me 4,(B) « Q(m, «, B) for all m<w, ae®w and B = . Gener-
alizing Lemma 2.1, there is a uniformly IT] set of operators I',z such that for all
m, o, B:

o me 4 B) < Q(m,a, B) « {m, 1) e Cl{T,p).

We want to construct an operator T satisfying

@) oeD « 1eCl(4,) « {1,a)eCI(T).

Recall that (4), = {m: {m,a)ed}; now fix a and let 4, = (4), and
and 4, = {n: {n, o, 4;) € A}. The desired operator T is given by the following:
n,a, Agy e T(4) « nel,,(A4))

and
{m,ayeT(4) <> Fy(d) = A, Al{m,1>ed,.
The operator 7 builds successively the levels 43** in code with o and AZ by
applying the operator I',,. repeatedly. It is not difficult to show that
3) CUT) = {(n, 0, 4D: ne A7} U {(m, a1 me Cl(4,)} -
From this it follows immediately that T satisfies (2).
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For a set of % operators 4,, the definition of 7' should be modified slightly to

‘read <m, 1> ¢ A, at the end instead of {m, 1> € 4;.

This theorem can be extended to include compositions of II ! and I} operators
as described in [3], p. 243.

PROPOSITION 2.4. For any n, PCL((IT}Y") u PCL(Z)M) =Cl(4]). B

These tesults give some idea of the extent of Cl(4 9, although we do not as yet
have an exact characterization of the entire class. In the final section of this paper
we establish an upper bound on Cl(4?). '

3. All A? operators have AL dosure. In this section we prove the following
theorem.

TeroreM 3.1. ClL(43)<45.

Let I be an arbitrary A} operator, given by:

ael(4) « (V9)@m{a}(n,y, % 1)=0
and
agI'(d) < V) @n) {a}(m, v, «, 1) 0.

Although I itself is not necessarily monotone, we will define a II] monotone
operator I'y and 2 >} monotone operator I'y both of which can be used to obtain
the action of I'. For any B={0, 1} x “, let Fy be the (multiple-valued) partial func-
tion having B for its graph. Now define

FH(B) = {<i= OC>2 (V’y)(an){al}(n’y’ o, FB)—:'—'O} 3
I'y is obtained similarly from >} definitions of I'. )

It is important to note that these operators are not inclusive (that is, {‘H(B)
does not necessarily include B) but are monotone since making B larger S}mply
increases the probability that the functions {a;} will converge to 0 when applied to
the indicated arguments (and similarly for Iy).

The following lemma is easily verified.

Lemva 32. For any A and B, if B= {1} x40 {0} x(Cw—4A), then
I'y(B) = I'y(B) = {1} x I (4d) v {0}("’0)—-[’(A)). H

“We want to use the operator I'y to define another II3 monotone operator T
(this one to be inclusive) which will keep track of all of the kgvels of I' simultaneously.
To do this, we need to code ordinals as reals in the usual fashion. Let W be the set
of reals § which are the characteristic functions of well-orderings of subsets of o,
and let |8] be the length of the ordering given by such a é. For any p<.a), let 8 [ p give
the ordering of & restricted to numbers preceding p in the ordering.

PROPOSITION 3.3. The relation E, defined by E(x, 0) < W) Ane s 1.

Proof. Infact, i welet E* = {(a, 8, 1}: wE) aae I} U {2, 8,0 ¢1*ll"\},
then E* can be given by a I ! monotone inductive definition T and is therefore ITy by
a basic result of [2]. Define the required operator T' by

T(B) = {<a, 8, iy: @p)[<i, o) e Tn({Cs B7: B0 }p,i>e BYIA (D)}
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Notice that the (3 p) is just an effective version of the ) in our original convention
that I'® = U {I'(I"): 7<o}. It now follows rather easily from Lemma 3.2 that
CI(T) = E*, completing the proof of the proposition. M

COROLLARY 3.4. CI(I) is 25.

Proof. e Cl(I) — (38)E(x, J). ‘

It remains to be shown that CL(I") is also IT;. We make use of the fact that
since I'y is a I} operator, checking for a particular § and B whether f is in I'x(B)
will depend only on some countable subset of B. Specifically, we have the following
improvement of Lemma 3.2. W

LemMA 3.5. For any real o and any A; o ¢ T'(4) iff there exist countable B, = A
and By, <Cw—A such that <0,y e ({1} x B; L {0} x By). B

Call B<{0,1}x®w self-sustaining (abbreviated S(B)) if for all aeB,,
<0, & & I'y(B). The relation S is clearly 1. Its significance is given by the following
lemma: .

LeMMA 3.6. For any ordinal ¢ and any set B with By <T'" and By=“w--TI", if S(B)
then By <“w—CI(I).

Proof. We actually show by induction on t that for all t >0, By<“w—I". This
is true for 7 = ¢ by assumption. Now suppose that for all ¢ with s <é<1, By &0 =%
for all such ¢ we also have B,=I°=TI". Since S(B), for any ae B, we have
{0, ) e I'y(B); but I'y is monotone, so by the preceding sentence

0, &y e ({1} x ¥ U {0} x “w—TI").

Now by Lemma 3.2 it follows that for all such € (6<<é<), a ¢ T (') and therefore
that o ¢ I'. As this is true for any o € By, we now have B,<®w—I" as promised. W
PROPOSITION 3.7. For any real o, o ¢ CI(I') iff

Ho<sy) @ countable B) [B; =T’ ABy<0—I"AS(B)Aae By].

Proof. The direction («) is immediate from Lemma 3.6, Now let
CI(I) = C = I'(C) and suppose that a¢ C. For any real f¢C and i =0 or 1,
let By(B) be the countable set whose existence is given by Lemma 3.5. Let Dy = By(or)
and for any n let D,.q= U {Bo(f): BeD,}. It is clear that for any n,
{0} x D,=T'g({0} x D,y L {1}x C). It we now let By = U {D,: n<w} and let
B, = U {B1(B): Be By}, then B = ({0} x By) U ({1} x By) is countable and it follows
by the monotonicity of I'y that {0}xBc=I'y(B), ie., S(B). It is clear that
B,<C, By=®w—C and « € B,. Finally, pick o large enough so that B; =I'?; since
I'°cC, it is automatic that Byc®0—Cs®0—T° B

-CoroLLARY 3.8. CI(I) is II3.

_ Sketch of proof. The ordinal o can be coded as a real from W, the countable
set B can be coded as a single real, and the relation E of (3.3) can be used to rep-
resent “B, =" in II} form and B, &“w—TI" in IT} form. (A similar proof is given
in detail for Corollary 4.5 of [2].) W .
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This completes the proof of Theorem 3.1. It is an interesting open problem
whether Cl(4}) is a strict subset of 4 3. Tt would also be nice to have a similar result
for the class of semirecursive operators; the techniques of this section do not seem
to lend themselves to this class.
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