Extension of ZF-meodels
to models with the scheme of choice
by
Andrzej Zarach (Wroclaw)

Abstract. In this paper we show that if M is a countable, standard model of ZF, then there
exists a countable, standard model N of ZFC-+V = HC (ZF theory without the power set
axiom + the choice scheme + “every set is countable”) such that M< N and M, N are models of
the same height.

§ 0. Introduction. The following theorem was announced by D. B. Morris [1].
Let M be a c.s.m. for ZFC. There exists a c.s.m. N for ZF such that MS N, N has
the same cardinals as M, and the following statement is true in N: For each o there
exists a set X such that X is a countable union of countable sets and the power set
of X can be partitioned into ¥, nonempty sets.

Notice that there is no transitive model M, of ZFC for which N would be
a submodel with the same ordinals; M; would ensure the partitioning of 2% jnto
any number of nonempty sets.

Let T' be a theory obtained by removing the power set axiom of ZF and adding
the sentence “every set is countable”. We already know that not every ¢.s.m. M for ZF
can be extended to a c¢.s.m. N for ZF + the choice scheme such that On™ = on”,
but every c.s.m M for ZF can be extended to a c.s.m N for T + the choice scheme
such that On™ = On®.

The following part of the paper is devoted to the proof of the above-mentioned
fact. We assume that the reader is familiar with the method of unramified forcing
due to Shoenfield [2] and also that he know the paper [3].

§ 1. Collapsing onto w.
DERINITION 1. Let Q be a set, Then
Ko@) = {Ko®): @p)o(<b, py € @)} -
The definition is inductive with respect to the rank of the set.
DEFINITION 2. Let M be a transitive set. Then
MIQ] = {Ky@): ae M}.

DEFINITION 3. M is a 3-model if M is c.s.m. for

ZF~ + the collection scheme.

Let M be a c.s.m. for ZF and let RY be the ath set in the von Neumann hierarchy
(in M).
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In order to obtain a model for ZE~ of the same height as M we shall add to the
model M a class of generic functions f, such that f: w_>R£‘ for a e On™.

DeriNrTIoN 4. Let € be the class of all finite functlons f such that dom(f)

cOnxw and if ((oc n>,x>ef then xeRM; _p<q—— gep for p,qeC.
Py =p0@xoxRY and p® =p—p, for peC, acO0m™. pag=pug for
compatible conditions p, ¢.

Lemma 1. {C, <) is a coherent continuous notion of forcing. C, = {pu: pe C}
and C* = {p®@: pe C} (see [3].

Proof. If 2>0 is a limit ordinal, then C; = (JC, and C= (J C,.

%< o OnM

DEFINITION 5. G is C-3-generic over M if G is C-generic over M and if for
every set of dense sections (see [3]) {D,},p there exists a function W e M such that
dom(W) = b, W(@)=D, for aeb and (@),(W(a) n G # D).

MaIN Lemma. If {C, <) is a coherent continuous notion of forcing, then every
C-generic is a 3-generic.

Proof. By A'(p) we shall denote the least ordinal « such that p e C,. Let {D },;
be a set of dense section.

By transfinite recursion we can uniformly define sequences of Fy for aeb,
ae On Let F§ = {pe D,: 4'(p)—minimal}.

Fy = {p e D,: p incompatible with any ge U F; and A'(p)-minimal}.

pe Fy=A'(p)>p and pye F, &p,e Fg, & u1<ocz=~A'(p1)<A'(p2) &py,p, are in-

compatible. Hence we infer that the class F* = ) Fjis maximal, i.e., if p € D, then
«eOn

there exists a ge F* such that p, g are compatible. Obviously F's.D,. Now let
h(p) = min(@q)gg (p, g compatible). The mapping 4, is defined for any condition p.
8

Then

Indeed, if p is a condition, then from the density of D, it follows that there
exists a p’ € D, such that p'<p. The construction of F“ implies that there exists
a g e F* such that p’ and ¢ are compatible; hence g and p are compatible. Let
9.(¢)) = min (h,(C) ). By the continuity of the notion of forcing we infer that for
3
every a there exists a ozo such that C, = (J C; and g,(0)<o. Subsequently
<o
U FjsC, for o greater than the level starting from which C is continuous. Hence
feOn
in view of the comprehension scheme, every F° is a set and W(a) = F° aeb, is
a function whose existence we require in Definition 5.
Indeed, if peF*—C, then there exist a pye C, and a p* e C° such that
P =DpyA p(") Since C, = |J C;, then there existsa <o such that Py € C,. Hence

f<o

there exists a g€ C,,y&SC, such that ge F*and ¢ is compatible with p. Sub-
sequently g is compatible with p, which contradicts

A(g)<4'(p) and p,qe | Fj.

BeOn

Q.E.D.
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Note. To prove this fact in [3] we needed the assumption that in C there exists
a definable well-ordering. In the sequel {(C, <> will denote the notion of forcing
given in Definition 4.
LemMma 2. Let G be C-generic over M. Then M[G,, 1k “RM is countable”.
Proof. Let G, = G n C,. Then G, is C,-generic over Mand G, = {p(,: p € G}.
Obkusly G,e M[G,] and M[G] = ML(%IMM [G,]- Let
G, ={peGuri: (B,n,0)(KB,my,x>ep = p = a)}

and G¥ = {(n, x) @p)et (KB, m>, x) €p)}. Then Gie M[G,s1), Gf € M[Gary]
and G%: a)—>R

LeMMA 3. Let G be C-generic over M. If ae M and A(a)<a, rank (d)<w, then
x = Ky(d) = Kg (0) € M[G,] and M|G,)F “x is countable”.

Remark. 4(@) = U {max(4(®), 4'(p)): <b, p> € a}.

Proof. If A(a)<<a and ae M, then is evident that K4(a) =
Let B =rank(4) and Rg(@) = {b: (Ap)c(Kb,p>ea)}. Then Rg(@)=R}) and
Gl’; € M[Gy,,]=M[G,]. Hence there exists a function fe M[G,] such that
f: Rg(a)l—;co. Since G,e M[G,], M= M[G,), M[G,] E ZF and “the functional Ky -
is definable in M[G,]”, we infer that w ={<(Ks,(5),f(0))>: <b,pdea&peG,} is an
element of M[G,] and wex x . Moreover, for every u € x there exists at least one n
such that {u,nyew and {zy,n0ew&{z,,myew&z # z,=>n, #n, Let
I(z) = min({z, n) e w) for zex. It is a 1-1 function belonging to M[G,].

n

Ke (@) e M[G,].

LeEmMMA 4. ZF~ +the collection scheme+V = HC |-ZFC™+V = HC.

Now we have

THEOREM. Let M be a c.s.m. for ZF. Then there exists a c.s.m. N such that
McN, OnnM = Onn N and NFZFC™+V = HC.

Proof. It suffices to put N = M[G]. Indeed, G is C-3-generic over M;
hence (see [3]) MI[G] is a 3-model. M[G]= U MI[G,] and by Lemma 3

neOnM
MI[G]EV = HC.
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