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Compacta with the shape of finite complexes
by
Ross Geoghegan* (Binghamton, N. Y.) and R. C. Lacher ** (Tallahassee, Fla.)

Abstract. In Theorems 1 and 2 we give necessary and sufficient conditions for a compactum
to have the shape of‘a finite complex.

The theory of shape, as introduced by Borsuk, is the Cech homotopy theory of
compact metric spaces (compacta). It is natural to ask: which compacta have the
shape of compact polyhedra? In this note we give some answers.

THEOREM 1. Let X be a finite-dimensional compactum which is | — UV. Then X has
the shape of a compact polyhedron if and only if its Cech cohomology with integer
coefficients is finitely generated.

THEOREM 2. Let X be a finite-dimensional compactum. Then X has the shape of
a compact polyhedron if and only if X can be embedded in some sphere S" in such a way
that S™\X is homeomorphic to the interior of a compact topological manifold.

The proofs are not difficult once the relevant literature is known. But this litera-
ture involves a substantial amount of mathematics, and we feel Theorems 1 and 2
throw some light on the geometrical meaning of shape.

Now some definitions. A compactum X is 1~ UV if for some (and hence every)
embedding of X in an ANR, Z, each neighborhood U of X in Z contains a neighbor-
hood ¥ such that every map of S* into ¥ becomes homotopically trivial in U. (Note
that if X 'is movable and the first, or fundamental, shape group of X is trivial, then X
is 1—=UV). A compact subset X of S” satisfies the cellularity criterion (CC) [7] if each
neighborhood U of X contains a neighborhoodEV such that every map of S* into V\.X
becomes homotopically trivial in U\X.

Theorem 1 will follow easily from the

LeMMA. Let X be a compact, connected subset of S" (n>6) which satisfies CC and
does not separate any of its neighborhoods. Then X has the shape of a compact poly-
hedron if and only if its Cech cohomology with integer coefficients is finitely generated.

Proof. “Only if” is obvious: we prove “if”. First we need a basic system of
simply connected neighborhoods of X. Let W be any piecewise linear (PL) manifold -
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neighborhood of X. By surgery (see [8], p. 16) there is a smaller compact PL manifold
neighborhood U of X whose boundary U is simply connected. By Van Kampen’s
Theorem, U is simply connected.

Next we prove that UN\X is simply connected. Let B2 be the 2-ball with bound-
ary 0B?, and let ¢: (B2 88%)—(U UNX) be a map. We must show that there
is a map ¢': B>~ UN\X which agrees with ¢ on 9B Let Y =~ *(X). Yis a compact
subset of B*\0B2. Since X satisfies CC there is a neighborhood ¥ of X in U such
that any loop in P\X contracts in U\X. Choose a compact PL submanifold N of
B™\@B® which contains ¥ in its interior and which lies in ¢ ~*(¥). 8N is a finite union
of simple closed curves and @(2N)<= P\X. Let P be the closure of the component
of B™N which contains 8B%. P is a PL submanifold of B% Pn ¥ = and
@(0P\3B%) = ¥\ X. Since each component of the closure of B*\P is a disk whose
boundary lies in &P it is possible to extend ¢ |P to amap ¢’ B2~ UN\X as required.

Next we apply the main theorem of [2] (or the more general versions in [8] or [9]).
Becduse there are basic neighborhoods U as above, S™\X is “simply connected at
infinity” in the sense of [2]. Since the Cech cohomology of X is finitely generated,
Alexander Duality implies that the singular homology of S™\X is finitely generated.
‘Since n326, it follows that S"™\X is PL homeomorphic to the interior of a compact PL
manifold M. Since M is PL collared, there is a compact PL manifold neighborhood ¥
of X in 8" and a homeomorphism h: V\X—0M x(0,1] which maps dV onto
oM x {1}.

We claim that X and ¥ have the same shape. In order to use the terminology of
Borsuk [1] we remove a point from S"\¥ and work in euclidean n-space E" instead
of S”. We must define fundamental sequences in E” between X and ¥ which are fun~
damentally homotopically inverse to one another. The identity map 1z of E" defines
a fundamental “inclusion” sequence i: X—¥. We define a fundamental “retraction”
sequence r: VX as follows. Let ¢, I=I be the PL map defined by ¢,(0) = 0,
0u(1/2m) = 1]2m, ¢,(1/2) = 1/m and ¢,(1) = 1. Define r,,;: E">E" to agree with the
identity on (E™\V)'u X and to agree with ™" o (I;y X @,) o on V. Let r={r,}.
It is easy to see that the compositions 7 o i and i o r are fundamentally homotopic
to the appropriate identity sequences.

Proof of Theorem 1. Embed X in S, n>6 being large enough, so that ™\ X
is uniformly locally 1-connected: see for example Proposition 1.3 of [5]. Then X
clearly satisfies the hypotheses of the Lemma and the result follows.

Proof of Theorem 2. We first note that for n>6, S"™\X is homeomorphic to
the interior of a compact (topological) manifold if and only if it is PL homeomor-
phic to the interior of a compact PL manifold. The non-obvious “only if" part of
this statement follows from the Product Structure Theorem of [6]. Thus, in proving
the “if” part of Theorem 2 we may assume that $"\X is PL homeomorphic to the
interior of a compact PL manifold. Applying the argument in the second half of the
proof of the Lemma to (each component of) X, we obtain a compact PL manifold
neighborhood ¥ of X which is shape equivalent to X.
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To prove the “only if” part of Theorem 2, we suppose X has the shape of a com-
pact polyhedron P. Following [3] or [5] there is an integer 7 such that if X is suitably
embedded in S" and if P is PL embedded in S", the complements S"™\X and S"\P are
homeomorphic. Hence $"™\ X is homeomorphic to the interior of a compact manifold.

Concluding remarks and questions: )

1. What are the analogous theorems for infinite-dimensional compacta?

2. We have addressed the question: When does a finite-dimensional compactum
have the shape of a compact polyhedron? For 1 — UV compacta, we have answered
by giving intrinsic conditions on the compactum (Theorem 1). But without Pro-
perty 1— UV we can only give embedding conditions (Theorem 2). Are there reason-
able intrinsic conditions? (Note: the problem of -verifying our embedding condi-
tions is the subject of [8] and [9]).

3. A related question is: When does a compactum have the (Fox) shape of a (not
necessarily compact) ANR? For movable compacta a slightly weaker question is
answered in Theorem 2 of [4].

4. Theorem 2 should be compared with Theorem 2.5 of [10].

Added in proof (June 1976). In the more than two years since this paper was written
additional work has been done. See note added in proof to [4].
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