Multicoherent spaces
by

R. F. Dickman, Jr. (Blacksburg, Va.)

Abstract. A, H. Stone has offered a conjecture concerning a characterization of multicoherent
spaces. In this paper we offer another conjecture characterizing these spaces and establish our con-
jecture whenever our space is weakly-finitely multicoherent or compact. We use this result to show
that if our space is weakly-finitely multicoherent, then Stone’s conjecture obtains. Finally we show
that if every completion of a locally connected metric space X is multicoherent, so also is X.

Let X denote a locally connected, connected normal space. By a region we
mean a connected open subset of X and by a continuum we mean closed and con-
nected subset of X, For A< X, by(4) denotes the number of components of X less
one (or co if this number is infinite). The degree of multicoherence, r(X), of X is
defined by

r(X) = sup{bo(H n K): X=HUK and H and K are subcontinua of X}.

If r(X) = 0, X is said to be unicoherent and we say that X is multicoherent
otherwise. Tf 0<r(X) < 0o, we say that X is finitely multicoherent and if 0<r(X)< o0
but bo(H N K)<oo for any representation X = Hu K, where' H and K are con-
tinua, we say that X is weakly-finitely multicoherent. Thus every finitely multi-
coherent space is weakly-finitely muiticoherent. A. H. Stone has shown that there
exists a large class of spaces which are weakly-finitely multicoherent, but not finitely
multicoherent [7].

Let n>2 be an integer and let S(r) denote the following statement: S(n): X is
multicoherent if there exists non-empty continua 4, ..., 4, such that

"
(i) X = U‘/l,, 4
(ii) no thlrcé of the A,'s have a point in common, and
(i) 4, A; @ iff li(modn)—j(modm)| <1.
. In a private communication A. H. Stone conjectured that S(n) is true for all
n>2 and he stated that he had established S(x) for all n>2 whenever X was finitely
multicoherent or compact (). A. D. Wallace established S(3) when X is a compact,

(Y The compact case remains unsolved.


Artur


220 R. F. Dickman, Jr.

locally connected, connected metric space in [8] and A. H. Stone announced S(3)
in_ [4] for any locally connected, connected normal space.

In [3] it was shown that S(4) is equivalent to (#): X is unicoherent iff every
pair of non-empty disjoint continua can be separated by a continuum.

‘We say that a set A< X is C-separated (in X)) provided that there exist disjoint
subcontinua L and M of X such that AcLu M and ANnL# & # A0 M We
say that a space X has Property C if every separated closed set is C-separated.
In [1] it was shown that if X has Property C, then () holds, and hence S(4) holds
in such spaces. In [3] it was shown that every locally connected, locally compact,
connected paracompact Hausdorffl space has Property C and in [2] it was shown
that every connected metric space with a Property S metric has Property C.

In this paper we offer a sequence of conjectures, T'(n), n2, characterizing
multicoherent spaces. We show that

(i) for n>1, S(2n) implies T(n),
(ii) S(4) is equivalent to T'(2),

(ii) S(6) is equivalent to T(3),

(iv) if X is weakly-finitely multicoherent or compact, then T(n) holds for
all n22, and

(V) if X is weakly-finitely multicoherent, then S(#) holds for all n>2.

A disadvantage of Stone’s conjecture is the inability to use induction to
establish it. Of course in spaces where Stone’s conjecture holds, a beautiful re-
presentation of the space is obtained. We use finite-induction to establish our con-
jecture in Lemma 3 and then show that Stone’s conjecture follows from ours when-
ever the space is weakly-finitely multicoherent. Finally we show that any unicoherent,
connected, locally connected (respectively, Property S) metric space has a unicoherent
completion (respectively, compactification).

Let n2 be an integer and let T(n) denote the following statement:

T(n): X is multicoherent if and only if there exists pairwise disjoint non-empty
continua By, ..., B, such that
(i) no B; separates X, :
(i) no component of the complement of the union of the B/’s has limit points
in three of the B;’s and

(iii) for each i, 1<i<n, Bimoan) Y Bi+ 1ymean Separates X.

LeMMA 1 If X = A, W Ay U Ay where each A; is a continuum and A; ~ 4; # @
Jor 1<i<j<3 and Ay N Ay, 0 Ay = O, then X is multicoherent.

Proof. Obvious. .

Lemma 2. If n>2 is an integer, then S(n+1) implies S(n) and T(n) implies
T(n—1).

Proof. If Ay, ..., 4,, 4,4+, satisfy the conditions (i)-(iii) of S(n+1), then
Ay, Ay, ..., A, U A, satisfies the conditions (i)-(iii) of S(n).
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If By, B,, ..., B, satisfy conditions, (i)-(iii) of T(), then B,, B, ..., B,_,, B:_,
satisfy the conditions of T'(n—1) where BL_, is the union of B,_, and B, together

with all of the components of X/({) B;) that have limit points in both B, and B,_,.
i=1

THEOREM 1. If n>1 is an integer, then S(2n) implies T(n).

Proof. In light of Lemmas 1 and 2 we need only show that when X is multi-
coherent, then there exists a collection of pairwise disjoint non-empty continua
satisfying (i)-(iii) of B(n). Suppose X is multicoherent. Then by §(2n) there exist

2n—1
continua Ay, ..., A,, satisfying (i) - (ifi) of S(2,). Note that |J 4; and A, are disjoint
=3
continua and so by the proof of Lemma 8 of [1] there exists continua B, and C,
2n—1
such that X = B, u Cy, FrB; = FrC, misses 4, U ( U 4;), neither B, or C,
i=3
2n—1

separates X and 4,<B,, J =C,. If n = 2, let B, be 43 together with all of the
=3

components of X\4; that miss B;.

Otherwise suppose By, ..., By, k<n—1, have been defined so that they satisfy
n—1 k
the conditions of T'(k) and 4,;_,cB; for 1<i<k and ( U 4)n(UB) =@.
i=2k+1 i=1
Then there exist continua B,., and Cj,, such that

2k-1 2n
Ape+1SBesr, (U 4du( U 4)]=Crsys
. =1 i=2k+3

FrB,., =FrC,.; is a subset of A, U Agpyn

and neither By, or C,,, separates X. Then {B,, ..., By} satisfies the conditions
(i)-(iii) of T'(k+1). The result now follows by induction.
For completeness we prove the following:

Let X be any connected, locally connected normal space. Then S(3) holds.

Proof. By Lemma 1, we need only prove the necessity part of S(3). To this
end suppose that X = H U K where H and K are continua and Hn K =4 U B
is a separation. By the proof of Lemma 3 of [2] there exists regions R; and R, of K
such that AN R; # @ # BN R, and FrR, = FrR, misses 4 U B, and K/R, is
connected. Then H, R,, K/R, satisfies the conditions (i)-(iii) of S'(3).

THEOREM 2. S(4) is equivalent to T(2).

Proof. We need only show that if there exists non-empty disjoint continua B,
and B, satisfying (i)-(iii) of T'(2), then there exists continua A, ..., 4, satisfying
the conditions (i)-(iii) of S(4). To this end suppose B, and B, satisfy conditions
(i)-(iii) of T(2). Then by the second part of the proof of Theorem 1 of [3], we obtain
the desired continua Ay, ..., 4,.

THEOREM 3. S(6) is equivalent to T(3).
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Proof. We need only show that if B,, B,, B, satisfy the conditions of 7'(3),
then there exist continua A, ..., A satisfying the conditions of S(6). Let B = B, u
U B, U By and for (i,/)e{(1,2), (2,3), (3, 1)} let H(i,j) be the union of all of
the components of X/B that have limit points in both B; and B;. Since no B; sepa-
rates X, X/B = H(1,2) u H(2,3) u H(3, 1) and since no component of X/B has
limit points in three of the B/’s, the sets H(1;2), H({Z2,3), H3,1) are pairwise
disjoint. Tet ¥ = B, UH(,2)UB,, Z=B, UHQ2,3)UB;, and W= By U
U H@B,1) U B,. Then Y, Z, W are continua and X = Yu Zu W. We can re-
present Y as the union of two continua 4, and 4, such that By<4,, B,=A, and
A; 0 A, H(1,2). (In order to see this, let U be any open subset of ¥ containing
B, whose closure misses B,. Let Q be the component of U that contains By, P the
component of ¥/Q that contains B, and let R be the component of ¥/P that con-
tains B;. Set 4, = R and 4, = Y/R. Then since Y is locally connected at every
point of Y/(B; U B,), Frd,; = Frd,c Y/(B; u B,)). Likewise let Z = A5 U A,
where B,c Ay, By<A, and 43 N A, H(2,3) and W = A5 U Ag, where By A4s,
B cAg and A; n dgcH(L, 3). Then {4y, ..., A¢} satisfies the conditions (i)-(iii)
of S(6).

LEMMA 3. Suppose n>2 is an integer and X is weakly-finitely multicoherent or
compact and B, ..., B, are non-empty, pairwise disjoint continua that satisfy the
conditions (i)-(iii) of T(n). Then there exists non-empty pairwise disjoint continua
Bi, ..., By, satisfying the conditions (i)-(iii) of T(n+1). Furthermore the B,’s can
be chosen so that B, < By, B, = B, for 2<i<n, B,cB, and B, ., is a subset of the

union of the components of X[(\) B;) that have limit points in both B, and B,.
i=1

Proof. Let H be the union of all the components of X/(B; u B,) that have
limit pointsin both By and B, and let ¥ = B, U H U B,. Then by conditions (i)-(iif)
of T(n), ¥is a continuum and Y n B, = @ for i # 1, n. We consider two cases:

Case I. There exists a continuum T lying entirely in H that separates B, and
B, in’ Y.

In this case let B,,, be the union of T' together with all of the components
of HJT that fail to have limit points in either By or B,. Then By, B,, ..., B,.. B, .,
satisfies the conclusion of our Lemma.

Case II. There does not exist a continuum lying in H that separates B, and
B, in Y. .

However in this case, since X is either weakly-finitely multicoherent or compact
(and Jocally connected) there does exist a finite collection, say C, ..., C, of continua

k
each lying in H such that C = J C; separates B, and B, in ¥ and for any i,
=1

1<i<k. C[C, fails to separate B, and B, in Y. For each 7, let D; be the union of C;
together with all of the components of X/C; with limit points only in C;. Then
Dy, ..., Dy is a collection of pairwise disjoint continua in ¥ such that no D; sepa-
rates ¥ and theunion of any proper subcollection of {D;}L. fails to separate B,
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k

and B, in Y. Let D= () D;. Note that every component of ¥/(D U B, U B,)

i=1

has either limit points in both D and B, or limit points in both D and B,. Let Q be

the union of B, together with all the components of ¥/D with limit points in B,

and let P be B; together with all the components of Y/D that have limit points in B;.

Then P and Q are regions in. ¥ and ¥ = P u D U Q where P, O, D are pairwise

disjoint and furthermore for any i, 1<i<k, D;n P # @ # D;n J. One can
; k

thus find a continuum L in X such that L contains (| D)u B,, Ln D; =,
=2

L n B, =@ for i n,and L fails to separate D, and B, in Y. (In order to do this,
first choose a continuum M in X that contains D; U B, and such that M misses

k
Q U (U D). Then choose L in the complement of M.)
i=2

Then if B, is the union of L together with all of the components of X/L that
have limit points only in L and if we set B,,; = D, for 2<i<n, B, = B,, we have
that (2) for 1<i<n+1, no B, separates X and (b) each of the sets B, U By, By U
U By, ..., B, U B, ., separates X. In order to complete the proof we need to en-

large B, to a continuum Bj so that B, ., U By and Bj u B, separates X, no com-
n+1

ponent of X/(\J B)) has limit points in three of the B;’s, and B, fails to separate X.
=1

To this end let R, and R,., be regions in X that contain B, and B, respectively
and suchthat R, n R,.; = Fand (R,U R,. )N (Byu B, UB3U...uB,_ ) =0.
Since X is either weakly-finitely multicoherent or compact, there exist finitely many
continua Fy, ..., F; such that Fr(R, U R,) n P is’'a subset of F; U.. U F, and
each of the sets F;, 1<i<s, lies entirely in P. Now let F be any continuum containing
B, U F, U ..U F,such that Fn B = @ for 1<i<n+1 and set B to be the union
of F together with all of the components of X/F with limit points only in F. Then
By, ..., B,, B,;, satisfy the conclusion of our Lemma.

LemMA 4. If X is weakly-finitely multicoherent or compact, then T(2) holds in X.

Proof. Suppose X is weakly-finitely multicoherent and X = H U K where
H n K is separated. Then since by(H n K)<oo, there exists disjoint continua L
and M such that HnKcLuU M, HNnKNnL #Q # HnKn M. Let B; be
the union of L together with all of the components of X/L that have limit points
only in L and let B, be the union of M together with all of the components of X/M
that only have limit points in M. Then {B,, B,} satisfy conditions. (i)-(iii) of T(2).
The compact case js similarly established. )

THEOREM 4. If X is weakly-finitely multicoherent or compact, then T(n) holds
in X for all nz2. .

The proof follows immediately from Lemmas 3 and 4.

LEMMA 5. Let Z be a connected normal space, let A and B be non-empty disjoint
subcontinua of Z such that Z is locally connected at every point of Z|(A © B). Suppose
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that Ty, ..., Ty is a collection of continua such that for any i, 1<i<k, T, separates

i-1 k
Ui=4A0(UT) and V;=Bu (U T)) in Z but fails to separate either U; or V.
i=1 J=it+l
k+1

ThenZ = |) A; where Ac A, Bc Ay, ., no three of the A;’s have a point in common,

=1
4;n (4 ulB) =0 ifj#1, k+1 and 4,0 A; # @ if and only if li~jI<1.

Proof. Suppose k = 1. Let P be the component of X/T, that contains 4 and
let 4, = X/P and 4, = P U Ty. Then {4,, 4,} satisfies the conclusion of our
lemma. Now suppose that {T}, ..., T;} satisfies the hypotheses of our lemma.
Choose 4, and 4, as in the case for k = 1. Then {T}, ..., T;} satisfies the hypothesis
of our lemma relative to the disjoint continua 4; and B. The result now follows
by induction.

THEOREM 5. If X is weakly-finitely multicoherent, then S(n) holds for all n>2.

Proof. Let N>2 be an integer. By Theorem 4, exist continua B? and B satisfy-
ing (i)-(@ii) of T(2). Let X\(B} u.B3) = H>uU K* and Y2 = B} U H*> U BZ. Sup-
pose that no subcontinuum of Y? separates B} and Bj in Y2, Then by the proof
of Lemma 3, there exists non-empty continua B}, B3, B3 such that {B?}2., satisfy
the conditions (i)-(iii) of T'(3) and B} =B}, B} B and Bi<=H?, and in particular

3
H?(1, 2), the union of the components of X\(J B?) that have limit points in both
i=1

B} and B, is non-empty.
Suppose again that no subcontinuum of ¥3 = B} U H3(1,3) U B} separates
3
Bi and B} in ¥® where H%(1, 3) is the union of the components of X\(J B?) that
, =1
have limit points in both B} and BS. Then as above there exist continua Bf, By,
Bi, B satisfying the conditions (i)-(iii) of T(4), BicB?, B} = B%, .BicB%
BicH3(1,3) and .

4
H*(1, 3) = union of all components of XU BY
=1

that have limit points in both Bf and B is non-empty.

Continue in this fashion, using the proof of Lemma 3, to construct a sequence
of collections {B}: 1<i<n};%, of non-empty, pairwise disjoint continua such that
each of the collections {B[};., satisfies the conditions (@i)-@ii) of T'(n) for each
n>2, BicBi™', ByeBy*! and for each i, 1<i<n, B™' = B". For each n>1,

n
let B" = {J B} and for each triple (1, i,j) where 1 <i< Jj<n, let H(i, j) be the union
=1

of all components of X\B" that have limit points in both B} and Bj. We note that
from our comstruction we can choose the collections so that H' "*1(1,i)cH”(1, i)
for 1<in and H™(1,j) = @ if i+1<j<n. Then since H"+i(1, nn H N1, n+1)
=, the collection {H"**(1, n)} is a collection of pairwise disjoint sets such that
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for any non-empty member, say H™+1(1, m), H™*1(1, m) has limit points in both
BTt and BMHL

We next observe that if for some k=2, there does not exist a subcontinnum
of Y*= Bfu H*1,%) U B! that separates Bi and BY in Y* then H*'(1,k) is
non-empty.

Suppose that this is the case for infinitely many k>2. Then for each k, where
HY(1,K) # @, ZF = B+l o gy, k) u BY*® can be represented as the union
of two continua Wi and Wy where Fr W' = FrW* is a non-empty subset of
H**'(1, k) that misses Bf*! U BE+! and WioBE*1 and WEoBE. Then

Wy = U{Wi: k>2 and H**'(1, %) = @}
and

Weo = (U {Ws: k=2 and H*"(1,k) # @) U (GH"“(k,kH))
k=2

=WiuH*Q2,3) WU H'G, Hu...
e UH =1, k) U WEO HYe, k+1) U ..

are connected sets such that X = W, u W,,. Furthermore for each k=2, Frw?
W, 0 Wand so by(W, 0 W) = oo.
This is a contradiction, hence for some ko>2, every pair of the sets Bl and B

can be separated by a continuum in H(1,5) whenever J=ky. It then follows that
N

Z = B2y H*(1, ko) U B satisfies the conditions of Lemma S,and so Z = | 4,
i=r

where each 4, is non-empty, BR=dy, B°cd, and ;0 (BP U BY=@if1£j

and N # j, no three of the 4;’s have a point in common and A;n 4; # O iff

Ji—jl<1. Then if

ko ko—1
Ay = (UB*) U ( U HG,i+1)
i=1 =1 ’
= B H(1,2) U B(1,2) U B 0 B*2, ) UBY L .
e U H ey ~1, ko) L B2,

{41, ., Ay} satisfies the condition of S().

COROLLARY (5.1). If X is & locally connected, connected normal space and r(X)
= 00, then either r(X) is attained or S(n) holds for all n>2.

Remark (5.2). Let X be weakly-finitely multicoherent and let k, be chosen
as in the proof of Theorem 5. Then as we noted in the proof of Theorem 5, Xis
very well behaved between B,'f‘;’ and B’l“’, i.e. on the continuum Z. Tn fact if X is
separable one can show, using the techniques of [1], that there exists a continuous
function f: Z— [0, 1] such that f(B) = 1, f(B*) = 0, and for some dense subset D

§ -— Fundamenta Mathematicae T. XCI
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of (0, 1), f(d) is connected for every de D. If X is also compact, f can be shown
to be a monotone map. ]

Proof. By Remark 5 of [1], there exists a non-alternating mapping f :Z—[0,1]
such that f(Bf) = 1, f(B%) = 0 and by the main result of [lp]; there exists a dlense
subset D of (0, 1) such that if de D and Uis an open subset of Z which meets f~ ),
then d is interior to f(U). Then as noted in Theorem 1 of [1] for any d e D, S D
is an irreducible separating set in Z, i.e. if A is a proper subset of f~1(d), Z\4 is

- connected. Now if for some de D, f~*(d) fails to be connected, we may, as in the
proof of Theorem 5, construct BY**?, ..., Bid¥ls o that H¥*Y(1, k) is non-empty.
This contradicts our selection of k, and thus £ ~*(d) must be connected for each de D.
In case X is also compact, it follows from Lemma 9 of [1] that J is monotone.

DErFINITION. A metric 4 for a space X is said to have Property S (alternately
(X, d) has Property §), if for any &>0, there exists finitely many connected sets
of d-diameter less than & whose union is X. In [9] Property S is shown to imply
local connectedness. In [2] it was shown that every connected metric space with
Property S has Property C and it was shown that every rim-compact, locally con-
nected, separable connected metric space has a compatible Property S metric and
thus T(2) and S(4) hold such spaces. An example was given in [2] showing that
not every unicoherent locally connected, connected separable metric space has
Property C, and hence not every such space has a compatible Property S
metric.

DEFINITION, We say that a metric d for a space X is a comnected metric (or
simply a c-metric) if for any e>0 and x e X, Sy(r, &) = {3l d(x,y)<e} is a con~
nected set.

LemmMa 6. If (Y, @) is a metric space and X is a dense subset of Y such that | X = d
is a connected metric, then Y is g is a c-metric and hence Y is locally connected and
Jurthermore if U is any connected open subset of Y, Un X is connected in X.

Proof. Let ye ¥ and £>0. Let {x}2, be a sequence of points it X such
that o(y, x))<efi. It then follows that for any izl, the closure of any sphere
8 ,(x;, e—gfi) is a subset of .S (¥, 6). We next assert that S, &) is a subset of the
union of the closures of the collection {8 (;, e~ gD} 1. To sce this let x e Sy, &),
‘and let @ = g(x, y). Choose i so that gli<e~aq. Then

(¥, x)<e(x, M) +0(y, x)<atefi<ut(e—o) = ¢.
Thus ;

54049 = ) 86 = 0 56 % = 5

(the closures all being taken in ¥) and since each of the sets Sy(x;, Eit) is connected
and contains y, S(», &) is connected,
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We now argue that for any ye Yand >0, S,(», &) N Xis connected. In order
to see this suppose that S(eOnX=HuKisa separation in X. Then there
exists a point ze ¥\X such that ze Sy.8 nHn K (the closures taken in Y).
There exists §>0 such that any ¢-sphere of radius § that contains z lieg entirely
in S/y,8). Let x,e Sz,40) nH and x,e Soz,40) N K. Then Syx,, 16)
= 8,(*;,%8) N X is a connected set containing z that lies entirely in S,(y,¢) N X.
Likewise Sy(x,, $6) is a connected subset of §,(y,8) N X that contains z, so that
C = Si(x1, $6) U Sy(x,, 46) is a connected subset of X A S,(y,¢) that meets H-
and K. This is a contradiction, hence Sy(¥,8 N X is connected.

It now follows very easily that for any connected open subset Uof ¥, Un X
is connected, For let a, be Un X. For each ye ¥, let S(y, &,) be a d-sphere that
lies entirely in Y. Then by the Simple Chain Theorem of [11] there exists a finite
collection yy, ..., y, of elements of ¥ such that

ag Sa(yia 8“), Sg(yiv yzg) n S(l(yi"'l’ ys.'+x) ?é 5]

N n
for each i, 1<i<n and & € S¢(Vus ¥e,)- Then [S:(i, ., 0 X] is a connected set
: i=1
containing @ and b that lies entirely in U n X. Hence U n X is connected.

Notation. For any metric d on a space X let (X, d) be the completion
of (X, d).

In [9], G. T. Whyburn showed that for any connected, locally connected metric
space (X, d) there was a ¢-metric d, for X such that the identity map h: (X, d)
= (X,d) is a homeomorphism and 7~% is uniformly continuous. Furthermore
if (X,d) has Property S, so has (X,d) and £ is also uniformly continuous.

THEOREM 6. Let (X, d) be a connected, locally connected metric space. Then if
any of the spaces (X, d), (X, d,) or (X,d)is weakly-finitely multicoherent, then for
all n>2, S(n) holds in (X, d).

Proof. Let N>2 be an integer. Since (X, d) and (X, d.) are homeomorphic,
we need only suppose that (X, d) is weakly-finitely multicoherent and show that
S(N) holds in (X, d,).

By our supposition and Theorem 5, S(N) holds in (X, k), that is there exist
non-empty continua A, A,, ...., Ay satisfying conditions (i)-(iii) of S(N). By the
normality and local connectedness of X, there exists regions Ry, R,, ..., Ry such
that for each 7, I <IN, A;= R;and {R}IL | satisfies the conditions of S(N). Then by
Lemma 6, each of the sets U; = R; n X is connected and by the denseness of (X, d,)
in (X, d), the collection {R; " X}V, (the closures being taken in (X, d,)) satisfy
the conditions of S(N) in (X, d.). This completes the proof.

TrEOREM 7. Let (X, d) be a locally connected, comnected metric space. Then
i X is unicoherent, so also is (X, d.). Hence if (X, d) also has Property S, (X, d.)

is a unicoherent, locally connected, compactification of X.
5% .
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Proof. Suppose that ¥ = Hu Kand H ~ Kis separated. Then if Uand Vare

regions of (X, d.) containing H and K respectively such that U n ¥ is separated,
Hy=UnXand Ky =VnX (the closures taken in (X, d,) are contained in X
with H, n K, 2 separated set. Since (X, d) and (X,d) are homeomorphic, this is
a contradiction. Hence (¥, d.) is unicoherent.

If (X, d) also has Property S, by (9.1.5) of [9], (X, d,) has Property S and hence
is totally bounded. Then (X, d) is compact. This completes the proof.

T CoroLLARY (7.1). If (X, d) is a connected, locally connected (Property S) metric
space and every locally connected metric completion (compactification) of X is multi-
coherent, then X is multicoherent.

Remark. If we can show that whenever (X, d) is a multicoherent locally con-
nected, connected multicoherent Property S metric space, there exists a Property S
metric § such that (¥, 8,) is multicoherent, then we can show that for all n>1,
T'(n) holds in all locally connected, Property S metric spaces. (This is because (X,8)
would by compact and by Theorem 4, T(r) holds in compact spaces).

If we can establish that in every compact, locally connected, connected metric
spaces S(n) holds for all n>2, then under the circumstances above we could es-
tablish S(n) for all locally connected, connected Property S metric spaces.

ExaMmpiE (1). Let C denote the complex numbers, Dy = {z: 0<|z|<1} and
D, = {z: $<|z{<1}. Then D, is homeomorphic to Dy, D, is unicoherent while D,
is not. Thus for this nice example we can find such a §, as in the remark.

ExampLE (2). For each i>1, let L, = {(x,»): x=1/i and O<y<l. Let
T = line segment joining (0, 1) to (1,1) and B = line segment joining (0, 0) to

(1,0). Then X = BuTu (UL is locally connected and fails to have a locally
i=1

connected compactification (it is also not rim-compact). Hence X fails to have
a Property S metric. Necessary and sufficient conditions for a locally connected,
connected, metric space to have a locally connected metric compactification are
not known.
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