4 I. Rosenholtz

Give X the arc-length metric. The map is constructed roughly as follows: stretch
each of the small circles onto the big circle; stretch each of the upper and lower
semi-circles of the big circle first around a smaller circle, then across the other
semi-circle, and finally around the other smaller circle. .

For those who prefer a formula, we let f: X—X be defined by:

2(z—% if Re(@)=1,

2z+3)  if Re(x)< -1,
@ =1 3z7°-% if  I<Re()<l,
P it —i<Re(®)<i,

—1z7%4+3 if —1<Re(@<—%.

The reader can check thatsthis is indeed a local expansion with no fixed points.

References

[11 M. Edelstein, An extension of Banacl’s contraction principle, Proc. Amer. Math. Soc.

12 (1961) pp. 7-10.

[2]1 S. Eilenberg, Sur quelques propriétés des transformations localement homeomorphes, Fund.

Math. 24 (1933), pp. 35-42.
[31. W. Massey, Algebraic Topology, An Introduction, Harcourt, Brace and World, 1967.

[4] M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969),

pp. 175-199.
[51 XK. Smith, Smith’s Primer of Modern Analysis, Bogden and Quigley, 1971.

Accepté par la Rédaction le 11, 2. 1974

On the *topology and its application
by

Hiroshi Hashimoto (Kofu)

Abstract. The purpose of the present paper is to study the relation between the set of the first
category and the null set by introducing the *topology to Ti-space. As a result of this application,
we made clearer the similarity and difference of the set having the Baire property and the measurable
set in the sense of Lebesgue.

§ 1. Introduction. Let / be a T space defined by the closure operation X—X.
‘We denote by P some property about the subsets of 7, and by P the family of all
subsets of / which satisfy P. We say that a subset X has the properry P at a point
p el if there exists a neighbourhood ¥(p) of p such that V(p) X e P. We denote
by X* the set of points at which X does not have the property P, namely X*
= {p/VV(p), V(p) X & P}. Assume that the family P is an ideal, ie.,

) (1) the conditions X P and YcX imply YeP,
(i) the conditions X€ P and YeP imply X+ YeP,

then the operation X—X* has the following properties

(a) X* is closed, (b) if XY, then X*c Y*,
(2 (©) X*™cXx*cX, (d) if G is open, then GX™* = G{GX)*,

(&) (XYycX* Y* () X*—Y*c(X—Y)*
Assume further that the property P satisfies the relation
3) {XeP} = {XX* =0} = {X* =0},
then :

(@) (X—X*)* =0, namely X—X*e P,
4) (b)) X** = X%

(c) if YeP, then (X4 Y)* = X*
(see [2], [3]).

In the following, we shall now assume that P satisfies the conditions (1) and (3)

and that every single element-subset of I belongs to P. Two important examples

of the family P of this kind are the family of the sets of the first category and the
family of the sets of measure zero (in the sense of Lebesgue).
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In this paper, introducing the notion of *topology, we shall investigate some
properties of the set of the first category and that of Lebesgue measure zero
collectively and make clear a relation between the set having the Baire property
and the measurable set.

§ 2. The *topology. For any subset X' in our T space 1‘, we define the *closure X
of X by X = X+ X*. Defining this way, we see easily by the properties of X* that
R X and that X satisfies the axioms of T space, and defines a new topology on
the set 1, which we call *topology. Our set 1 has now two topologies on it; here-
after the notion on *topology will be specified by *.

DEFNITION 1. A subset X<l is *closed, *boundary and *mowhere dense if
and only if X = X, T:?= 1 andT—}? = 1 respectively.

To be more precise, we should say that, for example, & is *closed with respect
to the property P. However, we will omit “with respect to P” in the following, when
no confusion is expected. [1]

TurorEM 1. A subset X <1 is *closed if and only if X is the union of a closed
set and a set belonging to P.

Proof. Let X be a *closed set. We have X = X o X*. Therefore, X is the union
of a closed set X* and X— X* which belongs to P by (4). Conversely, let X be the
union of a closed set F and a set 4 in P. It follows from (2) and (4) that X
= (F+A)* = F*fcFcX. Hence X is *closed.

COROLLARY. A subset X< 1 is *open if and only if X is the difference of an open
set and a set belonging to P. o

LE MMA 1. For every open set G and every X =1, we have (GX)* = (GX F = GX*

Proof. Let G be an open sét. First we have GX*<(GX)* by (2) (d), which
implies (GX*)*<(GX)** = (GX)* by (2) and (4). (G(X-X #))* = 0 by (4), then
(GX)* =(GX*)* holds by (2)(f) and we have (GX *)* = (GX)*. Secondly, GX*
=(GX)* implies GX*=(GX)* by (2)(a). On the other hand, (2)(c) implies GX*
o(GX*)* = (GX)*, from which follows GX* = (GX)* immediately.

COROLLARY. An open set G belonging to P is contained in 1—1*.

Proof. Putting X = 1 in Lemma 1, it follows that G* = G1* for any open
set G. Hence if G e P is opef, then G* = 0 by (3). Therefore we have G=1—1%.
LeEMMA 2. If a subset *G is *open, then we have ¥GX* = *GX* for any subset X.

Proof. Let *G be a *Qpén set. Then *G is of the form *G = G—4 where G is
open and 4eP by the above Corollary. Hence it follows from Lemma 1 that
SGX* = (G=A)X* = GX*—A = GX*— A+ (GX*)* = GX*. Therefore we have

SGX* = (G—AX* = GXF—AcGX* = *GX*. Clearly *GX*<*GX* holds, and
thus :aX * = *GX* follows.
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COROLLARY. If the space 1 satisfies 1* = 1, then G =*G for any *open set *G.

s

Note that p e X—p is equivalent to p € X*. Therefore let p be a *accumulation

p—

point of a subset X, namely p € X—p, then X* is nothing but the *derived set of X,
ie., the set of all *accumulation points of X. X is *dense in itself if X<X*.
A *scattered set is a set not containing *dense in itself non-empty subsef.

Let X be a subset of 1. X = X—X*+XX* implies XX*cX* = (XYX*)*
by (4), then XX* is a *dense in itself set contained in X. Hence, if a subset X is
a *scattered set, then XX* = 0, and X e P is necessary by (3). Conversely, if X e P,
any subset ¥ of X also belongs to P, and ¥* = 0. Namely X can not contain any
non-émpty subset ¥ with Y= ¥*. Thus any X e P is a *scattered set. We have
proved the following:

THEOREM 2. 4 subset X is a *scattered set if and only if X belongs to P.

It is well known that, in any topology, a scattered set is the union of an open
set and a nowhere dense set. Therefore the following is an immediate corollary of
Theorem 2.

~ PROPOSITION. X belonging to P is represented in the form X = *G+*N,
where *G and *N are *open and *nowhere dense, respectively.

We shall study the property of *G and * in the above proposition. *G is of
the form *G = G—A4 by Corollary of Theorem 1, and it belongs to P as a subset
of X. Then G € P, so that G=1~—1* by Corollary of Lemma 1, and *G <1 —1* follows.
Next, *N; = *N(1—1%) is a ‘set belonging to P and contained in 1—1%*. Then
(1—=*N)*-*N, = 0, and *N, is not *nowhere dense. *N is a subset of *N, then
*N; = 0 and *Nc<1* follows. Thus we have

THEOREM 3. X belonging to P is decomposed into the union X = *G+*N, where
*G is *open contained in 1—1%, and *N is *nowhere dense contained in 1%,

COROLLARY 1. Every set belonging fo P is *nowhere dense if and only if 1* =1
holds true.

COROLLARY 2. If the space 1 satisfies 1% = 1, then the complement of every set
belonging to P is dense.
Proof. By Theorem 3, X e P can be represented in the form *G+*N, then

1—X = (1—*N)—*G. Here D = 1—*N is dense, since 1 = T—*Nc1—*N, then
1—X = D—A, where 4 = *G e P as a subset of 1—1*. In our space 4 = @, then
1—X is dense.

The above Corollary 2 generalizes the statement that, in a Baire space, the
complement of any set of the first category is dense.

§ 3. The *nowhere dense set. Throughout this section, our space 1 satisfies the
condition 1* = 1.

LeMMA 3. 4 nowhere dense set is a *nowhere dense set.
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Proof. Let X be a nowhere dense'set. We see that 1 = 1-X =1-Xc1-X
by Corollary of Lemma 2, and that X is *nowhere densge.

P

*Tnt X denotes the *interior of X: *IntX =1—1-X.

LEMMA 4. *IntX is the set of all points at which X is not locally *nowhere dense.
Proof. Let p be a point of “*IntX and G an open neighbourhood of p, then
0% G Mt ¥ implies 0 # G- IntX =G GX The set G-*IntX is a *open set

,._

as a product of two *open sets, then 1— GX cl-G *IntX =1-G*IntX # 1.
Hence X is not *nowhere dense at p. Conversely, if pel— *IntX then the set

G = 1—*IntX is an open neighbourhood of p. Now we have Gxe8x (G- @+
+G-X, and G—G is *nowhere dense. On the other hand *Int(GX) *IntG- *InLX

= G(1-(1—-G)¥) #IntX = 0, hence GX is *boundary. These being 50, GX is
*boundary as a subset of the union of a *nowhere dense set G— G and a *boundary
set GX. Therefore GX is *nowhere dense. Lemma 4 is thereby proved.

From Corollary 1 of Theorem 3 and Lemma 4, it follows that
) At X < X*,
for any subset X<1. The set 1 —X is *open, hence *ntX = 1-1- X =1-1-X
=IntX by Corollary of Lemma 2. Hence it follows from (5) that IntX = Int(Int X)
cInt(*IntX)cIntX * and that
(6) #ntX = Int X * ‘
where X is any subset of 1. From these facts, we can see that, for any subset X1,
the set of points at which X is not locally *nowhere dense is a closed domain:
LEMMA 5. Any *nowhere dense set X is the union of a nowhere dense set and
a set belonging to P.
Proof. X is *closed, then X = (1—G)+4 for T some open set G and A€ P,

by Theorem 1. If X is *nowhere dense, then 1 = 1 X =G~ Ac G. Hence 1—-G
is nowhere dense and X = (1—G) X+ 4X, where (1—G)X is nowhere dense and
AXeP.

THEOREM 4. If 1* = 1 and every nowhere dense set belongs to P, then X e P if

and only if X is *nowhere dense.

This follows from Lemma 5 and Corollary 1 of Theorem 3.

COROLLARY. The equation X* = Int X* holds for all X<1 if and only if every
nowhere dense set belongs to P.

Proof. In the space satisfying 1* =1, our theorem follows from Theorem 4
and (6).' Let X be a subset in a general space, then X = X, + X,, where X; =1 —1%
and X,c1*-1%* = 1* by (4)(b), therefore, by the above fact, X5 = Tﬂt—_X} holds,
and we have X* = IntX* since X* = X3,

icm

On the *topology and its application 9

§ 4. Characterization of *topology.

LEMMA 6. Let P be the family of scattered sets, then X* = ker X, where ker X is
the largest dense in itself set contained in X, and P satisfies the relation (3).

Proof. Let p be a point of ker X and ¥(p) an open neighbourhood of p, then
V(p)X>V(p)ker X and V(p)kerX is not scattered by the definition of ker X.
Conversely, if p ¢ ker X, for ¥(p) such that V(p)m= @, V(p)X is scattered
by the definition of ker X, and we have X* = ker X. In our case, evidently, X e P
—+X* = 0-»XX* =0 holds, and XX* =0 implies kerX = 0, since 0 = XX*
= Xker Xoker X.

It seems of interest to determine just what properties characterize *topology.
If FycF are T -topologies in 1, and P is the family of #-scattered sets, then P

satisfies our conditions assumed in § 1 relative to #,. Then it follows from The-
orems 1 and 2.

THEOREM 5. J is the *topology corresponding to F, and some ideal Py satisfying
conditions assumed in § 1 relative to S if and only if Fy< F, Py = P, each member
of P is F-closed, and each member of F is of the form G—A4, Ge Sy, AcP.

§ 5. The set having the Baire property. We shall denote by P the property to be
of the first category. In ordinary topology, a subset X is the difference of two closed
sets if and only if X — X is closed. Therefore, in the *topology with respect to the
first category, it follows:

LEMMA 7. A subset X is of the form X = *F —*F,, where each *F; is *closed,
if and only if X—X, ie. X*—X, is *closed.

Clearly we can assume without loss of generality that *F; >*F, in Lemma 7.

LemmA 8. A *boundary set which is not of the first category does not have the
Baire property.

Proof. Let X be a *boundary set. Then we have X =(1—X)* by (2)(a), and
X* (1—X)* = X* follows. In our case, X* 5 0, and then X* is not nowhere
dense, since X* is a closed domain by Corollary of Theorem 4. Thus X*-(1—X)*
is not nowhere dense, and X does not have the Baire property. Lemma 8 is proved.

Note that, for any subset X, X*—X is *boundary, since 1 = X+1-%

c:X+1—X X+1-X = 1—(¥—X). Hence, by Lemma 8, if X*—X has the
Baire property, this is nothing but of the first category. A *closed set has the Baire
property by Theorem 1, so that, in Lemma 7, X*—X is *closed if and only if
(X*—X)* = 0, namely X has the Baire property, and we have the following:

TuEOREM 6. A subset X has the Baire property if and only if it is of the form
X = *F,—*F,, where each *F; (i = 1,2) is *closed, and *F,>*F,.

DEFINITION 2. A set E of the form

) E = *Fy— *Fy+*Fy— . +*Fyy_ 1 = *Fyt oo,
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where {*F,} forms a decreasing sequence of *closed sets, is said to be *resolvable
with respect to P.

*Fpu1—*F,, (n=1,2,..) have the Baire property by Theorem 6, then
a *regolvable set E with respect to the first category defined by (7) also have the
same property, since the class of sets having the Baire property is a ¢-algebra.
Hence we have

THEOREM 7. X has the Baire property if and only if X is *resolvable with respect
to the first category.

§ 6. The measurable set. We shall take the property to be of Lebesgue measure
zero as P. We denote by an *F, set the union of a countable family of *closed sets,
and by a *G, set the intersection of a countable family of *open sets. Then, by
Theorem 1, an *F, set is of the form F, set plusa nullset, and a *Gj; set is of the
form G; set minus a nullset. Evidently the inverse of each of these holds true. Hence
we obtain the following:

THEOREM 8. X is measurable if and only if X is the set both *F, and *Gj with
respect to Lebesgue measure zero.

The author wishes to express here his hearty thanks to Prof. K. Kunugui and

Prof. J. C. Oxtoby to whom he has been greatly indebted for their many valuable
remarks and suggestions.
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Topological completeness of first
countable Hausdorff spaces II *

by

H. H. Wicke and J. M. Worrell, Jr. (Athens, Ohio)

Abstract. This article continues the study of basic completeness, a concept introduced in part I.
1t analyzes basic completeness into more primitive components: pararegularity (a generalization
of regularity), monotonic completeness (a natural form of topological completeness), and base
closurewise of countable order (a form of uniform first countability). The analysis finds expression
in these theorems: 1. A space is basically complete if and only if it is 73, locally monotonically com-
plete, and has a base closurewise of countable order. 2. A space is basically complete if and only
if it is a pararegular monotonically complete T,-space having a base of countable order.

in addition there are results concerning pararegularity and monotonic completeness. It is
shown that a pararegular space which is psendo-m-complete (a modification of Oxtoby’s pseudo-
completeness) satisfies the Baire category theorem. The technique of primitive sequences exposited
in T is further elaborated and applications are made. A number of examples are given.

This paper analyzes the concept of basic completeness, introduced in [22],
into more primitive components: pararegularity, monotonic completeness, and
base closurewise of countable order. These isolate, respectively, features of regularity,
of completeness, and of uniform first countability. Each of them is discussed in
a separate section where examples are given and relations to other concepts are
established. A Baire category theorem is proved for pararegular spaces satisfying
a weak completeness condition. The final section presents some characterizations
of basic completeness in terms of these components.

The first section continues the development of the technique of primitive
sequences initiated in 1. Here some results are established in general form which
are used in the subsequent proofs and which are useful in other contexts as well.
This section may be regarded as a complement to Section 2 of L These two sections
begin a systematic presentation of a powerful technique for dealing with monotonic-
ally contracting sequences. In particular, they have application to spaces and con-
cepts whose definitions involve monotonically contracting sequences of open
coverings such as the spaces which are the subject of this investigation.

* This paper is a continuation of [22] which will be referred to herein as I. We use the notation,
definitions, and results of I throughout: references such as Lemma 1.2.1 are to Lemma 2.1.0f L.
This work was supported in part by the United States Atomic Energy Commission.
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