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Non-symmetric generalizations of theorems
of Dyson and Livesay

by

Kapil D. Joshi (Providence, R. I.)

Abstract. The theorems in the title deal with a real-valued map f defined on the
2-sphere 8% Dyson’s theovem asserts the existence of two mutually orthogonal dia-
meters all four of whose end points are mapped onto the same point by f. Livesay’s
theorem is more general in that it asserts the existence of two such diameters which are
inelined to each other at a specified angle a, 0 < a< =. These theorems are generalized
to higher dimensions, the sphere being replaced by any compact subset X of the Eueli-
dean space E** for which the origin lies in a bounded component of B*+— X, The results
as well as the methods are similar to those in the author’s earlier work in which a similar
generalization of the Borsuk-Ulam theorem on antipodes was proved.

1. Introduction. This paper may be regarded as a continuation of [3]
to which the reader will be referred frequently. In [3] the following theorem
conjectured by Borsuk was proved.

THEOREM A. Let X be a compact subsei of the Budidean space R+
which disconnects it in such a way that the origin lies in a bounded component
of R*1—X. Then given any map f: X —R" there exist two points » and 1y
in X lying on opposite rays from the origin (that is, y = —lz for some
A >0) such that f(x) = f(y).

The well-known Borsuk-Ulam theorem follows from this theorem by
taking X to be the 7 -sphere S". The separation property of the set X in
Theorem A may also be expressed by saying that “X separates 0 from co”.
Henceforth compact sets with this property will be called Borsuk sets.
The theorems to be proved in this paper are generalizations of the theorems
of Dyson [1] and Livesay [4] much the same way as Theorem A is a gen-
eralization of the Borsuk-Ulam theorem. Specifically they are,

THEOREM B. Let X be a Borsul set in R™* and f be a real-valued map
on X. Then there ewist n poinis @y, #,, ..., ¥z of X and n positive real numbers
Ayy Aoy ey An Such that, ) -

(1) —Awe e X for each i=1,2,..,n,
() F(2) = F(@a) = oo = fla) = f(—hty) = . = f(— ntn) and
(iti) @ and x5 are mutually orthogonal for all i s£§, L <4< n, 1 < § < 0.
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TuroreM C. Let a Borsul set X in R a4 map f: X - R® and a num-
ber a between 0 and © be given. Then there exists at least one subset of the
Jorm {my, @y, — Awy,— Ao} C X such that 3y >0, A >0, f(z,)=f(n,)=
= f(— @) = f(— Atts) and the angle between @, and x, 1§ «.

The theorem of Dyson follows from Theorem B by taking n = 2
and X = 8% while that of Livesay follows from Theorem C by taking & = 1
and X = 8> Yang ([6], [7]) has proved generalizations of theorems of
Dyson and Livesay and we shall use these in our proofs. In fact, as in [3]
our technique will be to construct a certain 71-space (A (X);.’I.’) from the
Borsuk set X, to compute its Smith index and then to apply Yang’s
results.

In Section 2 we review and improve some of the results from. [3].
Section 3 is devoted to a brief discussion of Buclidean 7-spaces and
Yang’s results which will be needed later. In Section 4 we prove the desired
generalizations of the theorems of Dyson and Livesay.

The author'is indebted to R. Mark Goresky for an important suggestion
leading to the proof of Theorem (2.4) which gives an affirmative angwer
.to a question that was left open in [3], p. 19.

2. The zintipodal space A (X). As in [3] by a space we shall mean a com-
pact metric space and by an involution a fixed-point-free homeomorphism
of a space onto itself having period two. Also all homeology groups will be
understood to have Z, coefficients. An involution on a space X will usually
be denoted by I'and the pair (X; T) will be called a T'- space. A map between
two T-spaces which preserves the action of their involutions will be called
& T-map. For the definition and properties of the invariant (also called
equivariant or symmetric) homology theory on the category of T- spaces
and of the Smith index of a 7T-space we refer the reader to Smith [5] or
Yang [6]. We shall also need the properties of regular polyhedra defined
and studied in [3].

Given any subset § of R™* we define its antipodal space A(8) which
consigts of all ordered pairs of points in § which lie on opposite rays from
the origin; that is to say, 4 (8) = {(z, y) ¢ 8 X S}y = — iz for some A > 0}.
If § is compact so is 4 (S). There i a natural homeomorphism 7' of 4.(5)
onto itself defined by T'(z, y) = (y, ). This homeomorphism is an involu-
tion provided the origin is not in S. We are interested in the Smith indox
of the T-space (4(X);T) in the case where X is a Borsuk set in J* .
Tn [3] it was proved that Ind (4 (X); T) < n and that equality holds if X is
a regular polyhedron. The question whether equality holds for an arbitrary
Borsuk set X was left open. We shall settle it here by expressing the T-space
{4 (Xy; T) as the inverse limit of a sequence of T-spaces each having
index n. To do this first we must establish a continuity property for
the Smith index. :
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‘We note that if I is a countable directed set and {X,, T.},.;; is an
inverse system of T-spaces in which all maps of the form X, - X, for
f<ain M are T-maps, then the inverse limit X of the system {X },
is a compact metric space with a natural involution 7. Indeed if we con-

sider X as a subspace of the product [] X,, then T acts on X by
ael

T ({z,}) = {T o). With this action of 7 all the projections X —X, are

obviously 7-maps and the 7-space (X;7') is the inverse limit of the system

{&Xy; T}oens in the category of T-spaces.

(2.1) TusorEM. The equivariant Lomology groups as well as the index
homomorphisms are compatible with inverse limits. In other words, if
{X o5 Tohaens s am inverse system of T-spaces with limit (X; T), then for each
integer p, H,(X; T) 4s isomorphic to the inverse limit of the inverse system
of groups {H, (X T)}ear ond, moreover, the indew homomorphism
Oy + H(X; T') = Z, coincides with the homomorphism induced by the family of
the indew homomorphisms {8, : Hy(X o5 T,) > Zolyens -

Proof. The proof of the continuity of the equivariant homology
groups proceeds along a standard, although lengthy argument analogous
to the one used in proving the continuity property of the ordinary Cech
homology theory, see for example ([2], Chapter X). We omit the details
but note that the only essential difference between the equivariant homo-
logy theory and the ordinary Gech homology theory is that in the defini-
tion finite open 7T-coverings (i.e. coverings whose members are permuted
among themselves under the action of 7) are used instead of ordinary
coverings; see Smith [5]. A similar modification in the proof yields the
desired result.

To prove the assertion about the index homomorphism we note that
by the properties of inverse limits there is a unique homomorphism
g:hy(X; T)»Z, which makes the following diagram commute for
each ae M.

Hp(x; T) e Hp(Xa; Ta)
N\

Here the horizontal arrow indicates the homomorphism induced by
the projection map X — X,. On the other hand by naturality of the index
homomorphism ([3], p. 17) the diagram above commutes if we take g to
be the index homomorphism ¥+ Therefore the index homomorphism must
coincide with the homomorphism induced by the family of index homo-
morphisms. This completes the proof.


Artur


38 K. D. Joshi

(2.2) CoroLLARY. Suppose each T-space (X5 1) has index n and that
the equivariant homology groups H,(X,; T,) are finite for all P and a. Then
the inverse limit (X; T) has Swith index n.

Proof. By definition, the Smith index of a 7-space (X ;3 I') 18 the
largest integer p for which the index homomorphism. @, : H,(X; 1') ~ 7, is
an epimorphism. In the present case by (2.1) the index homomorphism
Un 2 Ho(X; T) - Z, is induced by the family of index homomorphisms
O 1 Ho(X g5 T,) ~ Zoloear cach of which is an epimorphigm. The a.ésum;p-
tion about finiteness of H,(X,; 7)) implies (see [2], . é26) that the index
homomorphisi &y : Hy(X; T)~ 7, is an epimorphism  and hence that
Ind(X; 7) 2= n. On the other hand beeause we have T-mapy X ~X, it
follows from [3], Theorem 2.3, that Ind(X;T):: ind (X, 4'). Thus
Ind(X; 7) = .

An important ease where this corollary is applicable is when each X i
a polyhedron. Note that no assumption is made regarding finiteness of the
equivariant homology groups of the limit (X5 1.

Given a Borsuk set X in R**! we wish to apply the above corollary to
compute Incl(A(X ) T). Tor this we shall construct a decreasing sequ@neo

o0
of polyhedra, €, 20,2 ¢,D ... such that [1Qi= A4 (X) and each (), is
a T-space of index », the involution on Q@z ‘bleing induced by that on ¢),.
First, given a Borsuk set X we fix some closed annulus N = 4 (v, 1)
= {2 ¢ B""|r < ||#|| < R}, where the real numbers » and & are so chosen
that 0 < r < R and the interior of N contains X. The antipodal space 4. (N)
is homeomorphic to 8” xJ xJ, where J is the closed interval [», R]. Indecd
the map g: 4(N)=8"xJ xJ defined by oz, y) = (((T'/H.‘IJH; [el], [lyl]) is
@ homeomorphism. There is an involution 7 on 8t xdJ xJ dofin(led by
;l’('w, $,1) = (—, ¢, s). The homeomorphism @ is clearly a T-map b(?»(ﬁarllﬂw(?‘,
it (z,y) e A(N), then of|w| = —¥/llyll. Since the n-sphere 8 with its
antipodal involution can be equivariantly embedded in S%xJ wJ we
conclude that {4 (N); T) has Smith index n.

In the construction of the sequence of polyhedra {@} the first poly-
hedron @; will be A(N). To construct the succesive ones we need the f(ill{){&'-
ing Lemma.

(2.3) LevMA. If B is an invariant closed subset of A(N) and V is an
equivariant neighborhood of B in A (N ) then there exists a compact poly-
hedron € sueh that QCV and Q is wself an equivariant ‘n,cglzi(}/bl)()Mon(( bf B
m A(N). (“Bauivariant” and “snoariant” mean the mme.)‘ .

. Proof. Clearly we may suppose that V is open and that VG A(N)»
We let e = d(B, A(N)—V), where 4 is any metric on A (N) wh‘iolfis com-
pzbltible with the action of 7 on 4 (N ). Next we construct an eqni‘vzmria,nﬁ
triangulation of A (N) whose mesh is less than &/2 and let  be the union
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of all closed simplices which meet B. Clearly @ has the desired properties
and the lemma is proved. .

Returning to the construction of the polyhedra {;} we first fix
a descending sequence U; D U,D Uz D ... of closed neighborhoods of X
in R™' such that U, = N, each U, is a neighborhood of U, , for ¢ =1

and [T} U; = X. Then clearly 4(U;) is a neighborhood of A(U, ) in A(N)

i=1

and ) A(U;) = 4(X). We have already set @, = A(N). By notation we
i=1

also set U, = N. To construct @; for ¢ > 2 we proceed inductively. Suppose

Q. 0Q,2...0@Q;_, have been constructed so that @,_, is an equivariant

neighborhood of A (7;) in A(N) and @,_,CA(U;_,). Then Q,_, (" A(U,_,)

is an equivariant neighborhood of 4 (U;) in 4 (), and so by (2.3) there

is a polyhedron @; such that @; is an invariant neighborhood of A(Uj)

and a fortiori of A(U,. ;) and also @;CQ,_ ~ . A(U,_,). This completes

the inductive step. The descending sequence of polyhedra {¢);} thus obtained
©

clearly has the property that () @:= A(X) and so A(X) is the inverse
i=1

limit of this sequence. Also each @; being a compact polyhedron, all groups

H,(Q;: T) are finite. In order to apply (2.2) we now only need to show that
the Smith index of each (Qq; T') is #. For this, we know from [3], p. 31,
that each U; contains a regular polyhedron P;. Hence we have inclusions
AP)CA(T)CQ;C A(N) for each 4; and therefore the Smith indices
of these T-spaces are in the same order ([3], p. 18). But it is known ([3],
. 31) that Ind (4 (Ps); T) = n. Since we also know that Ind(4 (N); T) =
it follows that Ind (@:; T') = = for all 7. All the hypotheses of Corollary (2.2)
are now satisfied and we have the following theorem which is the goal of
this section.

(2.4) TamoreM. If X is a Borsuk set in R™, then Ind(4 (X); T) = n.

Remark 1. In the proof just given it is also trme that
Ind(4 (Us); T) = nfor all i. But we do not know if the groups H,(A(U,); T)

-are finite or not. On the other hand although each A4 (P;) is a polyhedron

and therefore the groups I, (A(P)); T) are known to be finite, the construc-
tion of these polyhedra {P;} does not guarantee that they form a descending
sequence. It is therefore necessary to construct the sequence {@:} which
satisfies all three hypotheses of (2.2) simultaneously.

Remark 2. It would be interesting to have a short proof of Theor-
em (2.4) which is based directly on the fact that X separates 0 from oo and
which does not go through the process of approximating the set X.

3. Euclidean T-spaces and Yang’s results. The antipodal space 4 (X)and

its involution 7' discussed in the last section can be looked at slightly dif-
ferently. Obviously A(X) is a subset of the Euclidean space
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Rint® = Rott o R Let IT be the diagonal (n--1)-plane in B™H x Rrtt,
ie. T= {(w,#)| # e R**}. The involution T on A(X) maps (z,y) onto
(v, ) and therefore coinecides with the reflection into II. The Z'-space
(4 (X); T) is therefore a Huclidean T-space in the sense of the following
definition.

(3.1) DeFINITION. A T-space (X; ) is called a Huclidean T-space
if XCR™ for some m and T coincides with the reflection into some
t-plane IT in RB™, 0 <t < m.

We have already given an example of a Fuclidean 7-gpace. The
#-sphere 8" with its antipodal involution is another example. Iere tho
plane 7 is zero dimensional. Actually every T-space (X; T') in which X is
finite dimensional can be realized as a Huclidean 7-gspace. Indced, let
f: X —»R"* be an embedding for some k. Let m = 2k and /T be the diagonal
k-plane in R*x R*. Define g: X - R™ by ¢(z) = (f(»), f(Tx)). Clearly g is
an embedding. The set g(X) has an involution 7 on it defined by
T(x,y) = (y, ») and ¢ is a T-map. Moreover, T coincides with the reflec-
tion into IT; and thus (9(X); T) is a Ruclidean T-space. The map
h: X—g(X) defined by ¢ is an equivariant homeomorphism.

We consider a Euclidean space R™ and a fixed ¢-plane 7 through
the origin. Terms such as “perpendicular”, “angle between two veetors”
will be understood to be with respect to the usual inner product on R™.
If » is a point of R™ not in IT, then the (¢-1)-plane spanned by I and @ will
be denoted by IIz. The unit vector in the direction of the perpendicular
line to [T through # will be denoted by w(z). If # and y are two points
of E™ not in II, then the angle between [7» and ITy is defined to be the angle
between the unit vectors «(z) and w(y). If this angle is a, then we say
that IIw and ITy intersect at an angle a. If a = =/2, then Iz and ITy are
said to be mutually orthogonal at II.

We remark that if B™ C R", then the inner produwct on E™ is the
restriction of the inner product on ™ Consequently the angle between I1x
and [Ty is the same whether they are considered as (t--1)-planes in R or
in B™ Thus the integer m plays no role as long as B™ contains I7, o and 1,

Our primary interest is of course in the case where m == 2n-}-2 and
where I7 is the diagonal (n-1)-plane. Note that the orthogonal com-
plement of I7in B*+*is the (n--1)-plane @ defined by & = {(a, - &) ¢ "+ x
X B"| e B*1}. An easy caleulation shows that if (, ) is in By Rott,
then the pexpendiculars from (#, 4) to IT and @ meet them respectively ab
points ((w+y)/2, (e+9)/2) and (@—y)2, (y—w)/2). It (2,y)4¢1l, then
the unit vector u(z,y) along the’direction of the perpendicular to I
through (x, y) is therefore, ((z—y)/y/2 |lz—yl|, (y— =y 2ly—w|)).

Suppose now X is a Borsuk set in R*, An element of the antipodal
space A (X) is of the form (x, — Az) for some 2 ¢ X' and for some A > 0.
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Certainly (z, — Az) ¢ I and so I7 and (z, — Az) together span an (n--2)-
plane in R™x R*' denoted by I7(z, —Az). Given two such points
(21, —has) and (2, — Aum,) we want to relate the angle between the
(n+2)-planes II(x;, — 4m) and IT(x,, — Ayw,) to the angle between the
vectors #; and z,. The relationship turns out to be surprizingly simple as
proved in the following theorem.

(3.2) TuEorEM. Let @, @, be non-zero vectors in RB*** and let 4, 1, be
positive real numbers. Then the angle between the (n--2) - planes II(zi, — Ao;)
and IT(xy, — Ays) in B*T1x R is the same as the angle between the vectors @,
and x, in B™.

Proof. First we observe the relation between the usunal inner product
on R** and that on R¥"2 = R+ R, Tging the same notation (o, o)
for both of these we have ((yy,#), (Ya, 2a)y = Yy, Yor + <2y, 2> for all
Y1, Yy 51, % 0 R Tet a De the angle between the (n-2)-planes
I (2, — Aoy) and I (z,, — A,) and let g be the angle between the vectors z,
and x,. Then by definition, cosa = {u(w,, —4Ly), (2., — Auty)), Where
w (g, — i), ¢ = 1, 2, are unit vectors defined above. Using the formulas
for these unit vectors as mentioned above as well as the relation for the inner
product just observed, a straightforward computation yields that
cosa = {&/||a]l, 4of[|2s|[>. But the right-hand side of this equation equals
cosf by definition of . Hence cosa = cosf. The convention about angles
requires that 0 < ¢« < = and 0 < § << =n. Therefore a« = $ and the theorem
is proved.

‘We conclude this section by stating those theorems of Yang which will
be needed in the next section. To be fair we remark that the results obtained
by Yang are more general. However, to state them in their full generality
would necessitate the introduction of still more définitions and notations.
We avoid this because the versions given below, while not most general,
are sufficient for our purpose.

(3.3) TuroREM. Let (X; T') be a Buclidean T-space in B™ of index s and
with T induced by the reflection into some t-plane II, 0 <t < m. Let f be
a real-valued map on X. Then there are s—+1 Points @y, By, ..., Beqy of X such
that f(z;) = f(@) = ... = f(#,) = f(@sy,) ond, moreover, the (t--1)-planes
Iy, Mgy ...y ITirg,, are mutually orthogonal at IT.

(See [6], p. 278.)

(3.4) TEROREM. Let (X5 T') be a Buclidean T-space in B™ of index > 2k
(for some integer k) and with T induced by the reflection into some t-plane IT.
Let f be a map of X into RE. Then there exists a pair of points @, and o, in X
sueh that f(x) = f(xe) = f(Ta) = f(Tx,) and ITw, and IIz, intersect at
a preassigned angle a, 0 < a < w. If, moreover, a # w[2, then there exist at
least two such pairs.

(See [7], p. 281.)
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(3.8) TrmorEM. Let (X5 1) be a T'-space of indew n and let f be a map
of X into the Buclidean k- space B*, where 0 < & <2 n. Let Xy = {w ¢ X|f(2) ==
= f(Tw)}. Then Xy is T-invariant, compact and (Xp; T) has index = n— k.

(Bee [6], p. 270.)

4. The main results. In this section we prove the desired generalizations
«of the theorems of Dyson and Livesay. We already have all the machinery
needed and it is only a matter of putting it togethor.

(4.1) TemorEM. Let X be a Borsulk set sn B** and let f be o real-valued
map on X. Then there eaist n points @y, @y, ..., &y of X and n positive real
nUMDErs Jyy Apy ooy Ay SUCH that,

(i) — @i e X for each i=1,2,..,n,

(H) fl@) = F(@2) = oo = [ an) = f(— D) = f(— Dgtt) == ... = f(— D),

(ili) ®; and @y are mutually orthogonal for all 4+ j, 1 <4 < ny LS g olm.

Proof. We form the antipodal space 4 (X) and define a real-valued
map g: A(X)>R by g(»,y)=f(). Let B(X) = {(2,9) c 4(X)| g(z, )
=¢(y, »)}. Note that a point (z, — o) in A (X)is in B(X)if and only if
J(@) = f(—Aiz). We apply (2.4) and (3.5) to the T-space (A(X); T) and to
the map g on it and get that the Smith index of (B(X); T) is at least n— 1.
Also the involution 7 on B(X) coincides with the reflection into the diag-
onal (n-1)-plane I7 in B***x B**. Hence by applying (3.3) to (B(X); T)
and the map g we get the existence of # points (@ry ya)y i=1,2,...,u,
in B(X) such that, g(m,p)=..= g(®ny yn) and the (n-2)-planes
Iy, yy)y ooy T (@n, ya) are mutually orthogonal at I7. Now ;= — Ay
for some 2; > 0 for each 4 = 1, 2, ..., » and as noted above g (@i, 94) € BLX)
implies that f(a:) = f(y:). Thus the xy’s and As satisfy conditions (i)
and (ii) of the conclusion of the theorem. Also, by Theorem (3.2),
I, — Aes) and IT(zy, — Ase;) ave mutually orthogonal at J7 if and only
if the veetors @; and #; are perpendicular to each other. This shows that

(4.2) TuroreM. Let a Borsuk set X in B¥*! a4 map fr X>RF and
a number a between 0 and w be given. Then there ewists at loast one subsel of
the form {®,, @y, — iy, — Ay} C X such that & > 0, Ay = 0, fw,) == f(ay) ==
= [(— @) = f(~dwy) and the angle between @y and @y is a. If, morcover,
a 5= 7f2, then there ewist af least hwo such subsels.

Proof. Onee again we form the space A(X) and define g: 4 (X)) ~RE
by g(=,y) = f(x). By (2.4) and (3.4) we get two points (g, — dy,) and
(@, — Aap) in A (X)) such that g (n,, — L) == Gy — Aoity) =5 ¢ (- Ayty, @) ==
= ¢ (— M, ) and the angle between the (28 +2)-planes 17 (m,, — Ay
and [1(zy, — Am,) is a. This of course means that Fwy) = flay) = f(— ) ==
= f(—A,) and, in view of (3.2), that the angle between  and a, is .
"This gives a desired subset of X, Tf ¢ #/2, then by (3.4) there ave at least
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two distinet pairs of points in A4(X) satisfying the conclusion of (3.4)
and these giveat least two distinct subsets of X having the desired proper-
ties. The theorem is now completely proved.

As observed earlier (4.1) reduces to Dyson’s theorem [1] if we take
n =2 and X = §* while Livesay’s result [4] follows from (4.2) by taking
k=1 and X = 8%
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