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- On level sets of Darboux functions
by
J. S. Lipinski (Gdafisk)

Abstract. K. M. Garg [2] has found the necessary conditions that a set of real
numbers be the set of all points y such that the level sets f-3(y) are single point sets,
dense in the selves sets, closed sets, connected sets and perfect sets, where f is a free
choice Darboux function. The aim of this paper is to give a proof that all Garg’s con-
ditions are not only necessary but also sufficient.

Let f be a real function of a real variable. The set {x: f(x) = y} = f~(y)
will be referred to as the level set of f corresponding to the value y. Gener-
ally we are not able to draw conclusions as to the properties of functions
from the properties of their level sets. B.g., it is well known [5] that all
level sets may be closed sets, even one point sets, whereas the function
itself is not measurable in the sense of Lebesgue. However, under certain
additional stipulations as to the function there follow from an appropriate
regularity of. sufficiently many level sets strong conclusions about the
funetion itself. B.g. if the function f possesses the Darboux property,
and the set of those values 4 for which the level sets f~'(y) are closedis
dense, then f is continuous [3].

Special families of level sets of continuous funetions have been dis-
cussed in [4], [1] and [2]. .

Let us denote by I the family of all single-point sets on the real axis,
Furthermore, let us denote by @ the family of all sets dense in themselves,
by % the family of all closed sets, by ¢ the family of all connectgd fse?;s,
by p the family of all perfect sets and finally by co the family of all infinite
sets. This rather non-typical notation will be adopted here beca‘use of the
notation adopted in other papers on level sets. If * is & family of sets
and f a fixed function, we shall put Yu(f) = {: i) e *}.wLet us denote,
in the usual way, by @, the family of all sets of the form (N Gn where Gy

n=1
o o0
are open sets, and by F,, the family of all sets of the form kol ;k;JIFk,,,
where ¥, , are closed sets. Let F~ denote the family of all sets of the
form ANB, where 4 is a closed set and Bis a s‘ubseﬁ of t.he set of ‘a,]l end-
points of components of the complement of A. Every point of B is hence
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an end-point of an open interval disjoint with 4. Let I'* denote the family
of all sets of the form ANB where 4 is closed and B is at most denumer.
able. Evidently F~ CF*. Finally, let G denote the family of all getg
of the form A v B where A ¢ G; and B is at most denumerable. We egn
see that F+ C @, and G* CF,. Let C be the family of all continuoyg
functions, D the family of all Darboux functions, i.e. of all functiong
mapping connected sets onto connected sets.

It has been proved by Sierpifski in [4] that {¥,(f): fe O} CF, ang
that {¥y(f): feC}C&;. Garg has obtained an even stronger theorem:
{¥(f): feD}CG" and {Xy(f): fe D}CF~ ([2], Th. 10 and 9). These
results of Sierpifiski and Garg have the form of inclusions of classes of
sets. They quote necessary conditions to be satisfied by the set B 5o ag
to ensure the existence of a continuous function or a Darboux function f
such that B = Y.(f). A complete characterization of a class Yu(f) ean
be found only in Borsuk’s paper [1], where he proves that

{Toolf): fe O} = GF .

" The aim of this paper is to give a complete characterization of the
remaining classes of sets Y.(f) for continuous functions and Darboux
functions. We shall prove that in all cases investigated by Garg the symbol
of inclusion can be replaced by the symbol of equality.

TErorEM 1. F~ C{Y,(f): fe O} n{T(f): feCL

Proof Let B ¢ F~. Then B = AN\B, where according to the definition
of the class F~, A is a closed set and B consists of the end-points of open
intervals disjoint with 4. Let RNA = { (@i, be) and (as, b)) N (a1, by) = O
for 4 # j. !

If B = @, we take f() = zsinz. In this case evidently Y, (f) = Y,(f)
=0 =H.

. If B # 0, we take f(z)= 1 for z ¢ A and then we define f on each

component of R\A.

LI ai¢FB, bid¢E, bi # +oo and a; —co, then fis on <{ai, by
continuous and piecewise linear and - the points A (i, a;), B(§ai+ by, by),
C(3a;-+3bs, a;) and D(bs, bs) are the vertices of its graph.

2. If a; ¢ B and b; < B, then we define fon (as, by) in such a way that
its graph is a broken line with infinitely many sides. The vertices of this
broken line are situated on the sides of the rhombus AB'C’D, where A
and D have the same coordinates ag in the previous case,

B'(§0e-+ 406, 30+ 300)  and O'(bast 3bi, Jai+ 3be) .

Thg sides of the broken line have angular coefficients aqual to.10 or —10.
B is one of the vertices of the broken line.
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3. I ai ¢ B, bie B and a; # —oo, we define f on (as, by) as in case 2
replacing the quadrangle AB'C'D by the triangle AB*D and the given
vertex B’ by B*. We take B'(}(ai+by), ai). ]

4. It ag e B, by ¢ B and b; # oo, we define fon (a:, b;) as in case 2
replacing the quadrangle AB'C'D by the triangle AB™D and the given
vertex B/ by B**. We take B™(}(as+ bi), by).

5. If bi= 4 oo, then for @ >a; we define the function f so that its
graph is a broken line with infinitely many sides. The angular coetficients

of the sides are equal to 10 or —10 and the vertices of the broken line
are situated on the lines

y=t@—a) and y=a I @¢B
or on the lines
g = 11_0(9:;___ @) and = y= %(a’;—— @) if @meB.

6. If @; = — oo, then for ¢ < b; we define the function f as in ease 5,
replacing the straight lines occurring therg by others:

y=3(@—b;) and y=0b i bi¢E,
and
y=S@—b) and y=L1l@—b) £ beB.

It is easy to verify that the function f defined in such a way is
continuous, and that the sets f~'(y) are single point sets if and only if
y ¢ B. Similarly these sets are connected if and only if y ¢ . Therefore
we have B = Y (f) = Y,(f) and the proof is completed.

Garg showed in [2] (Th. 8 and Lemma 7) that {¥.(f): fe D} CF~.
Since {¥«(f): fe O} C{Xo(f): f €D}, we imply from Garg’s theorem and
from the above Theorem L.

CoROLLARY 1. {¥o(f): fe O} = {X(f): feD}=F".

TaEoREM 2. B~ C {Y(f): feD}.

Proof. Assume that B ¢F~. If H=0, we take as f any a,rbitrar’y
function mapping every interval onto the whole straight ]me_lR. This
function evidently has the Darboux property. All the sets f~*(y) are
dense and boundary sebs and therefore they are not closed. Hence Yu(Jf)

gLetE .us further assume that B # @. According to the deﬁnition of
the class F~ we have E = A\B, where 4 is closed and B consists of the
end-points of open intervals disjoint with 4. Let B A = L1J (@4, by) where
(@i, bs) ~ (ay, by) = @ for @ # j.
Take f(z) =« for z e A.
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In each interval (a:, b;) we choose two sequences: a decreasing ge-
. . b ! 1 .
quences z, and an increasing sequence , such that ] < ], lima, = g,

N-»00
and limz, = b;. The function f will be defined at the points «, and 2’

N—r00

in the following way:
1. If a;= —co and b; e B, then f(w,) = f(2,) = bi—n and f(z,_))
=f("‘c;;n.—1) = by. .
2. I a;eF and by= oo, then f(z,)=f(2,)= a; and f(z, )
= f(#3p1) = as+n. _
8. I ar# —oo, bi# 400, ar¢ B and bi¢ H, then f(a,,)= f(am)
= a; 204 (@) = (@) = bs.
4.1 aeX and bieB, then f(sh_,) = f(@h_r) = b(ai-+bo), f(al)
1 . 1
= M+ é; (bi— a;) and f(xzn) = by— Eﬁ (bi— as).
5. If aic B, b ¢ B and bi< + oo, then f(s},) = flais) = bi, flatl_,)
; , 1
= }(ai+bs) and f(wy, ;) = et %(bh @).
6. If b EE: 4 ¢E and a; > — 00, then f(w;n) = f(wé;) = @i, f(‘”;f';—-l)
re 1
= $(ai+bs) and f(wp, ;) = bi— %(M— as).

In each of the intervals <@,.,, ®,>, <@, ">, <z, @),,> at the end-
points of which the function f has already been defined we define f as
a linear function.

7. If ai= —oo and b; ¢ B, we define f in the interval (a;, b;) so that
it will map each interval (a, 8) C (a4, b;) onto a half-line (— o0, by).

8. If by= 4 oo and a; ¢ B, we define f in the interval (a:, b:) so that
it will map each interval (a, f) C (ay, bs) onto a half-line (as, - co).

It is easy to verify that the function f defined in such a way hag the
Darboux property and that its level sets fy) are closed if and only
if y e B. We have therefore B = Y3(f). Our theorem is proved.

Garg has proved ([2], Th. 8 and Lemma 7) that {Yu(f): feD}CF~.
There from and from Theorem 2 we obtain

CoROLLARY 2. {¥i(f): fe D} = F~.
THEOREM 3. F* C{Y,(f): fe O}

Proof. Let B e F*. Then B — A\B, where 4 is closed and B is at
most denumerable. As the set A is closed, we have 4 ¢ F~. According

to Theorem 1 there exists s continuots function g such that 4 = ¥,(g)."

The fxet A A_B is at most denumerable. For y € A the level sets ¢g~'(y)
are single-point sets. The set g~Y(A ~ B) is at most denumerable. Let
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be a confinuous non-decreasing function mapping R onto R such that
3¢~ (4 ~ B)) is the union of constancy intervals of &. Tt is easy to see
that the function f= g[h] is the required continuous function for which
B = Tf)

Tt follows from Garg’s theorem which has been quoted at the begin-
ning of this paper and from Theorem 3 that

CorOLLARY 3. {Yy(f): fe O} = {¥y(f): fe D} = F+.

TauorEM 4. GF C{¥,(f): feC}

Proof. Let B e . If B = @ it is sufficient to take f(x) = @ to obtain
B = Y,(f). Assume now that ¥ # @. We shall make an additional as-
sumption: B C(0,1). According to the definition, BE= 4 v B, where
Ae@; and B iz at most denumerable. We have (0,1)\4 ¢F,, ie.,

o
(0, INA = | F, where I, are closed sets. There may be void sets among

n=1
the sets F,. Let P be the set of all even integers, and N the set of all odd
integers. Let g(x)= dist(z, P). Let us form all intervals having two
successive integers as their end-points into a sequence {I,}. Put F;*

= Iy~ g~ (Fy) and let H = P v N v {JF," It is evident that the sets #;*
=1

n
are closed, whereas R\H is an open set. Let (as, bs) (4= 1,2, ...) be the
sequence of the components of E\H. None of these components involves
an integer and therefore the function g is linear on any of these compo-
nents and the angular coefficient is equal to 1 or —1.

. bi—a
We shall partition each interval (a:, b;) by the points a:-+ - P

bi— (/7%

27‘4

with disjoint interiors. Let I,,= <f,,, u;,> Let ¢;, be a continuous
function such that @, (I,,) = ¢(L;,), @ity = 9(;.), 0, (4;,) = g(n‘i,r)
and that for each y g, ,(I;,) the set gi,(y) is perfect. The eonstruction
of such a function has been described in [6]. .

We shall define the function f* as follows: f*(z) = g(«) for z e P v

vl u Lj (F71 O {an} v {bn}) and f*(z) = ¢, (@) for 2 e I, ,. The function
f*is e?ri—&ently continuous. If y, ¢ A, then there exists a number 7, such
that g, e F,,. Then there exists in I, exactly one pomt.m,, sue]:_ltha’n
9(%) = 9. It is evident that #, ¢ F, and 2, is an isolated point of f (;qo).
Therefore this set cannot be dense in itself. If g, < 4, then there exists
for each m exactly one imterval I,, such that g7(%)~ In,r, # 9.
We have

(1) 77w = Uoinlto) -

bi—

(n=1,2,..) into a sequence of intervals I;, (r=1,2,..)
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The sets ¢, (y,) are perfect, included in In, and there is no accumulation
point of the nnion (1) which does not belongs to one of the summands
of this union. Therefore the set f*7(y,) is for y, ¢ A a perfect set. Thus
we have proved that 4 = Y,(f*) = ¥, (f*)-

The function f* maps the line E onto the closed interval <0, 1).
‘We shall modify it so that it will map R onto the open interval (0, 1),
remaining continuons all the time.

Let {p.} be the sequence of all integers. Let (a,,, b,,) and (a,,, b,)
be the components of the set RN\H such that b,, = p,=s,,. Such com-
ponents exist because integers are isolated points of the set H. For p, ¢ ¥

W pub by = %mm(;l;, aist (1, 7, ulm,,)). Let us take £**(a) = £*(z) for
@ e P and f*(#) = min(L— 6, f*(«)) for z € (p,—1, p,+1). Let p, ¢ P, lot
&n = %min(%, dist (0, F,, Van)> . Let g(@)=f""(@) for ze« N and g(z)

= max(ey, f**(&)) for @€ (pn—1, pn+1). The function g defined in ‘such
a way is continuous and maps the line E onto the interval (0;1). Just
as in the case of the funetion f* there exists for y, ¢ 4 at last one isolated
point of the level set g~(y,). For y, « A we get the level set g~ (y,) from
the level set f*"(y,), replacing in (1) a finite number of the summands
of the union by void sets or closed intervals. So these level-sets are perfect
and we have also for this function 4 = Yy(g) = Y,(g).’

Because of the continuity of g its level sets are closed sets. Bach of
them contains an at most ‘denumerable set of isolated points. Let Z (v)
be the set of isolated points of g~X(y). Let W = | Z(y). The set W is at

yeB

most denumerable. Let h be a continuous non-decreasing funection map-
ping B onto B such that A~*(W) is the union of all constancy intervals of h.
Take f= g[h]. As can De seen, for y ¢ B the level sets ) are perfect
sets. The same holds for y € 4. The funiction does not possess any other
level sets dense in themselves. Therefore B — Y(f) = Xu(f).

Let us now drop the assumption BC (0,1). If this assumption is
not true, then let ¢(z) = rarctga+4. Let B* = ¢~Y(B). Evidently E*
C{0,1) and E* ¢ G;. In accordance with what has already been demon-
strated there exists a continuous function 4 mapping B onto (0, 1) and
such that B* = Y,(y) = Y,(y). Take f — ¢~ '[w]. Then of course B = Y¥y(f)
= Y,(f) and the proof is complete.

K. M. Garg demonstrated in [3], Th. 10 that
{Ta(f): fe D} v {Xu(f): fe D}C 6.

As we have {Y5(f): fe C}C{T;(f): fe D}, therefore from Garg’s theorem
and from Theorem 4 we get

COROLLARY 4. {Y(f): f € O} = {¥(f): f e D} = {T,(f): fe D} = G*.

1
(2]
(8]
(4]
{81
[8]
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