Andrzej PUCHALSKI Iwona KOMORSKA Marcin ŚLĘZAK Andrzej NIEWCZAS

SYNTHESIS OF NATURALISTIC VEHICLE DRIVING CYCLES USING THE MARKOV CHAIN MONTE CARLO METHOD

SYNTEZA EKSPLOATACYJNYCH CYKLI JEZDNYCH SAMOCHODÓW PRZY WYKORZYSTANIU METODY MONTE CARLO Z ZASTOSOWANIEM ŁAŃCUCHÓW MARKOWA*

Simulation methods commonly used throughout the design and verification process of various types of motor vehicles require development of naturalistic driving cycles. Optimization of parameters, testing and gradual increase in the degree of autonomy of vehicles is not possible based on standard driving cycles. Ensuring representativeness of synthesized time series based on collected databases requires algorithms using techniques based on stochastic and statistical models. A synthesis technique combining the MCMC method and multifractal analysis has been proposed and verified. The method allows simple determination of the speed profile compared to classic frequency analysis.

Keywords: naturalistic vehicle driving cycles, synthesis of driving cycles, Markov models, Monte Carlo simulation.

Metody symulacyjne powszechnie stosowane w całym procesie projektowania i weryfikacji różnych typów pojazdów mechanicznych wymagają opracowania eksploatacyjnych cykli jezdnych. Optymalizacja parametrów, testowanie i stopniowe zwiększanie stopnia autonomiczności pojazdów nie jest możliwe na bazie standardowych cykli jezdnych. Zapewnienie reprezentatywności syntezowanych szeregów czasowych na podstawie zgromadzonych baz danych wymaga algorytmów wykorzystujących techniki bazujące na modelach stochastycznych i statystycznych. Zaproponowano i zweryfikowano technikę syntezy łączącą metodę Monte Carlo wykorzystującą łańcuch Markowa (MCMC) oraz analizę multifraktalną. Metoda umożliwia proste wyznaczenie profilu prędkości jazdy w porównaniu do klasycznej analizy częstotliwościowej.

Słowa kluczowe: eksploatacyjne cykle jezdne samochodu, synteza cykli jezdnych, modele Markowa, symulacja Monte Carlo.

1. Introduction

Contemporary methods of designing and testing mechanical vehicles are based on simulation techniques that require the use of precise models of vertical and horizontal dynamics and sequences of random events occurring in road traffic conditions. This problem is relevant to the optimization of vehicles with internal combustion engines, electric vehicles (EV) and hybrid electric vehicles (HEV). To select the most appropriate drive system architecture for a particular vehicle class and driving cycle, it is necessary to optimize the size of components according to their cost functions, such as the lowest CO_2 emissions, the lowest weight, fuel savings or any combination of these attributes in the architecture [1, 7, 9 and 18].

Regardless of the simulation technique used: quasi-static using a "Backward-facing" vehicle model or a dynamic simulation with a "Forward-facing" model, understanding of the representative driving cycle is essential. In the first case, for an open-loop system, the time series of speed is imposed on the input of the vehicle model in order to calculate rpm and torque on the wheels. In a closed-loop vehicle model, on the other hand, the driving cycle is a setpoint for the driver block, which generates a suitable engine torque. The time and cost constraints associated with the design and testing of various possible vehicle architectures require methods of driving cycle synthesis that can meet the modelling and simulation requirements of automotive engineers throughout the R&D process. It is not possible to optimize the parameters and gradually increase the autonomy of the vehicles based on standard driving cycles, and such optimization cannot prevent "cycle beating". To ensure that the synthesized time series based on the collected databases are representative, it is necessary to use algorithms adopting techniques based on stochastic and statistical models [6, 19]. To define the equivalence criteria, the synthesis process is concluded with a verification of the results, i.e. each generated cycle, through statistical analysis in the time or frequency domain. A combination of multiple criteria is frequently used [2, 4].

The methods of driving cycles construction require quantization of traffic parameters. Depending on their function (emissions estimation, fuel consumption estimation or traffic engineering, etc.), the defined states can be synthesized for micro-trips, segments, heterogeneous classes or modal cycles [17]. Micro-trips are driving models between stops including periods of inactivity. Traffic signals and overloads contribute to "stop-go" driving patterns, and result in increased fuel

^(*) Tekst artykułu w polskiej wersji językowej dostępny w elektronicznym wydaniu kwartalnika na stronie www.ein.org.pl

consumption. Micro-trips are a good representation of fuel consumption and emissions. Segments model situations for various types of roads and driving conditions classified, for instance, by the Level of Service (LOS). They may start and end with different driving parameters, which is why speeds and accelerations have to be accordingly adjusted when combining segments in the course of cycle synthesis. Driving cycles based on heterogeneous traffic classes determined through a statistical breakdown of data are constructed as kinematic sequences using probabilistic methods and analysis of probability distributions. This method is not aimed at testing emissions and fuel consumption. Modal cycles represent recorded parameters of vehicle traffic for specific acceleration intervals, constant speed or idle periods. In procedures using the theory of stochastic processes to analyse the equations of vehicle dynamics, represented by speed and acceleration, the major trend in recent research focuses on methods based on the Markov chains theory [8, 11]. There have also been attempts at using 3D Markov models in the synthesis of driving cycles, which incorporate the roadway slope [20]. Methods based on multi-dimensional Markov chains enable a realistic assessment of fuel consumption and CO_2 emissions, even after time compression of the synthesized time series [5]. However, such simulations involve a high time cost.

This paper proposes a method for synthesizing naturalistic driving cycles in which the information about instantaneous values of acceleration can be replaced by the degree of multifractality assessed using formalism based on wavelet leaders. This helped reduce the number of Markov chain dimensions in the simulation process. The process was illustrated on the example of the Markov chain Monte Carlo (MCMC) algorithm for the vehicle speed signal. The input for the algorithm was recorded during a series of experiments in real conditions. Statistical factors and mean tractive force (MTF) were used to select and classify road traffic models equivalent to the real conditions.

2. Wavelet leaders multifractal formalism in MCMC technique

Each real driving cycle can be regarded as a sequence of random transitions between defined m-states of the vehicle occurring in road traffic. The frequency of specific states depends on the technical parameters of the car, the intensity of road traffic and the driver's behaviour. By determining the probability of remaining in the current state or transition into a different state, we can describe the examined phenomenon in the form of a transition probability matrix (TPM) (1):

$$P = \begin{bmatrix} P_{11} & \cdots & P_{1m} \\ \vdots & \ddots & \vdots \\ P_{m1} & \cdots & P_{mm} \end{bmatrix} \in \mathbb{R}^{m \times m}, \qquad (1)$$

where the entry P_{ij} (2) is the probability of transition from and to state j when $j \neq i$ or remaining in state i when j = i. The probability P_{ij} can be calculated using the following equation:

$$P_{ij} = \frac{N_{ij}}{\sum_j N_{ij}},\tag{2}$$

where N_{ij} is the number of transitions from and to state j. The sum of the values of entries in each row is equal to one. The random process $\{X_n\}_{n\in N}$ is referred to as the Markov chain if for any $n \in N$ the following equation is true: $P\{X_{n+1}|X_n\} = P\{X_{n+1}|X_0, X_1, ..., X_n\}$. It is assumed that the TPM is stationary, which implies that the Markov chain is homogeneous. Therefore, for Markov chains, the conditional distribution of the random variable X_{n+1} depends only on the cur-

rently known value of X_n . Thus, considering the current driving state, the future state can be determined using Monte Carlo simulation based on the transition probability matrix. It is possible to generate a driving cycle of any duration, which may be used to identify a cycle with the required duration, for the assumed equivalence criteria.

The synthesis of a driving cycle using the MCMC method, where – in addition to the speed signal – also consider other parameters are taken into consideration, requires a multi-dimensional description of the defined vehicle states, which significantly complicates the determination of the transition probability matrix and extends the implementation time of the algorithm. If the second parameter is acceleration, which is not measured directly in most real driving cycles, it becomes necessary to differentiate the speed signal in order to acquire information about motion dynamics. Where this is the case, the standard 1-second sampling period for the time series of speed does not guarantee a sufficient precision of the acceleration signal.

Papers where road traffic was analysed based on recorded vehicle speed signals indicate the multifractal properties of the dynamics of such traffic [3, 16]. Multifractality can also be observed both in real and standard driving cycles [14]. Our research proposes to eliminate the acceleration signal from the multi-dimensional description of vehicle states using information about driving dynamics represented by multifractal parameters of the speed signal. The iteration in the Monte Carlo simulation was performed for a specific time, with a requirement concerning driving dynamics. The multifractal analysis, which is based on estimated scaling exponents of the signal, is a popular statistical tool used to assess empirical data. In the case of time series, mathematical formalism was initially based on increments of their value, measured as Hölder point exponents h of time function x(t) at point t_0 , determined by the supremum of all exponents that, for constant C > 0, meet the following condition: $|x(t) - P_n(t - t_0)| \le C |t - t_0|^h$, where $P_n(t-t_0)$ is a polynomial of degree n < h [13, 15, 16]. The result of the algorithm is the multifractal spectrum D(h), i.e. a function describing the fractal dimensions of points with the same Hölder exponent.

The multifractal formalism in the time and frequency domain that is used in the research makes it possible to estimate multifractal parameters using wavelet leaders, which are representatives of local Hölder exponents of the signal. The algorithm is characterized by low computing costs, numerical stability and high versatility with respect to real signals. For coefficients (3) of the discrete wavelet transform (DWT) of function x(t) and basic wavelet with a compact support $\psi_0(t)$:

$$d_x(j,k) = \int_R x(t) 2^{-j} \psi_0 \left(2^{-j} t - k \right) dt \quad , \tag{3}$$

wavelet leaders (4) for the collection of largest coefficients $d_x(j^{\prime},k^{\prime}) \equiv d_{\lambda^{\prime}}$ in the neighbourhood of 3λ are defined in any scale by the following equation:

$$L_{x}(j,k) = \sup_{\lambda' \in 3\lambda} |d_{\lambda'}| \quad , \tag{4}$$

where *j*,*k* are integers and $3\lambda := 3\lambda_{j,k} = \lambda_{j,k-1} \cup \lambda_{j,k} \cup \lambda_{j,k+1}$ and $3\lambda := \lambda_{j,k} = \left[k 2^j, (k+1) 2^j \right].$

It can be demonstrated [10] that Hölder exponents are scaling exponents of wavelet leaders: $L_x(j,k) \sim 2^{jh}$. Also, the structural function (5) defined for wavelet leaders is described by a power law where the exponent is a multifractal scaling exponent $\zeta(q): R \to R$.

EKSPLOATACJA I NIEZAWODNOSC – MAINTENANCE AND RELIABILITY VOL. 22, No. 2, 2020

$$Z_L(q,j) = \frac{1}{n_j} \sum_{k=1}^{n_j} L_x(j,k)^q = \mathbb{E}L_x(j,k)^q \sim 2^{j\zeta(q)}, \qquad (5)$$

where q is the order of the structural function, and n_j is the number of intervals of the multi-resolution analysis.

The function generated using the Legendre transformation of the multifractal scaling exponent $\zeta(q)$, under mild regularity conditions, is the upper limit of the multifractal spectrum (6) of the investigated signal:

$$D(h) \le \min_{q \neq 0} \left[1 + qh - \zeta(q) \right] \tag{6}$$

Coefficients of the Taylor expansion of the exponent $\zeta(q)$ -logcumulants c_p – are an alternative description of the parameters of the multifractal spectrum of the analysed signal:

$$\zeta(q) = \lim_{j \to 0} \frac{\log_2 Z_L(q, j)}{j} = \sum_{p=1}^{\infty} c_p \frac{q^p}{p!} = c_1 q + c_2 \frac{q^2}{2} + c_3 \frac{q^3}{6} + \dots$$
(7)

In particular: the coefficient c_1 describes the position of the maximum of the spectrum, and coefficients c_2 and c_3 describe its degree of multifractality, i.e. the width of the spectrum and its asymmetry, respectively. The dynamic properties of the systems are successfully described based on the parameters of the multifractal spectra of the representative time series [12]. Approximation of $\zeta(q)$ (7), i.e. also of the multifractal spectrum D(h), using coefficients c_p significantly simplifies the algorithms for a comparative analysis of the investigated systems.

3. Simulation tests of driving dynamics and wavelet leaders of speed signal

The relationship between the time series of acceleration and parameters of the multifractal spectrum of speed has been illustrated on the example of the synthetic signal v(n) of vehicle speed (Fig. 1a). The signal was resampled to achieve signals with acceleration 2, 4 and 8 times higher. Due to the resampling, the histograms are not identical, but they are comparable. The signals that had been shortened were repeated 2, 4 and 8 times, respectively, to obtain signs with the same number of samples.

Fig. 1. Synthetic signal of vehicle speed (a) and its histograms (b) in the specified time; the same run in a two times shorter time (c) with comparable amplitude distribution (d); the same run in four times shorter time (e) with comparable amplitude distribution (f); the same run in eight times shorter time (g) with comparable amplitude distribution (h);

For the speed signals in figure 1, accelerations were determined (using differentiation - Fig. 2), as well as multifractal spectra (Fig. 3).

Fig. 3. Multifractal spectra of vibration signals in Fig. 1 a), c), e), g)

An analysis of the singularity spectra demonstrates that the position of their maxima and width depends on the accelerations of the simulated signals. The log-cumulants of synthetic signals (Table 1) and relationships of log-cumulants and acceleration (Fig. 4) were determined. The first and second log-cumulant, describing the position of the maximum of the multifractal spectrum and its width, respectively, were proposed as the synthetic parameters for the assessment of driving dynamics using the multifractal spectrum.

Table 1. Values of log-cumulants of synthetic signals

Log-cumulant	Signal					
	х	2x	4x	8x		
<i>c</i> ₁	0.8127	0.6976	0.4003	0.1723		
<i>c</i> ₂	-0.1640	-0.1187	-0.0841	-0.0307		
<i>c</i> ₃	0.1220	0.0282	0.0127	0.0055		

4. Implementation of the algorithm for the synthesis of driving cycles and analysis of research results

An algorithm was proposed to generate naturalistic driving cycles using first-order Markov chains and multifractal formalism based on an analysis of wavelet leaders (Fig. 5).

Fig. 5. Block diagram of the MCMC algorithm for synthesizing driving cycles

The paper presents results of tests and analysis of car traffic in actual road conditions, represented by urban driving in a large agglomeration (Fig. 6). The analysis was carried out based on the time series of vehicle speed recorded with a sampling period of 1 s. The research has been described in the paper [14]. Due to the large share of "zero speeds" (idle periods) in the test, amounting to approx. 25%, fragments corresponding to stops were removed from the recorded time series (Fig. 7), which enabled the segmentation and determination of the transition probability matrix (TPM) and testing of driving dynamics through an analysis of log-cumulants. The recorded speeds were divided into 20 even intervals corresponding to increasing speeds other than zero as well as a 21st interval corresponding to stops. Speed resolution is approx. 0.9 m/s. The authors attempted to achieve a fairly good car speed resolution while avoiding intervals with a very low (or zero) probability of occurrence.

Statistical analyses were conducted in the R environment, and the multifractal analysis was carried out in Matlab.

The transition probability matrix (TPM) calculated based on the reference signal of the cycle had the size of 21x21 (Fig. 8).

A simulation of 100 cycles was carried out in accordance with the Metropolis-Hastings algorithm. Three sample cycles – candidates No. 1, 2 and 3 (Figs. 9a–c) were selected to illustrate the results of the algorithm. The main statistics of the speed signal (maximum, minimum, mean and standard deviation) of the sample cycles are similar to the statistics of the reference signal. There was also a fourth cycle shown – candidate No. 4 – generated for verification purposes based on the distribution of speed amplitudes (Fig. 9d).

The first two log-cumulants determined for each cycle (Fig. 10) are the best match of dynamics in comparison with the reference signal for candidate No. 1.

The conformity of probability density distributions to the distribution of the reference cycle has also been verified (Fig. 11a–d). The

Fig. 6. Real cycle representative for the conducted research – 20-minute fragment, a) speed signal, b) accelerations calculated based on speed, c) car speed histogram

Fig. 7. Typical real cycle after removing stops, a) speed signal (reference signal), b) accelerations calculated based on speed, c) car speed histogram

Fig. 8. Transition probability matrix (TPM) for the cycle shown in Fig. 7a

distribution of the reference cycle has been approximated with an empirical function. The chi-squared test or the Kolmogorov–Smirnov test can be used to check the goodness of fit of empirical data to the

Fig. 9. Sample simulated driving cycles

Fig. 10. Scatter plot of log-cumulants determined for the investigated cycles

approximated probability distribution function, but these tests reject the null hypothesis for the investigated duration of the driving cycle. For the test to confirm the null hypothesis, the duration of the driving cycle would have to be significantly extended, which is not possible. In such a situation, it is best to estimate the goodness of fit of the theoretical distribution to the observed distribution through a visual comparison. This was done using the probability-probability plot (Fig. 11e). Apart from the cycle of candidate No. 4, the best fit is demonstrated by candidate No. 1.

Fig. 11. Histograms of the speed signal for the simulated cycles compared with the reference distribution (red dashed line) a)-d) e) probability-probability plot

Fig. 12. Accelerations in the simulated cycles calculated based on speed

The accelerations of candidate No. 4 (Fig. 12), which has a speed amplitude distribution that perfectly matches the reference distribution, are entirely different – almost constant. The accelerations of the remaining candidates can only be assessed in terms of their minimum and maximum values.

In the method of modal cycles and speed-based segmentation, which was adopted in this paper, the time series produced using the Markov model are stepped, which means that they had to be smoothed in the next step. The method of local quadratic regression smoothing was selected from among the various methods to smooth the series. Once the iteration and filtration process was completed, the stop periods were added to the time series, and a search was started for the most representative cycles out of all of the cycles produced by the synthesis, for the selected equivalence factor.

In the course of the study, the results of the algorithm for the synthesis of equivalent driving cycles were analysed according to selected statistical parameters and the criterion of the mean tractive force (MTF) (8), i.e. the tractive energy of the vehicle (Table 2) transmitted through the wheels:

$$\overline{F}_{trac} = \frac{1}{x_{total}} \int_{t \in \tau_{trac}} F(t) v(t) dt .$$
(8)

where: total tractive force F(t) is the sum of the forces of aerodynamic resistance F_{air} , rolling resistance F_{roll} and inertia of the vehicle F_{iner} , v(t) and a(t) are speed and acceleration, respectively, for a driving cycle of the duration x_{total} and τ_{trac} represents the time intervals during which F(t) > 0.

In the calculations of the MTF coefficient, the most significant element is the force of inertia, which is proportional to acceleration. The best fit to the real cycle according to the MTF criterion is represented by candidate No. 1. The primary parameters considered in the course of cycle verification are listed in Table 3. Minimum and maximum values of speed and acceleration, subject to initial verification, were omitted.

All synthesized driving cycles have the correct mean value and standard deviation. The selection also cannot be performed based on the distributions of probability density. Candidates No. 1 and No. 4 show the best fit of speed amplitudes probability distribution.

If we assume a discrepancy of the MTF coefficient of the generated cycle with the reference cycle of over 10% to be an unacceptable

Table 2. Vehicle parameters

F _{air} [N]	Aerodynamic resistance	$0.4v^2(t)$
F _{roll} [N]	Rolling resistance	383
F _{iner} [N]	Inertia	1300a(t)

Driving cycle	Fit of the distribu- tion	Mean value	Standard devia- tion	Log-cumulant 1	Log-cumulant 2	MTF
	[-]	[m/s]	[m/s]	[-]	[-]	[N]
Reference cycle		9.7	4.4	0.72	-0.13	689
Candidate 1	+	10.0	4.6	0.74	-0.12	743
Candidate 2	+/-	9.7	4.4	0.58	-0.16	820
Candidate 3	+/-	10.4	4.5	0.62	-0.10	796
Candidate 4	+	9.7	4.6	1.06	-0.07	450

Table 3. Summary of selected values characteristic to the investigated cycles

in terms of equivalence to real driving conditions, the log-cumulants tested in the phase of synthesis of candidate cycles and the MTF used to verify their equivalence suggest candidate No. 1.

5. Conclusions

The presented research results provide a new perspective on statistical-random methods for synthesizing real vehicle driving cycles. It was demonstrated that driving dynamics represented by acceleration could be reproduced using multifractal parameters of speed signals. The use of wavelet leaders for driving dynamics testing made it possible to carry out cycle synthesis, which took into consideration speed and acceleration, using Monte Carlo simulation with a singledimensional Markov chain. The algorithm for the synthesis of equivalent driving cycles was verified using the criterion of mean tractive force (MTF).

The database used so far included data from tests of vehicles with internal combustion engines. The authors' future research will include an analysis of driving cycle prediction and road traffic modelling for the purpose of drive system control and electricity management in electric vehicles. The expected results will be useful in designing the infrastructure of charging stations for electric cars.

References

- Brady J, O'Mahony M. Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas. Applied Energy 2016; 177: 165-178, https://doi.org/10.1016/j.apenergy.2016.05.094.
- Chłopek Z. The synthesis of driving tests according to the criterions of similarity of frequency characteristics. Eksploatacja i Niezawodnosc Maintenance and Reliability 2016; 18(4): 572-577, https://doi.org/10.17531/ein.2016.4.12.
- 3. Dai M, Zhang Ch, Zhang D. Multifractal and singularity analysis of highway volume data. Physica A 2014; 407: 332-340, https://doi. org/10.1016/j.physa.2014.04.005.
- 4. Esser A, Zeller M, Foulard S, Rinderknecht S. Synthesis of Representative and Multidimensional Driving Cycles. SAE International 2018; 2018-01-0095.
- 5. Hereijgers K, Silvas E, Hofman T, Steinbuch M. Effect of using Synthetized Driving Cycles on Vehicle Fuel Consumption. IFAC papers 2017; 50-1: 7505-7510, https://doi.org/10.1016/j.ifacol.2017.08.1183.
- Lee T-K, Filipi ZS. Synthesis of real-world driving cycles using stochastic process and statistical methodology. International Journal of Vehicle Design 2011; 57(1): 17-36, https://doi.org/10.1504/IJVD.2011.043590.
- Liu Z, Ivanco A, Filipi Z. Naturalistic drive cycle synthesis for pickup trucks. Journal of Safety Research 2015; 54: 109-115, https://doi. org/10.1016/j.jsr.2015.06.005.
- Man Z, Shuming S, Nan L, Bingjian. High-efficiency Driving Cycle Generation Using a Markov Chain Evolution Algorithm. IEEE Transactions on Vehicular Technology. December 2018, https://doi.org/10.1109/TVT.2018.2887063.
- 9. Mayakuntla SK, Vermab A. A novel methodology for construction of driving cycles for Indian cities. Transportation Research Part D 2018; 65: 725-735, https://doi.org/10.1016/j.trd.2018.10.013.
- 10. Mukli P, Nagy Z, Eke A. Multifractal formalism by enforcing the universal behavior of scaling functions. Physica A 2015; 417: 150-167, https://doi.org/10.1016/j.physa.2014.09.002.
- 11. Nyberg P, Frisk E, Nielsen L. Generation of Equivalent Driving Cycles Using Markov Chains and Mean Tractive Force Components. Proc. of IFAC, 2014; 8787-8792, https://doi.org/10.3182/20140824-6-ZA-1003.02239.
- 12. Puchalski A, Komorska I. Binomial multifractal features of worldwide harmonized light duty vehicles test cycle. JVE Vibroengineering Procedia 2017; 13: 175-179, https://doi.org/10.21595/vp.2017.19074.
- Puchalski A, Komorska I. Multifractal Nature of Diesel Engine Rattle Noise in Vehicle. Archives of Acoustics 2017; 42(3): 469-474, https:// doi.org/10.1515/aoa-2017-0049.
- Puchalski A, Ślęzak M, Komorska I, Wiśniowski P. Multifractal analysis vehicle's in-use speed profile for application in driving cycles. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (2): 177-181, https://doi.org/10.17531/ein.2018.2.02.
- 15. Puchalski A, Komorska I. A generalised entropy in multifractal time signals analysis of mechanical vibration. JVE Journal of Vibroegineering 2018; 20 (4): 1667-1675, https://doi.org/10.21595/jve.2018.18871.
- 16. Shang P, Lu Y, Kamae S. Detecting long-range correlation of traffic time series with multifractal detrended fluctuation analysis. Chaos, Solitions and Fractals 2008; 36: 82-90, https://doi.org/10.1016/j.chaos.2006.06.019.
- 17. Silvas E, Hereijgers K, Peng H, Hofman T., Steinbuch M. Synthesis of Realistic Driving Cycles with High Accuracy and Computational Speed, Including Slope Information. IEEE Transaction Vehicular Technology 2016; 65(6): 4118-4128, https://doi.org/10.1109/TVT.2016.2546338.
- Tutuianu M, Marotta A et al. Development of a World-wide Worldwide harmonized Light duty driving Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transportation Research Part D Transport & Environment 2015; 40(4), 61-75, https://doi.org/10.1016/j.trd.2015.07.011.

- 19. Yi Y, Pengjian S. Multiscale multifractal detrended cross-correlation analysis of traffic flow. Nonlinear Dynamics 2015; 81:1329-1347, https://doi.org/10.1007/s11071-015-2072-7.
- Zhao B, Lv Ch, Hofman T. Driving Cycle Aware Energy Management of Hybrid Electric Vehicles Using a Three Dimensional Markov Chain Model. Automotive Innovation 2019; 2: 146-156, https://doi.org/10.1007/s42154-019-00059-z.

Andrzej PUCHALSKI Iwona KOMORSKA Department of Mechanical Engineering Kazimierz Pulaski University of Technology in Radom Malczewskiego 29., 26-600 Radom, Poland

Marcin ŚLĘZAK Andrzej NIEWCZAS Motor Transport Institute Jagiellońska 80, 03-301 Warszawa, Poland

E-mails: and rzej.puchalski@uthrad.pl, iwona.komorska@uthrad.pl, marcin.slezak@its.waw.pl, and rzej.niewczas@its.waw.pl

Dr hab. inż. Andrzej Puchalski, prof. UTH¹ Dr hab. inż. Iwona Komorska, prof. UTH¹ Dr hab. inż. Marcin Ślęzak, prof. ITS² Prof. dr hab. inż. Andrzej Niewczas²

- ¹ Uniwersytet Technologiczno-Humanistyczny w Radomiu ul. Malczewskiego 29, 26-600 Radom, Polska
- ² Instytut Transportu Samochodowego ul. Jagiellońska 80, 03-301 Warszawa, Polska

E-mail: andrzej.puchalski@uthrad.pl

E-mail: iwona.komorska@uthrad.pl

E-mail: marcin.slezak@its.waw.pl

E-mail: andrzej.niewczas@its.waw.pl

Synteza eksploatacyjnych cykli jezdnych samochodów przy wykorzystaniu metody Monte Carlo z zastosowaniem łańcuchów Markowa

Synthesis of maintenance vehicle driving cycles using Monte Carlo method of Markov chains

Słowa kluczowe: eksploatacyjne cykle jezdne samochodu, synteza cykli jezdnych, modele Markowa, symulacja Monte Carlo

Streszczenie: Metody symulacyjne powszechnie stosowane w całym procesie projektowania i weryfikacji różnych typów pojazdów mechanicznych wymagają opracowania eksploatacyjnych cykli jezdnych. Optymalizacja parametrów, testowanie i stopniowe zwiększanie stopnia autonomiczności pojazdów nie jest możliwe na bazie standardowych cykli jezdnych. Zapewnienie reprezentatywności syntezowanych szeregów czasowych na podstawie zgromadzonych baz danych wymaga algorytmów wykorzystujących techniki bazujące na modelach stochastycznych i statystycznych. Zaproponowano i zweryfikowano technikę syntezy łączącą metodę Monte Carlo wykorzystującą łańcuch Markowa (MCMC) oraz analizę multifraktalną. Metoda umożliwia proste wyznaczenie profilu prędkości jazdy w porównaniu do klasycznej analizy częstotliwościowej.

Keywords: vehicle maintenance driving cycles, synthesis of driving cycles, Markov models, Monte Carlo simulation

Abstract: Simulation methods commonly used throughout the entire design and verification process of various types of motor vehicles require development of naturalistic driving cycles. Optimization of parameters, testing and gradual increase in the degree of autonomy of vehicles is not possible on the basis of standard driving cycles. Ensuring representativeness of synthesized time series based on collected databases requires algorithms using techniques based on stochastic and statistical models. A synthesis technique combining the MCMC method and multifractal analysis has been proposed and verified. The method allows simple determination of the speed profile compared to classic frequency analysis.

1. Wprowadzenie

Współczesne metody projektowania i testowania pojazdów mechanicznych bazują na technikach symulacyjnych wymagających stosowania precyzyjnych modeli dynamiki pionowej i poziomej oraz zjawisk o charakterze sekwencji zdarzeń losowych występujących w warunkach ruchu drogowego. Problem ten jest obecny w procesie optymalizacji parametrów pojazdów zarówno z silnikami spalinowymi jak i pojazdów elektrycznych (EV) oraz hybrydowych (HEV). Wybór najbardziej odpowiedniej architektury układu napędowego dla danej klasy pojazdu i cyklu jazdy wymaga optymalizacji wielkości komponentów według funkcji kosztów takich jak najniższa emisja CO_2 , najniższa masa, oszczędność paliwa lub dowolna kombinacja tych atrybutów w architekturze [1, 7, 9, 18].

Niezależnie od zastosowanej techniki symulacji, guasi-statycznej wykorzystujacej model pojazdu typu "Backward-facing" czy symulacji dynamiczej z modelem "Forwardfacing", wymagana jest znajomość reprezentatywnego cyklu jezdnego. W pierwszym przypadku, dla układu otwartego, szereg czasowy opisujący prędkość jest wymuszeniem podawanym na wejście modelu pojazdu w celu obliczenia prędkości obrotowej i momentu obrotowego na kołach. Natomiast w układzie zamkniętym modelu pojazdu, cykl jezdny stanowi wartość zadaną dla bloku kierowcy, którego funkcją jest generacja odpowiedniego momentu obrotowego silnika. Ograniczenia terminowe i kosztowe związane z projektowaniem i testowaniem różnych możliwych architektur pojazdów wymagają metod syntezy cykli jezdnych, które spełnią wymagania inżynierów motoryzacyjnych podczas całego procesu badań i rozwoju w zakresie modelowania i symulacji. Optymalizacja parametrów i stopniowe zwiększanie stopnia autonomiczności pojazdów nie jest możliwe na bazie standardowych cykli jezdnych, nie zapobiega sytuacjom określanym jako "cycle beating". Osiagniecie reprezentatywności syntezowanych szeregów czasowych na podstawie zgromadzonych baz wymaga algorytmów wykorzystujących techniki bazujące na modelach danych stochastycznych i statystycznych [6, 19]. Proces syntezy, dla zdefiniowania kryteriów równoważności, zamyka sprawdzanie poprawności wyników, tj. każdego wygenerowanego cyklu, za pomocą analizy statystycznej w dziedzinie czasu lub częstotliwości. Często stosuje się kombinację wielu kryteriów [2, 4].

Metody budowy cykli jezdnych wymagają kwantyzacji parametrów ruchu. W zależności od ich przeznaczenia (szacowanie poziomu emisji, szacowanie zużycia paliwa, do celów inżynierii ruchu itd.) syntezę zdefiniowanych stanów można przeprowadzić dla kategorii mikro-podroży (ang. micro-trips), segmentów jezdnych (ang. segments), niejednorodnych klas ruchu (ang. heterogeneous classes) lub cykli modalnych (ang. modal cycles) [17]. Mikropodróże to modele jezdne pomiędzy postojami obejmujące okresy bezczynności. Sygnalizacje drogowe i przeciążenia reprezentują wzorce jazdy "stop-go" i prowadzą do zwiększonego zużycia paliwa. Micro-podróże dobrze odzwierciedlają zużycie paliwa i emisję. Segmenty jezdne modelują sytuacje dla różnych typów dróg i warunków jazdy klasyfikowanych np. poprzez LOS (ang. Level of Service). Mogą zaczynać się i kończyć różnymi parametrami jazdy, dlatego ich łączenie przy syntezie cyklu wymaga odpowiedniego dopasowania prędkości i przyspieszeń. Cykle jezdne na bazie niejednorodnych klas ruchu, uzyskanych w wyniku statystycznego podziału danych, są konstruowane jako kinematyczne sekwencje przy wykorzystaniu metod probabilistycznych i analizy rozkładów prawdopodobieństwa. Metoda nie jest ukierunkowana na badania emisji i zużycia paliwa. Cykle modalne obejmują zarejestrowane parametry ruchu pojazdów dla określonych przedziałów przyspieszeń, ze stałą prędkością czy na biegu jałowym. W procedurach wykorzystujących teorię procesów stochastycznych przy analizie równań dynamiki ruchu pojazdu, reprezentowanej przez prędkość oraz przyspieszenie, główny kierunek ostatnio prowadzonych badań obejmuje metody bazujące na teorii łańcuchów Markowa [8, 11]. Podjęto także próby z trójwymiarowymi modelami Markowa w procesie syntezy cykli jezdnych, uwzględniających dodatkowo nachylenie drogi [20]. Metody bazujące na wielowymiarowych łańcuchach Markowa umożliwiają realistyczną ocenę zużycia paliwa i emisji CO₂, nawet po dokonaniu kompresji czasowej syntezowanych szeregów czasowych [5]. Charakteryzują się jednak dużym kosztem czasowym symulacji.

W artykule zaproponowano metodę syntezy eksploatacyjnych cykli jezdnych pozwalającą na zastąpienie informacji o chwilowych wartościach przyspieszenia przez poziom multifraktalności oceniany przy wykorzystaniu formalizmu bazującego na analizie liderów falkowych. W ten sposób uzyskano zmniejszenie liczby wymiarów łańcucha Markowa w procesie symulacji. Proces zilustrowano na przykładzie algorytmu Monte Carlo wykorzystującego łańcuch Markowa (ang. MCMC) sygnału prędkości samochodu. Dane wejściowe algorytmu zarejestrowano w czasie serii eksperymentów w warunkach rzeczywistych. Przy selekcji i klasyfikacji modeli ruchu drogowego, równoważnych warunkom rzeczywistym, wykorzystano wskaźniki statystyczne oraz średnią siłę trakcyjną MTF (ang. Mean Tractive Force).

2. Formalizm multifraktalny liderów falkowych w symulacji MCMC

Każdy rzeczywisty cykl jezdny można traktować jak sekwencję losowych przejść między zdefiniowanymi m-stanami pojazdu występującymi w warunkach ruchu drogowego. Częstotliwość występowania określonych stanów jest konsekwencją zarówno parametrów technicznych samochodu jak i intensywności ruchu drogowego oraz zachowania kierowcy. Wyznaczając prawdopodobieństwa pozostania lub przejścia do innego stanu uzyskujemy obraz badanego zjawiska w postaci macierzy prawdopodobieństw przejść TPM (1) (Transition Probability Matrix):

$$P = \begin{bmatrix} P_{11} & \cdots & P_{1m} \\ \vdots & \ddots & \vdots \\ P_{m1} & \cdots & P_{mm} \end{bmatrix} \in R^{mxm} \quad , \tag{1}$$

gdzie wyraz P_{ij} (2) przyjmuje wartość prawdopodobieństwa przejścia ze stanu i do stanu *j*, gdy $j \neq i$ lub pozostania w stanie *i*, gdy j = i. Prawdopodobieństwo P_{ij} określa następująca zależność:

$$P_{ij} = \frac{N_{ij}}{\sum_j N_{ij}} , \qquad (2)$$

gdzie N_{ij} to liczba przejść ze stanu i do stanu *j*. Suma wartości wyrazów w każdym wierszu równa się jedności. Proces losowy $\{X_n\}_{n \in \mathbb{N}}$ nazywamy łańcuchem Markowa, jeżeli dla dowolnego $n \in \mathbb{N}$ zachodzi równość $P\{X_{n+1}|X_n\} = P\{X_{n+1}|X_0, X_1, ..., X_n\}$. Przyjęta stacjonarność macierzy TPM implikuje jednorodność łańcuchu Markowa. Zatem dla łańcuchów Markowa rozkład warunkowy zmiennej losowej X_{n+1} zależy tylko od aktualnie znanej wartości X_n . Biorąc pod uwagę aktualny stan jazdy, przyszły stan można zatem wyznaczyć za pomocą symulacji Monte Carlo na bazie macierzy prawdopodobieństwa przejść. Możliwe jest wygenerowanie realizacji testu jezdnego dowolnej długości, co może być wykorzystane w procesie poszukiwania cyklu o wymaganym czasie trwania, przy założonych kryteriach równoważności.

Synteza cyklu jezdnego metodą MCMC, w której oprócz sygnału prędkości bierzemy pod uwagę inne parametry wymaga wielowymiarowego opisu zdefiniowanych stanów pojazdu,

co w sposób znaczący komplikuje wyznaczanie macierzy prawdopodobieństwa przejść i wydłuża czas realizacji algorytmu. Jeżeli drugim parametrem jest przyspieszenie, które w większości rzeczywistych cykli jezdnych nie jest mierzone bezpośrednio, to uzyskanie informacji o dynamice ruchu wymaga różniczkowania sygnału prędkości. W takiej sytuacji standardowy, 1-sekundowy, okres próbkowania szeregu czasowego prędkości nie gwarantuje wystarczającej dokładności sygnału przyspieszenia.

Prace, w których analizowano ruch drogowy na podstawie rejestrowanych sygnałów prędkości pojazdów, wskazują na multifraktalny charakter jego dynamiki [3, 16]. Multifraktalność można także zaobserwować zarówno w rzeczywistych jak i w standardowych cyklach jezdnych [42, 14]. W podjętych badaniach zaproponowano wyeliminowanie sygnału przyspieszenia z wielowymiarowego opisu stanów pojazdu przy wykorzystaniu informacji o dynamice jazdy odwzorowanej za pomocą parametrów multifraktalnych sygnału prędkości. Iterację w tracie symulacji Monte Carlo prowadzono dla określonego czasu, przy wymaganiu dotyczącym dynamiki jazdy. Analiza multifraktalna, która bazuje na oszacowanych wykładnikach skalowania sygnału, jest popularnym narzędziem statystycznym do oceny danych empirycznych. W przypadku szeregów czasowych formalizm matematyczny opierał się początkowo na przyrostach ich wartości, których miarą są punktowe wykładniki Holdera h funkcji czasu x(t) w punkcie t_0 , wyznaczone przez supremum wszystkich wykładników spełniających, dla stałej C > 0, warunek: $|x(t) - P_n(t - t_0)| \le C |t - t_0|^h$, gdzie $P_n(t - t_0)$ jest wielomianem rzędu n < h [13, 15, 16]. Wynikiem algorytmu jest widmo multifraktalne D(h), tj. funkcja opisująca wymiary fraktalne punktów, które mają ten sam wykładnik Holdera.

Wykorzystany w badaniach formalizm multifraktalny w dziedzinie czasowoczęstotliwościowej pozwala na szacowanie parametrów multifraktalnych za pomocą liderów falkowych, które są reprezentantami lokalnych wykładników Holdera sygnału. Algorytm wykazuje niskie koszty obliczeniowe, stabilność numeryczną i dużą uniwersalność w zakresie sygnałów rzeczywistych. Dla współczynników (3) dyskretnej transformaty falkowej (ang. DWT) funkcji x(t) i falki podstawowej o zwartym nośniku $\psi_0(t)$:

$$d_x(j,k) = \int_{\mathbb{R}} x(t) 2^{-j} \psi_0 \left(2^{-j} t - k \right) dt , \qquad (3)$$

lidery falkowe (4), dla zbioru największych współczynników $d_x(j',k') \equiv d_{\lambda'}$ w sąsiedztwie 3λ , definiuje w dowolnej skali zależność:

$$L_{x}(j,k) = \sup_{\lambda' \in \Im\lambda} |d_{\lambda'}|, \qquad (4)$$

gdzie *j*, *k* są liczbami całkowitymi oraz $3\lambda := 3\lambda_{j,k} = \lambda_{j,k-1} \cup \lambda_{j,k} \cup \lambda_{j,k+1}$ i $\lambda := \lambda_{j,k} = [k2^j, (k+1)2^j].$

Można wykazać [10], że wykładniki Holdera są wykładnikami skalowania liderów falkowych: $L_x(j,k) \sim 2^{jh}$. Ponadto funkcję strukturalną (5) zdefiniowaną dla liderów falkowych opisuje zależność potęgowa, której wykładnikiem jest multifraktalny wykładnik skalowania $\zeta(q): R \to R$.

$$Z_L(q,j) = \frac{1}{n_j} \sum_{k=1}^{n_j} L_x(j,k)^q = \mathbb{E}L_x(j,k)^q \sim 2^{j\zeta(q)} \quad , \tag{5}$$

gdzie q jest rzędem funkcji strukturalnej, a n_i liczbą przedziałów analizy wielorozdzielczej.

Funkcja uzyskana poprzez transformację Legendre multifraktalnego wykładnika skalowania $\zeta(q)$, przy łagodnych warunkach regularności sygnału, stanowi górną granicę dla widma multifraktalnego (6) badanego sygnału:

$$D(h) \le \min_{q \ne 0} [1 + qh - \zeta(q)] \tag{6}$$

Współczynniki rozwinięcia wykładnika $\zeta(q)$ w szereg Tylora (7) - log kumulanty c_p - stanowią alternatywny opis parametrów widma multifraktalnego analizowanego sygnału.

$$\zeta(q) = \lim_{j \to 0} \frac{\log_2 Z_L(q,j)}{j} = \sum_{p=1}^{\infty} c_p \frac{q^p}{p!} = c_1 q + c_2 \frac{q^2}{2} + c_3 \frac{q^3}{6} + \cdots$$
(7)

W szczególności: współczynnik c_1 opisuje położenie maksimum widma, natomiast współczynniki c_2 oraz c_3 odpowiednio poziom multifraktalności, czyli szerokość spectrum oraz jego asymetrię. Opis własności dynamicznych układów jest z powodzeniem realizowany na podstawie parametrów widm multifraktalnych reprezentatywnych szeregów czasowych [12]. Aproksymacja $\zeta(q)$ (7), a zatem i widma multifraktalnego D(h) przy wykorzystaniu wspołczynników c_p znacznie upraszcza algorytmy analizy porównawczej badanych układów.

3. Badania symulacyjne zależności dynamiki jazdy i liderów falkowych sygnału prędkości

Związek pomiędzy szeregiem czasowym przyspieszenia i parametrami widma multifraktalnego prędkości zilustrowano na przykładzie syntetycznego sygnału v(n) prędkości pojazdu (Rys.1a). Sygnał ten poddano przepróbkowaniu tak, aby uzyskać sygnały o przyspieszeniu 2x, 4x i 8x większym. Ze względu na operację przepróbkowania histogramy nie są identyczne, lecz porównywalne. Sygnały, które uległy skróceniu powtórzono odpowiednio 2x, 4x i 8x, aby uzyskać sygnały o jednakowej liczbie próbek.

Rys. 1. Syntetyczny sygnał prędkości pojazdu (a) i jego histogramy (b) w zadanym czasie; ten sam przejazd w 2 razy krótszym czasie (c) z porównywalnym rozkładem amplitud (d); ten sam przejazd w 4 razy krótszym czasie (e) z porównywalnym rozkładem amplitud (f); ten sam przejazd w 8 razy krótszym czasie (g) z porównywalnym rozkładem amplitud (h);

Dla sygnałów prędkości z rysunku 1 wyznaczono przyspieszenia (stosując operację różnicowania - Rys. 2) oraz widma multifraktalne (Rys. 3).

Rys. 2. Przebiegi przyspieszenia sygnałów z Rys 1 a), c), e), g)

Rys. 3. Widma multifraktalne sygnałów przyspieszenia z Rys. 2 a), b), c), d)

Analiza uzyskanych widm osobliwości wskazuje na zależność położenia ich maksimów i szerokości od przyspieszeń symulowanych sygnałów. Wyznaczono wartości log kumulant syntetycznych sygnałów (Tabela 1) oraz zależności log kumulant i przyspieszenia (Rys. 4). Jako parametry syntetyczne oceny dynamiki jazdy za pomocą widma multifraktalnego zaproponowano pierwszą i drugą log kumulantę, charakteryzujące odpowiednio położenie maksimum widma multifraktalnego oraz jego szerokość.

Log kumulanta	Sygnał					
	X	2x	4x	8x		
<i>c</i> ₁	0,8127	0,6976	0,4003	0,1723		
<i>c</i> ₂	-0,1640	-0,1187	-0,0841	-0,0307		
<i>c</i> ₃	0.1220	0.0282	0.0127	0.0055		

Tabela 1. Wartości log kumulant syntetycznych sygnałów

Rys. 4. Związek pomiędzy log kumulantami i wartością maksymalną przyspieszenia a) pierwsza log kumulanta b) druga log kumulanta

4. Realizacja algorytmu syntezy cykli jezdnych i analiza wyników badań (Implementation of the synthesis algorithm of driving cycles of and analysis of research results)

Zaproponowano algorytm generowania eksploatacyjnych cykli jezdnych z wykorzystaniem łańcuchów Markowa pierwszego rzędu oraz formalizmu multifraktalnego bazującego na analizie liderów falkowych (Rys. 5).

Rys. 5. Schemat blokowy algorytmu MCMC syntezy cykli jezdnych

W artykule przedstawiono wyniki badań i analizy ruchu samochodów osobowych w rzeczywistych warunkach drogowych, reprezentowanych przez jazdę miejską w dużej aglomeracji (Rys.6). Analizę przeprowadzono na bazie szeregów czasowych prędkości pojazdu rejestrowanej z okresem próbkowania równym 1s. Opis badań został przedstawiony w pracy [14]. Ze względu na duży, ok. 25% udział w teście "zerowych prędkości" (bieg jałowy) z zarejestrowanych szeregów czasowych usunięto fragmenty odpowiadające postojom (Rys.7), co umożliwiło po segmentacji i wyznaczeniu macierzy prawdopodobieństw przejść TPM, testowanie dynamiki jazdy za pomocą analizy log kumulant. Zarejestrowane prędkości podzielono na 20 równych przedziałów odpowiadających rosnącym prędkości wynosi ok. 0,9 m/s. Starano się uzyskać dobrą rozdzielczość prędkości samochodu jednocześnie unikając przedziałów o bardzo niskim (lub zerowym) prawdopodobieństwie wystąpienia.

Analizy statystyczne przeprowadzono w środowisku R, natomiast analizę multifraktalną wykonano w programie Matlab.

Rys.6. Cykl rzeczywisty reprezentatywny dla prowadzonych badań - fragment 20-minutowy a) przebieg sygnału prędkości

b) przebieg przyspieszenia obliczonego na podstawie prędkości

c) histogram prędkości samochodu

Rys.7. Typowy cykl rzeczywisty po usunięciu postojów
a) przebieg sygnału prędkości (wzorcowy)
b) przebieg przyspieszenia obliczonego na podstawie prędkości
c) histogram prędkości samochodu

Macierz prawdopodobieństw przejść TPM, obliczona na podstawie sygnału wzorcowego cyklu, uzyskała wymiar 21x21 (Rys.8).

Rys.8. Macierz prawdopodobieństw przejść TPM dla cyklu przedstawionego na Rys. 7a

Zgodnie z algorytmem Metropolisa-Hastingsa wykonano symulację 100 cykli. Do zilustrowania wyników algorytmu wybrano trzy przykładowe cykle – kandydatów nr 1, 2, 3-

(Rys.9a-c). Podstawowe statystyki sygnału prędkości (wartość maksymalna, minimalna, średnia, odchylenie standardowe) przykładowych cykli są zbliżone do statystyk przebiegu wzorcowego. Przedstawiono także czwarty cykl – kandydat nr 4 - wygenerowany kontrolnie na podstawie rozkładu amplitud prędkości (Rys.9d).

Rys.9. Przykładowe symulowane cykle jezdne

Wyznaczone dwie pierwsze log kumulanty każdego z cykli (Rys.10) wykazują najlepsze dopasowanie dynamiki względem sygnału wzorcowego dla kandydata nr 1.

Rys.10. Wykres punktowy log kumulant wyznaczonych dla badanych cykli

Sprawdzono także zgodność rozkładów gęstości prawdopodobieństwa z rozkładem cyklu wzorcowego (Rys. 11a-d). Rozkład cyklu wzorcowego został przybliżony funkcją empiryczną. W celu sprawdzenia dobroci dopasowania danych empirycznych do przybliżonej funkcji rozkładu prawdopodobieństwa można przeprowadzić test Chi-kwadrat lub test Kołmogorova-Smirnova, jednak testy te dla badanej długości cyklu jezdnego odrzucają hipotezę zerową. Aby test potwierdził hipotezę zerową należy znacznie zwiększyć długość cyklu jezdnego, a to nie jest możliwe. W takim przypadku najlepszym sposobem oszacowania jakości dopasowania rozkładu teoretycznego do zaobserwowanego jest porównanie wizualne. Wykorzystano w tym celu wykres prawdopodobieństwo-prawdopodobieństwo (Rys.11e). Poza cyklem kandydata nr 4 najlepsze dopasowanie wykazuje kandydat nr 1.

Rys.11. Histogramy sygnału prędkości dla symulowanych cykli na tle rozkładu wzorcowego (czerwona przerywana linia) a) – d) e) wykres prawdopodobieństwo-prawdopodobieństwo

Przebieg przyspieszenia kandydata nr 4 (Rys.12), który ma rozkład amplitud prędkości idealnie dopasowany do rozkładu wzorcowego, jest zupełnie inny – niemal stały. Przyspieszenia pozostałych kandydatów można jedynie ocenić ze względu na wartości minimalne i maksymalne.

Rys.12. Przebiegi przyspieszeń w cyklach symulowanych obliczone na podstawie prędkości

W przyjętej w pracy metodzie cykli modalnych i segmentacji wg prędkości, przebiegi czasowe uzyskane na podstawie modelu Markowa mają charakter schodkowy, wymagały więc

w kolejnym kroku wygładzenia. Spośród różnych metod wygładzania szeregu wybrano metodę lokalnej regresji kwadratowej (ang. Local quadratic regression smoothing). Po zakończeniu procesu iteracji i filtracji szeregi czasowe uzupełniane są okresami postojów i uruchamiany jest proces poszukiwania najbardziej reprezentatywnych cykli spośród wszystkich cykli uzyskanych w wyniku syntezy, dla wybranego wskaźnika równoważności.

W trakcie zrealizowanych badań przeprowadzono analizę wyników algorytmu syntezy równoważnych cykli jezdnych wg wybranych parametrów statystycznych oraz kryterium średniej siły trakcyjnej MTF (8), tj. energii trakcyjnej pojazdu (Tabela 2) przenoszonej przez koła:

$$\overline{F}_{trac} = \frac{1}{x_{total}} \int_{t \in \tau_{trac}} F(t) v(t) dt \qquad . \tag{8}$$

gdzie: całkowita siła trakcyjna F(t) jest sumą sił oporu aerodynamicznego F_{air} , oporu toczenia F_{roll} i oporu bezwładności pojazdu F_{iner} , v(t) i a(t) są odpowiednio prędkością i przyspieszeniem jazdy w trakcie cyklu o długości x_{total} oraz τ_{trac} oznacza przedziały czasowe, w których F(t) > 0.

$F_{air}[N]$	Opór aerodynamiczny	$0,4v^2(t)$
$F_{roll}[N]$	Opór toczenia	383
$F_{iner}[N]$	Opór bezwładności	1300 <i>a</i> (<i>t</i>)

Tabela 2. Parametry pojazdu

Przy obliczaniu wskaźnika MTF, najbardziej znaczącą jest siła oporu bezwładności, proporcjonalna do przyspieszenia. Najlepsze dopasowanie wg kryterium MTF do cyklu rzeczywistego występuje dla kandydata nr 1. Podstawowe parametry brane pod uwagę przy weryfikacji cykli zestawiono w Tabeli 3. Pominięto wartości minimalne i maksymalne prędkości i przyspieszenia, które są weryfikowane już na początku.

Cykl jezdny	Dopasowanie	Wartość	Odchylenie	Log	Log	MTF
	rozkładu	średnia	standardowe	Kumulanta	Kumulanta	
				1	2	
	[-]	[m/s]	[m/s]	[-]	[-]	[N]
Cykl		9,7	4,4	0,72	-0,13	689
odniesienia						
Kandydat 1	+	10,0	4,6	0,74	-0,12	743
Kandydat 2	+/-	9,7	4,4	0,58	-0,16	820
Kandydat 3	+/-	10,4	4,5	0,62	-0,10	796
Kandydat 4	+	9,7	4,6	1,06	-0,07	450

Tabela 3. Zestawienie wybranych wartości charakterystycznych dla badanych cykli

Wszystkie syntetyzowane cykle jezdne wykazują prawidłową wartość średnią i odchylenie standardowe. Selekcji nie można także wykonać na bazie rozkładów gęstości prawdopodobieństwa. Kandydaci nr 1 i 4 charakteryzują się najlepszym dopasowaniem rozkładu prawdopodobieństwa amplitud prędkości.

Jeżeli przyjmiemy ponad 10% rozbieżność wskaźnika MTF wygenerowanego cyklu względem cyklu odniesienia za nieakceptowalny poziom równoważności rzeczywistym warunkom jazdy, to log kumulanty testowane w fazie syntezy cykli kandydatów oraz wskaźnik

MTF wykorzystany do weryfikacji ich równoważności, wskazują na kandydata nr 1.

5. Podsumowanie

Przedstawione wyniki badań wnoszą nowe spojrzenie na statystyczno- losowe metody syntezy rzeczywistych cykli jezdnych pojazdów. Wskazano na możliwość odwzorowywania dynamiki jazdy, reprezentowanej przez przyspieszenie, za pomocą parametrów multifraktalnych sygnału prędkości. Zastosowanie liderów falkowych do badania dynamiki jazdy umożliwiło przeprowadzenie syntezy cykli, uwzględniającej parametry prędkości i przyspieszenia, za pomocą symulacji Monte Carlo z jednowymiarowym łańcuchem Markowa. Algorytm syntezy równoważnych cykli jezdnych zweryfikowano wg kryterium średniej siły trakcyjnej MTF.

Wykorzystana dotąd baza danych pochodziła z badań pojazdów z silnikami spalinowymi. Następne badania autorów obejmą analizę procesu prognozowania cyklu jazdy i modelowania ruchu drogowego dla potrzeb sterowania układem napędowym i zarządzaniem energią elektryczną pojazdów elektrycznych. Oczekiwane rezultaty będą przydatne do projektowania infrastruktury stacji ładowania samochodów napędzanych elektrycznie.

Literatura

- 1. Brady J, O'Mahony M. Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas. Applied Energy 2016; 177: 165–178.
- 2. Chłopek Z. The synthesis of driving tests according to the criterions of similarity of frequency characteristics. Eksploatacja i Niezawodnosc Maintenance and Reliability 2016; 18(4): 572-577.
- 3. Dai M, Zhang Ch, Zhang D. Multifractal and singularity analysis of highway volume data. Physica A 2014; 407: 332-340.
- 4. Esser A, Zeller M, Foulard S, Rinderknecht S. Synthesis of Representative and Multidimensional Driving Cycles. SAE International 2018; 2018-01-0095.
- 5. Hereijgers K, Silvas E, Hofman T, Steinbuch M. Effect of using Synthetized Driving Cycles on Vehicle Fuel Consumption. IFAC papers 2017; 50-1: 7505-7510
- 6. Lee T-K, Filipi Z.S. Synthesis of real-world driving cycles using stochastic process and statistical methodology. International Journal of Vehicle Design 2011; 57(1): 17-36.
- 7. Liu Z, Ivanco A, Filipi Z. Naturalistic drive cycle synthesis for pickup trucks. Journal of Safety Research 2015; 54: 109–115.
- 8. Man Z, Shuming S, Nan L, Bingjian . High-efficiency Driving Cycle Generation Using a Markov Chain Evolution Algorithm. IEEE Transactions on Vehicular Technology December 2018; DOI: 10.1109/TVT.2018.2887063.
- 9. Mayakuntlaa SK, Vermab A. A novel methodology for construction of driving cycles for Indian cities. Transportation Research Part D 2018; 65: 725–735.
- 10. Mukli P, Nagy Z, Eke A. Multifractal formalism by enforcing the universal behavior of scaling functions, Physica A 2015; 417: 150–167.
- 11. Nyberg P, Frisk E, Nielsen L. Generation of Equivalent Driving Cycles Using Markov Chains and Mean Tractive Force Components. Proc. of IFAC, 2014; 8787–8792.
- 12. Puchalski A, Komorska I. Binomial multifractal features of worldwide harmonized light duty vehicles test cycle. JVE Vibroengineering Procedia 2017; 13:175–179.
- 13. Puchalski A, Komorska I. Multifractal Nature of Diesel Engine Rattle Noise in Vehicle. Archives of Acoustics 2017; 42(3): 469-474.

- Puchalski A, Ślęzak M, Komorska I, Wiśniowski P. Multifractal analysis vehicle's inuse speed profile for application in driving cycles. Eksploatacja i Niezawodnosc -Maintenance and Reliability 2018; 20 (2): 177–181.
- 15. Puchalski A., Komorska I. A generalised entropy in multifractal time signals analysis of mechanical vibration. JVE Journal of Vibroegineering 2018; 20 (4):1667 1675.
- Shang P, Lu Y, Kamae S. Detecting long-range correlation of traffic time series with multifractal detrended fluctuation analysis. Chaos, Solitions and Fractals 2008; 36: 82-90.
- Silvas E, Hereijgers K, Peng H, Hofman T, Steinbuch M. Synthesis of Realistic Driving Cycles with High Accuracy and Computational Speed, Including Slope Information. IEEE Transaction Vehicular Technology 2016; 65(6): 4118–4128.
- 18. Tutuianu M, Marotta A, et al. Development of a World-wide Worldwide harmonized Light duty driving Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transportation Research Part D Transport & Environment 2015; 40(4), 61-75.
- 19. Yi Y, Pengjian S. Multiscale multifractal detrended cross-correlation analysis of traffic flow. Nonlinear Dynamics 2015; 81:1329–1347.
- 20. Zhao B, Lv Ch, Hofman T. Driving-Cycle-Aware Energy Management of Hybrid Electric Vehicles Using a Three-Dimensional Markov Chain Model. Automotive Innovation 2019; 2:146–156.