Łukasz SOBASZEK Arkadiusz GOLA Antoni ŚWIĆ

TIME-BASED MACHINE FAILURE PREDICTION IN MULTI-MACHINE MANUFACTURING SYSTEMS

ALGORYTM WSPARCIA STRATEGII TBM W WIELOMASZYNOWYCH SYSTEMACH WYTWÓRCZYCH*

The execution of production processes in real manufacturing systems is associated with the occurrence of numerous disruptions, which predominantly revolve around technological machine failure. Therefore, various maintenance strategies are being developed, many of which tend to emphasise effective preventive measures, such as the Time-Based Maintenance (TBM) discussed in this paper. Specifically, this publication presents the time-based machine failure prediction algorithm for the multi-machine manufacturing environment. The Introduction section outlines the body of knowledge related to typical strategies applied in maintenance. The next part describes an approach to failure prediction that treats processing times as makespan and is followed by highlighting the key role of historical data in machine failure management, in the subsequent section. Finally, the proposed time-based machine failure prediction algorithm is presented and tested by means of a two-step verification, which confirms its effectiveness and further practical implementation.

Keywords: production system, maintenance, reliability, machine failure, prediction, Time-Based Maintenance.

Realizacja procesów produkcyjnych w rzeczywistych systemach wytwórczych wiąże się z występowaniem wielu zakłóceń, do których zalicza się głównie awarie maszyn technologicznych. W związku z tym obserwowany jest rozwój różnorodnych strategii utrzymania ruchu. Coraz większy nacisk kładziony jest na efektywne działania prewencyjne, do których zalicza się także działania określone w czasie (ang. Time-Based Maintenance – TBM). W niniejszej publikacji zaprezentowano algorytm predykcji awarii maszyn w wielomaszynowych systemach wytwórczych wspierający prewencyjne utrzymanie ruchu. Na wstępie omówiono zagadnienia związane z typowymi strategiami stosowanymi w obszarze UR. Ponadto omówiono tematykę predykcji awarii, zwracając uwagę na ujęcie czasu pracy maszyny jako czasu trwania, a także kluczową rolę wykorzystania danych historycznych dotyczących awarii maszyn. Następnie zaprezentowano proponowany algorytm predykcji wspierający działania określone w czasie. Prezentowane prace zakończono dwuetapową weryfikacją proponowanej metody, która potwierdziła jej skuteczność oraz zasadność wykorzystania.

Słowa kluczowe: system produkcyjny, utrzymanie ruchu, niezawodność, awarie maszyn, predykcja, Time-Based Maintenance.

1. Introduction

The reality of the production environment is inseparably connected with disruptions, which negatively impact the executed processes, thus leading to disorganisation [14]. The key uncertainty factors include the occurrence of technological machine failure. From the practical point of view, prediction of failure times is an issue of fundamental importance, as it enables implementing preventive activities in a way that does not interfere with the current production process. Failure time prediction is frequently in use in Time-Based Maintenance (TBM), and in response to the growing demand, specialised IT solutions aimed to support this strategy are developed [5, 16, 37]. It is crucial that these tools employ effective prediction algorithms, drawing from reliable historical data and thus providing the basis for a reliable analysis of machine failure and proper adjustment of maintenance activities [6, 13, 40].

The literature analysis shows that numerous studies have been devoted to the prediction of disruption in the production process. Those studies primarily concern the development of effective methods for countering failure, as well as absorb their impact [3, 33]. Preventive activities frequently correspond with the principles of Time-Based Maintenance [13, 25], as well as activities representing Conditioned-Based Maintenance [1, 30]. The development of scenarios and operational strategies is also a very popular trend [26, 27, 34, 35, 39].

Failure prediction methods proposed in the literature are categorised into several groups:

- methods based on probability distribution,
- methods using typical performance indicators,
- alternative failure prediction methods,
- methods based on real data.

The vast majority of the solutions proposed in the literature are based on probability distribution analysis [8, 15, 24, 2], which considers typical distributions and their combinations, such as: uniform distribution [17, 2], normal distribution [8] or exponential distribution [24, 30]. The primary purpose of distribution analysis is to define the

^(*) Tekst artykułu w polskiej wersji językowej dostępny w elektronicznym wydaniu kwartalnika na stronie www.ein.org.pl

time of failure occurrence. Solutions based on combinations of typical distributions are also proposed in the literature, for instance, in the 2010 study [15] the authors propose combinations of normal, triangular and exponential distributions to describe the problem of failure occurrence. Admittedly, most of the proposed solutions consider the problem in a purely theoretical manner, and as such, disregard the critical aspect of prediction: the use of historical data on machine failure rate. Furthermore, researchers fail to provide a sufficient justification for a given probability distribution selection.

Another trend visible in the literature is employing key performance indicators (KPIs) used in maintenance for failure prediction, such as:

- Mean Time To Failure (MTTF),
- Mean Time Between Failures (MTBF),
- Mean Time To Repair (MTTR).

The KPIs listed above are employed in numerous studies [9, 12, 21, 20], predominantly directly, in other cases indirectly – as estimators for the purpose of Weibull distribution [21]. In research, the authors follow predefined scenarios and the indicators are specified from preset ranges, which ensures that the failure events occur at a desired frequency (frequently or rarely) and are eventually analysed from the perspective of the consequences of failure occurrence [12]. Sometimes the use of KPIs is supported by the use of appropriate statistical methods [30]. The use of methods applying performance indicators typical for maintenance is substantiated by the fact that these parameters provide large amounts of information on the technological machines in use. Nevertheless, the acquisition and use of parameters in question is largely in the theoretical domain: the published studies fail to perform verification of the proposed solutions with the real data on machine failure rates [9, 20].

With respect to alternative methods of failure prediction, several solutions are particularly worth highlighting, *e.g.* the methods in which all machine failures are accumulated into one and evaluated by means of the MTTR and MBL (Machine Breakdown Level) parameters [18], the methods where the failure rate is determined from the analysis of the machine loading time distributions [31], those in which the prediction of machine failure is carried out with the application of artificial neural networks [4], or the well-established time series models [38]. During the verification of the proposed solutions, however, test data is employed, which, furthermore, stems from the use of simplifying assumptions adopted by the researchers.

In the works of Davenport *et al.* and Kempa *et al.* [8, 19], the authors note that performing computations on actual sets of process data is of paramount importance. These suggestions represent a novelty approach to failure prediction. They point out the necessity to develop methods focusing on the practical use of historical data on technological machine failure. Although studies implementing such solutions may be found in the specialist literature, their number is still negligible [33]. Nonetheless, they represent a clear trend in the area of failure prediction.

Despite the fact that several methods have been proposed, no solutions towards the practical use of historical data on the failure of technological machines have yet been developed. In addition, in the production environment the typical *modus operandi* is to propose implementation of extensive and high-priced monitoring systems, while in the field of TBM strategies, the data is obtained from all maintenance departments. Therefore, this study provides a novel approach to machine failure prediction in multi-machine manufacturing systems that employs an algorithm performing an in-depth, elaborate analysis of actual production data, thus enabling the prediction of future machine breakdowns and implementation of effective preventive measures. This method constitutes an alternative to those characterised in the preceding paragraphs as it makes use of data obtained from maintenance services to achieve the intended objective – identifica-

tion of the potential moment of failure. The innovation of our method consists in its incorporation of elements of survival analysis theory in technological machine failure analysis enabling statistical inference based on historical data.

2. Failure prediction with elements of processing times analysis

2.1. Machining times as duration

In its essence, failure prediction is the determination of the time and degree of certainty for the occurrence of failure of a given technological machine; to this end, elements of Survival Analysis, also referred to as Duration Analysis [11, 23], may be put to use.

When employing Duration Analysis it is essential to precisely specify the essence of the studied process, which should meet the following conditions [11]:

- 1. Changes to the analysed unit are made between discrete states.
- 2. Changes of states occur at any time and are not fixed in time.
- 3. Changes are reversible or irreversible (relative to the form of the process).
- 4. Changes are predetermined by the current state of the process.
- 5. Certain factors affect the process the analysis enables their detection.

Considering these determinants of the Survival Analysis, it appears that technological machine failure is a process that meets these requirements. Machine failure can occur at any time and is a change between two states – the functioning and breakdown. In addition, damage to the machine is a reversible change – once repaired, it returns to its original state, being defined by the state in which the device is. There are also a number of factors that can affect the process under scrutiny and can be identified by means of Duration Analysis [36]. In the case of machine there is a need to consider the duration time as a time of undisturbed machine operation. In the consequence, the failure time of machine can be determined. An additional advantage of this technique is the ability to determine failure patterns (time characteristics of failures), especially when the historical data do not allow the use of typical inference techniques [33].

Let *T* be a non-negative random variable representing the time of failure (duration) of the technological machine, whose value is in the range $(0; \infty)$. In addition, f(t) is a function of probability density, where t > 0 and F(t) is a cumulative distribution function of the random variable, T - a non-decreasing function that indicates that the object will experience the event in time (0; t]:

$$F(t) = P(T < t) . \tag{1}$$

Based on the cumulative distribution function F(t), the survival function S(t) can be defined as:

$$S(t) = 1 - F(t) = P(T \ge t) = \int_{t}^{\infty} f(s) ds , \qquad (2)$$

which gives the probability of undisturbed machine work until t. It, furthermore, determines the probability that a failure will not occur until t. The selected function is an ideal solution for the determination of patterns of correct machine operation and, as a consequence, also its failure. The survival and cumulative function are shown in Figure 1.

Fig. 1. Cumulative distribution function F(t) and survival function S(t)

In order to determine the particular functions presented above, appropriate historical data describing the failure of the technological machine should be obtained and incorporated in the models. Their analysis provides a great amount of critical information that can be used in the further prediction process.

2.2. The use of historical data

To determine the failure characteristics, it is necessary to define the suitable data source, *i.e.* production maintenance departments – since these cells collect the information in question [3, 10]. The data on the history of maintenance and repair of technological machines in manufacturing enterprises are most commonly recorded by means of the following solutions:

- paper documentation typically in the form of Maintenance Cards and Service Books,
- IT software coupled with dedicated spreadsheets (Fig. 2),
- data acquisition directly from technological machines, using SCADA (Supervisory Control And Data Acquisition) and MES (Manufacturing Execution Systems).

Fig. 2. An example of service data recorded in a computer spreadsheet

All of the data collection methods above share a common feature – each provides information that, when properly processed, can be employed in Survival Analysis for the prediction of machine failure.

The data contained in the documentation are historical failure times. For a given technological machine M_j , they are given as T_{Mj} :

$$T_{Mi} = \{t_1, t_2, ..., t_n\}$$
 [hours], (3)

where: $t_i - i$ -th time of failure.

An example dataset for M_1 historical failure times is expressed by:

$$T_{M1} = \{4, 8, 20, 16, 10, 28, 43, 15, 24, 2, ...\}$$
 [hours].

The use of data contained in relevant datasets T_{Mj} enables the determination of potential failure times of a given machine, saved in dataset FT_{Mij} :

$$FT_{Mj} = \{ft_{Mj1}, ft_{Mj2}, ..., ft_{Mjn}\},$$
(4)

where: ft_{Mji} – failure time of machine j,

j – the number of the considered machine.

For each time ft_{Mji} the probability of failure is given in the set P_{Mj} .

$$P_{Mj} = \{ p_{Mj1}, p_{Mj2}, \dots, p_{Mjn} \} ,$$
 (5)

where: p_{Mji} – the probability of machine failure *j*, given that:

$$\bigwedge_{ft_{Mij}\neq 0} p_{Mij}\neq 0$$

Therefore, the result of the prediction will be the pairs (p_{Mji}, ft_{Mji}) that define the probability and the failure time of machine M_j .

2.3. The proposed time-based machine failure prediction algorithm

In order to predict the probability of failure and the time of failure, a four-step algorithm was developed to analyse and properly implement the collected repair history data.

Fig. 3. Failure prediction algorithm

Step 1 of the proposed algorithm defines the machine for which the prediction process is carried out, as well as acquires the historical data from in the set T_{M_i} (Fig. 3).

At step 2, the imported data are saved: the failure times of machine M_i by means of an appropriate sequence:

$$\{(t_i, d_i)\}_{1 \le k \le n}, t_i \in T_{Mj}$$

$$\tag{6}$$

where: t_i – the time between successive failures,

 d_i – number of cases.

In addition, at this step the data is arranged in an increasing order $\{t_i\}_{1 \le k \le n}$:

$$0 < t_1 < t_2 < \ldots < t_n \,, \tag{7}$$

Subsequently, the acquired data are filtered and outliers (representing atypical values) removed (Fig. 4). Then, the basic statistics for the collected data (minimum, maximum, average deviation, quartile range) are determined.

Step 3 is crucial for the inference process because it is at this stage that the survival function, characterising the considered failure process of the analysed machine, is determined. By ordering machine failures according to the increasing occurrence times and by determining the number of cases for each such occurrence, the survival function of a given process is determined. The obtained function conveniently determines duration patterns (failure occurrence) and allows to determine failure characteristics of the defined machine. The application of Kaplan-Meier estimation, on the other hand, produces the survival function, determined from the relationship:

$$\hat{S}(t) = \begin{cases} 1, & \text{for } t < t_1 \\ \prod_{t_i \le t} \frac{r_i - d_i}{r_i}, \text{for } t_1 < t \end{cases}$$
(8)

where: r_i – the number of all breakdowns, given by:

$$r_i = \sum_{j=i}^k d_j \ . \tag{9}$$

Subsequently, the survival function is determined, which allows to determine (with defined probability level) the undisturbed machine operation times (Fig. 5).

The determined survival function is implemented at step 4, where the obtained results serve to determine the elements of searched sets: $T = \frac{1}{2} \frac{1}{2}$

- potential times of machine failure FT_{Mj} ,
- probability of machine failure P_{Mj} .

Fig. 6 shows the principles of statistical inference based on the survival function. Predictions of failure times ft_{Mji} are determined for specified probability levels p_i .

Since the probability of undisturbed machine operation (p_i) is determined from the survival function, therefore, machine failure probability p_{Mii} is given by:

$$p_{Mji} = 1 - p_i \,, \tag{10}$$

where: p_{Mii} – machine failure probability,

 p_i – undisturbed machine operation probability.

Determining the searched machine failure probability p_{Mji} enables the determination of the searched ft_{Mji} , and, consequently, determining the pairs (p_{Mji}, ft_{Mji}) . The calculated data are collected in sets P_{Mji} and

Fig. 4. Box chart for sample data (Me – median, Q1 and Q3 – quartiles 1 and 3, OUT – outliers)

Fig. 5. An example of Survival Function determined using Kaplan-Meier estimation

Fig. 6. Determining the failure time based on the adopted value of survival probability

 FT_{Mji} . Step 4 is iterative and is, therefore, repeated depending on the user's decision regarding the number of probability levels to consider. The implementation of the algorithm should be repeated for other technological machines whose failure rate is investigated.

3. Experimental verification of the proposed algorithm

3.1. Data used in verification

The step preceding the model verification, presented below, was the acquisition and implementation of data describing the characteristics of the executed technological processes and the failure rate of technological machines. As mentioned before, the investigations reported in this study were based on actual production data, which specifically consisted of 12 production tasks performed at 12 work stations, arranged in manufacturing cells. The prevailing manufacturing process carried out in production is subtractive machining. Table 1 below lists technological processes at selected production jobs.

Product No. (job)	Operation No.	Workstation	Operation	<i>ts_{ij}</i> [hours]	to _{ij} [hours]
	10	Laser1	Cutting sheets	0.25	0.042
	20	Laser2	Laser-cutting pipes and profiles	0.20	0.017
1	30	CNC Press	Edge bending	0.13	0.018
1	40	Drilling machine	Drilling holes	0.17	0.017
	50	Metalworking	Metalworking	0.08	0.017
	60	MIG welder	MIG welding	0.13	0.092
-	10	Laser2	Laser-cutting pipes and profiles	0.15	0.005
	20	CNC band saw	Band-saw cutting	0.10	0.008
	30	Milling machine	Milling	0.27	0.050
3	40	Drilling machine	Drilling holes	0.17	0.017
	50	Metalworking	Metalworking	0.08	0.033
	60	MIG welder	MIG welding	0.13	0.033
	70	Turning lathe	Turning	0.33	0.092
	10	Laser1	Laser-cutting metal sheets	0.27	0.012
	20	Metal shearing machine	Metal shearing	0.10	0.004
	30	CNC band saw	Band-saw cutting	0.10	0.017
_	40	CNC press	Edge bending	0.17	0.025
5	50	Drilling machine	Tapping	0.13	0.100
	60	Metalworking	Metalworking	0.08	0.033
	70	MIG welder	MIG welding	0.13	0.033
	80	Turning lathe	Turning	0.33	0.108

Table 1. Examples of technological processes contained in production data

The actual data used in the verification process were employed in the following scope:

- technological machine failure data were used as input data for the prediction algorithm verification,
- data on executed manufacturing processes were used in simulation tests to assess the effectiveness and validity of the proposed algorithm considering real production conditions (including technological machinery failure).

3.2. Failure time prediction

The proposed algorithm was verified by means of an appropriate script compiled in a programming language R. The successful verification was followed by the use of the historical data in the process of statistical inferring with respect to the potential breakdown times of machines at particular workstations. The machines constituting the stock of the machine tools were labelled as follows:

- Laser 1 machine M_1 ,
- Laser 2 machine M_2 ,
- CNC press machine M_3 ,
- CNC band saw machine M_4 ,
- Metalworking station machine M_5 ,
- MIG welder machine M_6 ,
- TIG welder machine M_7 ,
- Drilling machine machine M_8 ,
- Milling machine machine M_9 ,
- Turning lathe machine M_{10} ,
- Metal shearing machine machine M_{11} ,
- Punching machine machine M_{12} .

In the paragraphs below, the exemplary execution of the verification process is presented for machine M_6 , in which case the historical data included 121 observations

Prior to the initiation of the prediction process, the prepared script was fed with appropriate commands – preparing the software working environment; this was followed by specifying the machine number and importing the data from the *.CSV file. By importing the data into the set T_{M6} , (the variable) stored in the workspace, facilitated sorting the considered observations in ascending order, as well as filtering the data by means of the box plots (Fig. 7). In addition, basic statistics were determined (Fig. 8).

The key step of our failure prediction algorithm is the determination of the survival function, $\hat{S}(t)$, with the application of Kaplan-Meier estimation, which was enabled by including the "SUR-VIVAL" library in the script. A further course of the step function was

Fig. 7. Box plots - before and after data filtering

calculated automatically from the produced observation sequences. The result was a survival function in the form of a stepped curve at 95% confidence.

Determining the course of the searched function, S(t), triggers the next step of the algorithm: the prediction of the failure time of the considered machine at the defined probability level (Fig. 9). As the probability of undisrupted machine operation can also be read from the chart, an additional legend with explanations was generated. In the

```
"Machine M6 failure rate - set TM6 - basic statistics:"
Min. 1st Qu. Median Mean 3rd Qu. Max.
8.00 8.00 24.00 32.48 48.00 104.00
```

Fig. 8. Basic statistics generated by the developed script

case of calculations for the given machine M_6 (and other machines), the following probability levels were considered:

$$p_1 = 0.75; \quad p_2 = 0.50; \quad p_3 = 0.25.$$

The values of the considered levels have been chosen so as to determine: low, medium and high level of risk of the machine being affected. Therefore:

 $p_{M61} = 1 - p_1 = 0.25; \quad p_{M62} = 1 - p_2 = 0.50; \quad p_{M63} = 1 - p_3 = 0.75;$

Fig. 9. Failure prediction based on the survival function

In this way, the probability of occurrence and times of potential failures were calculated, and can be expressed as pairs:

$(p_{M61}, ft_{M61}) = (0.25, 8 \text{ hours})$,
$p_{M62}, ft_{M62}) = (0.50, 24 \text{ hours})$),
p_{M63}, ft_{M63} = (0.75, 48 hours).

As a result, sets $P_{M61} = \{0.25, 0.50, 0.75\}$ and $FT_{M61} = \{8, 24, 48\}$ [hours] were determined.

The proposed algorithm was used to the same extent in other technological machines. Due to the nature of the metalworking workstation (M_5) the prediction process was not carried out. The calculated failure times are given in Table 2.

The results obtained from the executed algorithm were employed in the subsequent part of the verification process, consisting in the simulation of production under technological machinery failure constraint.

3.3. Production simulation under uncertainty

The plan of the study described in this paper assumed the verification of the introduced algorithm in the real production environment in order to validate its applicability under machine failure uncertainty,

Table 2. Technological machine failure times obtained from prediction

	Failure time [hours]			
Machine	$p_{Mj1} = 0.25$	$p_{Mj2} = 0.50$	$p_{Mj3} = 0.75$	
M_1	8	16	40	
<i>M</i> ₂	8	24	32	
<i>M</i> ₃	8	16	24	
M_4	8	24	104	
M_5	-	-	-	
M_6	8	24	48	
<i>M</i> ₇	8	16	40	
M_8	8	24	48	
M_9	8	16	40	
<i>M</i> ₁₀	8	24	40	
<i>M</i> ₁₁	8	16	40	
<i>M</i> ₁₂	8	16	32	

which is characteristic of authentic industrial conditions. This was done in a two-stage experiment:

- 1. Nominal production schedules were produced based on the actual production data. Next, corresponding robust schedules were prepared by implementing service times as indicated by the results of the executed algorithm.
- 2. The production process was modelled according to the developed schedules and examined to indicate the schedule of the shortest production completion time under the constraint of machine failure.

3.3.1. Scheduling production

Different job scheduling methods to follow at individual workstations were evaluated by means of 4 established dispatching rules:

- 1. FCFS (First Come First Service).
- 2. EDD (Earliest Due Date).
- 3. SPT (Shortest Processing Time).
- 4. LPT (Longest Processing Time).

It was assumed that the products were made in 50-piece batches, and the objective function of the schedule was to minimise the make-span $-C_{\text{max}}$.

The task scheduling tool employed in the study was LiSA, a software package for solving job scheduling problems typical of real production environments (flow-shop, job-shop or open-shop), which makes use of algorithms in imposing a set of constraints and evaluation criteria [7]. Fig. 10 shows an example schedule solved with the use of LPT dispatching rule.

Fig. 10. Nominal schedule - LPT dispatching rule

Potential technological machine failure was accounted for in the schedules by the implementation of service buffers of 0.5 hours, aimed to protect schedules against disruptions and providing the necessary inspection or servicing time. Buffers were incorporated in the schedules in accordance with the indications of the algorithm (Table 2). It was assumed that failure may only occur after the processing time block (processing of jobs). Should there be a technological operation in a given place of the schedule – it would be moved right (immediately after the buffer), thus maintaining the order of tasks indicated in the nominal schedule. An example of a robust schedule with implemented service buffers is shown in Fig. 11 (buffers are represented by white blocks).

Fig. 11. Production schedule including service buffers

The times of completion of all jobs (makespan) in the nominal and robust schedules are presented in Table 3.

The completion times of all jobs obtained from the test schedules were elongated in every case when time buffers were incorporated. This resulted in the elongation of the objective function C_{max} in each reported case. The average time difference between the nominal and robust schedule amounted to 6.75 h. It may be, therefore, concluded that accounting for technological machine failure causes that the production will extend over approximately one additional shift. Expressed in percentage, the elongation ranged from 8.5% for the robust schedule with the LPT priority rule, to 16.7% for the FCFS schedules. The makespans of particular robust schedules are given in Fig. 12 below.

To evaluate whether the implemented buffers should be incorporated in the schedules, thus leading to the production schedule elongation, the second stage of the verification process was carried out: simulation of production under uncertainty. This step indicated which of the schedules – nominal or robust (produced by the proposed algorithm) – fulfils the objective function, *i.e.* minimisation of completion of all production tasks.

Table 3. Obtained values of C_{max}

Dispatch- ing rule	Completion time of all jobs – makespan C_{max} [hours]					
	nominal schedule	robust schedule	elongation [%]			
FCFS	43.68	52.44	16.7%			
EDD	42.59	49.42	13.8%			
SPT	48.92	55.75	12.3%			
LPT	49.10	53.69	8.5%			

3.3.2. Production simulation under machine failure constraint

The second stage of the experiment was carried out in the Enterprise Dynamics simulation environment, which is one of the leading solutions in simulating various processes. This platform enables representing a range of processes, including production, storage, supply chain management, transport systems, and its capacity for modelling, simulation and visualisation earmarks it for controlling dynamic processes [14, 16, 22]. Putting to use the available elements of the environment, a model was made for the production execution analysis in the considered production system (Fig. 13).

Fig. 13. The production system model developed in the ED environment

Given the failure rate of technological machines, MTTF and MTTR values were defined for each of them, by modifying the properties of a given block. The MTTF parameter values were defined using uniform probability distribution so that the failures occurred at any time – from the commencement of processing jobs on a machine until its completion. The MTTR parameter was determined by gamma distribution, as it was indicated to be the best fitting by the results from the statistical analysis of historical data on machine repair times. The MTTF and MTTR parameters for individual machines are presented in Table 4. Note that due to the ED simulation environment – the times describing the distribution parameters were given in seconds.

The model developed for the purpose of this study included the modification of job orders on particular machines (in accordance with the schedules implementing the particular dispatching rules FCFS, EDD, SPT and LPT).

When assessing the results of simulations, the following stability indicators were used:

– elongation of completion time of all jobs ΔC_{max} given by:

$$\Delta C_{\max} = C_{\max} - C'_{\max}, \qquad (11)$$

where: ΔC_{max} – elongation of completion time of all jobs,

Cmax - nominal schedule makespan,

 Table 4.
 Technological machine failure times obtained from the prediction results

	Failure metrics				
Machine	MTTF	MTTR			
<i>M</i> ₁	Uniform(0; 66323)	Gamma(3075; 1.62)			
<i>M</i> ₂	Uniform(0; 31691)	Gamma(2700; 2.07)			
<i>M</i> ₃	Uniform(0; 57877)	Gamma(2491.8; 2.79)			
M_4	Uniform(0; 12013)	Gamma(2773.2; 1.88)			
M ₅	-	-			
<i>M</i> ₆	Uniform(0; 85475)	Gamma(3421.2; 2.43)			
M ₇	Uniform(0; 30024)	Gamma(3352.8; 1.96)			
<i>M</i> ₈	Uniform(0; 80687)	Gamma(2377.2; 2.45)			
M_9	Uniform(0; 24012)	Gamma(2884.8; 1.64)			
M ₁₀	Uniform(0; 60624)	Gamma(2609.4; 1.85)			
M ₁₁	Uniform(0; 756)	Gamma(3169.8; 2.16)			
M ₁₂	Uniform(0; 19800)	Gamma(3015; 1.78)			

Table 5. Stability indicators - order of jobs according to the SPT rule

 C'_{max} – actual (executed) schedule makespan.

– relative elongation of makespan E_{Cmax} , determined from the relationship:

$$E_{C_{\max}} = \frac{C_{\max}}{C'_{\max}}, \tag{12}$$

where: E_{Cmax} – relative elongation of makespan.

Table 5 shows the results of the simulation under the SPT dispatching rule. For each simulation, the obtained stability indicators confirmed the effectiveness and applicability of the proposed algorithm. Both the values of elongation of completion time of all jobs, $\Delta C_{\rm max}$, and the relative elongation of makespan, $E_{\rm Cmax}$, showed that the schedule accounting for potential technological machine failure indicates a more feasible completion time of all jobs.

For other simulated conditions, the applicability of the solutions proposed in this publication was also confirmed, as validated by mean of the performance indicators from individual simulations listed in Table 6.

The obtained values clearly indicate that the schedule incorporating service buffers gives a more feasible completion time of all jobs.

		Elongation and relative elongation of completion times						
	Executed schedule	of all jobs						
Sim. No.	(simulation) C' _{max} [hours]	nominal schedule			robust schedule			
		C _{max} [hours]	ΔC_{\max} [hours]	E _{Cmax} [-]	C _{max} [hours]	ΔC_{\max} [hours]	E _{Cmax} [-]	
1	56.10		-7.18	0.87		-0.35	0.99	
2	53.88		-4.96	0.91		1.87	1.03	
3	54.09		-5.17	0.90		1.66	1.03	
4	56.91		-7.99	0.86		-1.16	0.98	
5	52.60		-3.68	0.93		3.15	1.06	
6	55.50		-6.58	0.88		0.25	1.00	
7	56.43		-7.51	0.87		-0.68	0.99	
8	55.88		-6.96	0.88		-0.13	1.00	
9	53.48		-4.56	0.91		2.27	1.04	
10	54.04		-5.12	0.91		1.71	1.03	
11	58.31		-9.39	0.84		-2.56	0.96	
12	52.97		-4.05	0.92		2.78	1.05	
13	54.20	48.92	-5.28	0.90	55.75	1.55	1.03	
14	55.33		-6.41	0.88		0.42	1.01	
15	55.98		-7.06	0.87		-0.23	1.00	
16	56.01		-7.09	0.87		-0.26	1.00	
17	53.53		-4.61	0.91		2.22	1.04	
18	56.51		-7.59	0.87		-0.76	0.99	
19	55.18		-6.26	0.89		0.57	1.01	
20	56.49		-7.57	0.87		-0.74	0.99	
21	52.37		-3.45	0.93		3.38	1.06	
22	57.52		-8.60	0.85		-1.77	0.97	
23	54.86]	-5.94	0.89		0.89	1.02	
24	55.04]	-6.12	0.89		0.71	1.01	
25	54.83		-5.91	0.89		0.92	1.02	

Fig. 14. Makespan elongation ΔC_{max}

Table 6. Mean values of the considered performance indicators

	Executed	Elongation and relative elongation of completion times of all jobs						
Priority rule	schedule (simulation)	nominal schedule			robust schedule			
	\overline{C}'_{max} [hours]	C _{max}	$\Delta \overline{C}_{\max}$	$\overline{E}_{C_{\max}}$	C _{max}	$\Delta \overline{C}_{\max}$	$\overline{E}_{C_{\max}}$	
	mux	[nours]	[hours]	[-]	[nours]	[hours]	[-]	
FCFS	49.87	43.68	-6.19	0.88	52.44	2.57	1.05	
EDD	47.90	42.59	-5.31	0.89	49.42	1.52	1.03	
SPT	55.12	48.92	-6.20	0.89	55.75	0.63	1.01	
LPT	53.14	49.10	-4.04	0.92	53.69	0.55	1.01	

Figures 14 and 15 summarise the obtained values of the considered indicators, which further confirm the applicability of the proposed algorithm.

From the results of the verification and analytical works, it can be seen that the algorithm under scrutiny indicates a more feasible production completion time in the conditions allowing for the risk of technological machinery failure. This is evidenced, for instance, by the fact that for the robust schedule, the E_{Cmax} indicator values are close to 1, while the value of the indicator ΔC_{max} , is approximate to 0, which means that the makespans of production in the robust schedules are consistent with those obtained as a result of production simulation.

4. Summary and conclusions

Machine failure prediction has been widely investigated in numerous scientific studies. Various approaches have been proposed for the determination of information regarding the failure of technological machines. Reliable and well-developed preventive maintenance job schedules are critical to effective maintenance, particularly in the case of Time-Based Maintenance strategies.

This paper focuses on the development of a prediction algorithm using typical historical data recorded by maintenance departments.

Fig. 15. Relative makespan elongation E_{Cmax}

The proposed algorithm is an alternative solution to failure prediction, whose innovation, and primary advantage, consists in the implementation of Kaplan-Meier estimation to determine the characteristics of failure occurrence in time for individual technological machines of the production system, which in turn supports TBM activities. In light of these key features of the proposed prediction tool, it becomes clear that the collection of reliable data on machine failure becomes of crucial importance; it is only the adequate historical data sample size and quality that may produce reliable and factual results.

Our algorithm responds to and represents the tendency for the growing implementation of IT tools in the work of maintenance departments. Considering its potential scope of

applications, it was developed as a computer program so that it is compatible with other established solutions. The verification of the proposed algorithm allowed to determine the potential failure times of technological machines. For the considered machines determined failure times were different, which means that each of them has its own failure occurrence characteristics. That confirmed the rightness and need of the TBM strategy implementation in the technical objects maintaining. The obtained data are also extremely important in the aspect of production under uncertainty. The simulation tests carried out in the second part of the publication prove that the use of the results of the proposed algorithm in the production planning allows to obtain stability of processes and determine deadlines close to the real end time of production.

The investigation works reported in this paper confirm the effectiveness of the developed prediction algorithm and indicate the need for the preventive measures to provide information on machine failure in order to improve the stability of executed processes.

Acknowledgments

The project/research was financed from the Lublin University of Technology Project – Regional Initiative of Excellence from the funds of the Ministry of Science and Higher Education on the basis of a contract No. 030 / RID / 2018/19.

References

 Albrice D, Branch M. A Deterioration Model for Establishing an Optimal Mix of Time-Based Maintenance (TbM) and Condition-Based Maintenance (CbM) for the Enclosure System. Fourth Building Enclosure Science & Technology Conference (BEST4), Kansas City, Missouri, April 13–15, 2015.

- Al-Hinai N, ElMekkawy TY. Robust and Stable Flexible Job Shop Scheduling with Random Machine Breakdowns Using a Hybrid Genetic Algorithm. International Journal of Production Economics 2011; 132(2): 279–291, http://dx.doi.org/10.1016/j.ijpe.2011.04.020.
- Antosz K, Stadnicka D. Evaluation measures of machine operation effectiveness in large enterprises: study results. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17(1): 107–117, http://dx.doi.org/10.17531/ein.2015.1.15.
- Baptista M, Sankararaman S, de Medeiros IP, Nascimento C, Prendinger H, Henriques EMP. Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling, Computers & Industrial Engineering 2018; 115: 41–53, https://doi. org/10.1016/j.cie.2017.10.033.
- 5. Bartochowska D, Ferenc R. Instrumenty wsparcia utrzymania ruchu w małych i średnich przedsiębiorstwach. Zeszyty naukowe Politechniki Śląskiej 2015; 80: 21–50.
- 6. Bei XQ, Zhu XY, Coit DW. A risk-averse stochastic program for integrated system design and preventive maintenance planning. European Journal Of Operational Research 2019; 276(2): 536–548, http://dx.doi.org/10.1016/j.ejor.2019.01.038.
- 7. Bräsel H, Dornheim L, Kutz S, Mörig M, Rössling I. LiSA A Library of Scheduling Algorithms. Magdeburg University, 2001.
- Davenport A, Gefflot C, Beck C. Slack-based Techniques for Robust Schedules. Sixth European Conference on Planning, Toledo, Spain, September 12–14, 2001.
- 9. Deepu P. Robust Schedules and Disruption Management for Job Shops. Bozeman, Montana, 2008.
- Fernandes M, Canito A, Bolon-Canedo V, Conceicao L, Praca I, Marreiros G. Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. International Journal Of Information Management 2019, 45: 252–262, http://dx.doi.org/10.1016/j. ijinfomgt.2018.10.006.
- 11. Frątczak E, Sienkiewicz U, Babiker H. Analiza historii zdarzeń Elementy teorii, wybrane przykłady zastosowań. Oficyna Wydawnicza Szkoła Główna Handlowa w Warszawie, Warszawa 2014.
- 12. Gao H. Bulding Robust Schedules using Temporal Potection An Empirical Study of Constraint Based Scheduling Under Machine Failure Uncertainty. Toronto, Ontario, 1996.
- Gao Y, Feng Y, Zhang Z, Tan J. An optimal dynamic interval preventive maintenance scheduling for series systems. Reliability Engineering & System Safety 2015; 142: 19–30, http://dx.doi.org/10.1016/j.ress.2015.03.032.
- Gola A. Reliability analysis of reconfigurable manufacturing structures using computer simulation methods. Eksploatacja i Niezawodnosc Maintenance and Reliability 2019; 21(1): 90–102, http://dx.doi.org/10.17531/ein.2019.1.11.
- 15. Gürel S, Körpeoğlu E, Aktürk MS. An Anticipative Scheduling Approach with Controllable Processing Times. Computers & Operations Research 2010; 37(6): 1002–1013, http://dx.doi.org/10.1016/j.cor.2009.09.001.
- Jasiulewicz-Kaczmarek M, Bartkowiak T. Improving the performance of a filling line based on simulation, ModTech International Conference – Modern Technologies in Industrial Engineering IV, Romania, Iasi, June 15–18, IOP Conf. Series: Materials Science and Engineering 2016; 145(042024), https://doi.org/10.1088/1757-899X/145/4/042024.
- 17. Jensen MT. Improving robustness and flexibility of tardiness and total flow-time job shops using robustness measures. Applied Soft Computing 2001; 1: 35–52, http://dx.doi.org/10.1016/S1568-4946(01)00005-9.
- Jian X, Li-Ning X, Ying-Wu Ch. Robust Scheduling for Multi-Objective Flexible Job-Shop Problems with Random Machine Breakdowns. International Journal of Production Economics 2013; 141(1): 112–126, https://doi.org/10.1016/j.ijpe.2012.04.015.
- 19. Kalinowski K, Krenczyk D, Grabowik C. Predictive-reactive strategy for real time scheduling of manufacturing systems. Applied Mechanics and Materials 2013; 307: 470–473, https://doi.org/10.4028/www.scientific.net/AMM.307.470.
- 20. Kempa W, Paprocka I, Kalinowski K, Grabowik C. Estimation of reliability characteristics in a production scheduling model with failures and time-changing parameters described by Gamma and exponential distributions. Advanced Materials Research 2014; 837: 116–121.
- 21. Kempa W, Wosik I, Skołud B. Estimation of Reliability Characteristics in a Production Scheduling Model with Time-Changing Parameters First Part, Theory. Management and Control of Manufacturing Processes. Lublin, 2011; 7–18.
- 22. Kłos S, Patalas-Maliszewska J, Trebuna P. Improving manufacturing processes using simulation methods. Applied Computer Science 2016; 12(4): 7–17.
- 23. Lawless J. F. Statistical Models and Methods for Lifetime Data. John Wiley & Sons, 2003.
- Leon VJ., Wu SD., Storer RH. Robustness Measures and Robust Scheduling for Job Shops. IIE transactions 1994; 26(5): 32–43, https://doi. org/10.1080/07408179408966626.
- Liao W, Zhang X, Jiang M. An optimization model integrated production scheduling and preventive maintenance for group production. IEEE International Conference on Industrial Engineering and Engineering Management 2016; December, 936–940, http://dx.doi.org/10.1109/ IEEM.2016.7798015.
- 26. Loska A. Scenario modeling exploitation decision-making process in technical network systems. Eksploatacja i Niezawodnosc Maintenance and Reliability 2017; 19 (2): 268–278, http://dx.doi.org/10.17531/ein.2017.2.15.
- 27. Lü Y, Zhang Y. Reliability Modeling and Maintenance Policy Optimization for Deteriorating System Under Random Shock. Journal of Shanghai Jiaotong University (Science) 2018; 23(6): 791–797, http://dx.doi.org/10.1007/s12204-018-1985-y.
- 28. Mehta SV., Uzsoy RM. Predictable Scheduling of a Job Shop Subject to Breakdowns. IEEE Transactions on Robotics and Automation 1998; 14(3): 365–378, https://doi.org/10.1109/70.678447.
- 29. Rawat M, Lad BK., Novel approach for machine tool maintenance modelling and optimization using fleet system architecture. Computers & Industrial Engineering 2018; 126: 47–62, http://dx.doi.org/10.1016/j.cie.2018.09.006.
- 30. Rosmaini A, Shahrul K. An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering 2012; 63(1): 135–149, http://dx.doi.org/10.1016/j.cie.2012.02.002.
- Sabuncuoglu I, Bayõz M. Analysis of reactive scheduling problems in a job shop environment. European Journal of Operational Research 2000; 126(3): 567–586, https://doi.org/10.1016/S0377-2217(99)00311-2.
- 32. Skołud B., Wosik I., Immune Algorithms in Production Jobs Scheduling. Zarządzanie Przedsiębiorstwem 2008; 1: 47-48.
- Sobaszek Ł, Gola A, Kozłowski E. Job-shop scheduling with machine breakdown prediction under completion time constraint. Annals of Computer Science and Information Systems 2018; 15: 437–440, http://dx.doi.org/10.15439/2018F83.
- 34. Szwedzka K, Szafer P, Wyczółkowski R. Structural analysis of factors affecting the effectiveness of complex technical systems. Proceedings

of the 30th International Business Information Management Association Conference, IBIMA 2017 – Vision 2020: Sustainable Economic development, Innovation Management, and Global Growth Volume 2017, 4096–4105.

- Timofiejczuk A, Brodny J, Loska A. Exploitation Policy in the Aspect of Industry 4.0 Concept Overview of Selected Research. Multidisciplinary Aspects of Production Engineering 2018; 1(1): 353–359, https://doi.org/10.2478/mape-2018-0045.
- Vonta F. Frailty or Transformation Models in Survival Analysis and Reliability. Recent Advances In System Reliability: Signatures, Multi-State Systems And Statistical Inference 2012; 237–251, http://dx.doi.org/10.1007/978-1-4471-2207-4_17.
- Wei-Wei C, Zhiqiang L, Ershun P. Integrated Production Scheduling and Maintenance Policy for Robustness in a Single Machine. Computers & Operations Research 2014; 47: 81–91, https://doi.org/10.1016/j.cor.2014.02.006.
- Yang BY, Liu RN, Zio E. Remaining Useful Life Prediction Based on a Double-Convolutional Neural Network Architecture. IEEE Transactions On Industrial Electronics 2019; 66(12): 9521–9530, https://doi.org/10.1109/TIE.2019.2924605.
- Zhang F, Shen J, Ma Y. Optimal maintenance policy considering imperfect repairs and non-constant probabilities of inspection errors. Reliability Engineering and System Safety 2020; 193: 1–12, http://dx.doi.org/10.1016/j.ress.2019.106615.
- 40. Zhao X, He S, He Z, Xie M. Optimal condition-based maintenance policy with delay for systems subject to competing failures under continuous monitoring. Computers & Industrial Engineering 2018; 124: 535–544, http://dx.doi.org/10.1016/j.cie.2018.08.006.

Łukasz SOBASZEK Arkadiusz GOLA Antoni ŚWIĆ

Department of Production Computerisation and Robotisation Faculty of Mechanical Engineering, Lublin University of Technology ul. Nadbystrzycka 36, 20-816 Lublin, Poland

E-mails: l.sobaszek@pollub.pl, a.gola@pollub.pl, a.swic@pollub.pl

dr inż. Łukasz Sobaszek dr inż. Arkadiusz Gola prof. dr hab. inż. Antoni Świć Katedra Informatyzacji i Robotyzacji Produkcji Wydział Mechaniczny, Politechnika Lubelska ul. Nadbystrzycka 36, 20-816 Lublin, Polska e-mail: I.sobaszek@pollub.pl, a.gola@pollub.pl, a.swic@pollub.pl

ALGORYTM WSPARCIA STRATEGII TBM W WIELOMASZYNOWYCH SYSTEMACH WYTWÓRCZYCH

TIME-BASED PREDICTION OF MACHINE FAILURES IN MULTI-MACHINES MANUFACTURING SYSTEMS

Streszczenie: Realizacja procesów produkcyjnych w rzeczywistych systemach wytwórczych wiąże się z występowaniem wielu zakłóceń, do których zalicza się głównie awarie maszyn technologicznych. W związku z tym obserwowany jest rozwój różnorodnych strategii utrzymania ruchu. Coraz większy nacisk kładziony jest na efektywne działania prewencyjne, do których zalicza się także działania określone w czasie (ang. Time-Based Maintenance – TBM). W niniejszej publikacji zaprezentowano algorytm predykcji awarii maszyn w wielomaszynowych systemach wytwórczych wspierający prewencyjne utrzymanie ruchu. Na wstępie omówiono zagadnienia związane z typowymi strategiami stosowanymi w obszarze UR. Ponadto omówiono tematykę predykcji awarii, zwracając uwagę na ujęcie czasu pracy maszyny jako czasu trwania, a także kluczową rolę wykorzystania danych historycznych dotyczących awarii maszyn. Następnie zaprezentowano proponowany algorytm predykcji wspierający działania określone w czasie. Prezentowane prace zakończono dwuetapową weryfikacją proponowanej metody, która potwierdziła jej skuteczność oraz zasadność wykorzystania.

słowa kluczowe: system produkcyjny, utrzymanie ruchu, niezawodność, awarie maszyn, predykcja, Time-Based Maintenance

1. Wstęp

Rzeczywistość produkcyjna związana jest z występowaniem wielu zakłóceń, które w negatywny sposób mogą wpływać na realizowane procesy, powodując ich dezorganizację [14]. Do kluczowych czynników niepewności należy zaliczyć występowanie awarii maszyn technologicznych. Z praktycznego punktu widzenia, określenie czasu wystąpienia awarii jest niezwykle ważnym zagadnieniem. Znajomość czasów występowania usterek pomaga w podejmowaniu przemyślanych działań prewencyjnych – należy je bowiem planować tak, aby nie kolidowały one z bieżącą realizacją procesu produkcyjnego. Predykcja czasów awarii znajduje zastosowanie w obszarze strategii Time-Based Maintenance (TBM), gdzie coraz częściej proponowane są narzędzia informatyczne wspierające tą strategię [5, 16, 37]. Istotne jest jednak, aby proponowane rozwiązania wykorzystywały efektywne algorytmy predykcji wykorzystujące rzetelne dane historyczne na podstawie których możliwa jest wiarygodna analiza występowania usterek, a w konsekwencji planowanie odpowiednich działań serwisowych [6, 13, 40].

W literaturze przedmiotu znaleźć można wiele opracowań podejmujących problematykę predykcji zakłóceń procesu produkcyjnego. W ogólnym ujęciu, w obszarze utrzymania ruchu prowadzi się badania w kierunku opracowywania efektywnych metod zapobiegania wystę-powaniu usterek, a także niwelowania ich wpływu [3, 33]. Planowanie działań prewencyjnych przyjmuje zazwyczaj formę podejmowania działań określonych w czasie (ang. *Time-Based Maintenance*) [13, 25], a także działań opartych na monitorowaniu warunków pracy maszyn (ang. *Conditioned-Based Maintenance*) [1, 30]. Wyraźnym trendem jest także opracowywanie scenariuszy oraz strategii eksploatacyjnych [26, 27, 34, 35, 39].

Proponowane w literaturze metody predykcji awarii można podzielić na klika grup, wśród których wyróżnia się:

- metody bazujące na wykorzystaniu rozkładów prawdopodobieństwa,
- metody wykorzystujące typowe wskaźniki efektywności,
- alternatywne metody predykcji awarii,
- metody bazujące na wykorzystaniu danych rzeczywistych.

Zdecydowana większość proponowanych w literaturze rozwiązań opiera się na analizach rozkładów prawdopodobieństwa [8, 15, 24, 2]. Rozpatrywane są zarówno typowe rozkłady, jak i ich kombinacje. Zastosowanie znajdują różnorodne rozwiązania – od wyko-rzystania rozkładu jednostajnego [17, 2], poprzez bazowanie na rozkładzie normalnym [8], aż po predykcję na podstawie rozkładu wykładniczego [24, 30]. Analiza rozkładów pozwala głównie zdefiniować czas wystąpienia awarii. W literaturze proponowane są także rozwiązania bazujące na kombinacjach typowych rozkładów. Przykładowo w pracy [15] autorzy do opisu problemu występowania awarii proponują użycie kombinacji rozkładów: normalnego, trójkątnego i wykładniczego. Większość z proponowanych rozwiązań ma jednak wciąż charakter rozważań teoretycznych. Pomijany jest przez to kluczowy aspekt wykorzystania historycznych danych dotyczących awaryjności wykorzystywanych maszyn. Ponadto badacze nie argumentują w dostateczny sposób doboru rozpatrywanych rozkładów.

Kolejnym, widocznym w literaturze trendem jest wykorzystywanie dla celów predykcji typowych wskaźników efektywności, stosowanych w obszarze utrzymania ruchu takich jak:

- średni czas do wystąpienia uszkodzenia MTTF (ang. Mean Time To Failure),
- średni czas bezawaryjnej pracy MTBF (ang. Mean Time Between Failures),
- średni czas naprawy MTTR (ang. Mean Time To Repair).

Wykorzystanie wspomnianych wskaźników prezentowane jest wielu w pracach [9, 12, 21, 20]. Są one zazwyczaj stosowane bezpośrednio, jednak zdarza się, iż służą w pośredni sposób do oszacowania parametrów rozkładu Weibulla [21]. W ramach realizowanych badań autorzy analizują odpowiednio opracowane scenariusze, zaś wartości wskaźników przyjmują wartości z uprzednio zdefiniowanych przedziałów – dobierane są tak, aby zdarzenia występowały często, czasami lub rzadko, a następnie analizowane są konsekwencje występowania awarii [12]. Niekiedy wykorzystanie wskaźników efektywności wspierane jest zastosowaniem odpowiednich metod statystycznych [30]. Metody mające na celu wykorzystanie typowych wskaźników efektywności stosowanych w obszarze utrzymania ruchu wydają się być zasadne, gdyż parametry te dostarczają wiele informacji nt. wykorzystywanych maszyn technologicznych. Wciąż jednak pozyskiwanie i wykorzystanie rozpatrywanych wielkości traktowane jest dość teoretycznie. W publikacjach, w których proponowane są metody wykorzystujące typowe wskaźniki efektywności, brak jest weryfikacji proponowanych rozwiązań z zastosowaniem rzeczywistych danych dotyczących awaryjności maszyn [9, 20].

W obszarze alternatywnych metod predykcji awarii znaleźć można także podejścia, które znacznie różnią się od typowych rozwiązań. Warto wyróżnić tutaj rozwiązania w których: awarie zostają skumulowane do jednej i opisywane są za pomocą parametru MTTR oraz stopnia awarii MBL (ang. *Machine Breakdown Level*) [18], awaryjność określana jest na podstawie analizy rozkładów czasów obciążenia maszyn [31], do predykcji awarii maszyn wykorzystane zostają sztuczne sieci neuronowe [4], czy dobrze znane modele szeregów czasowych [38]. Podczas weryfikacji proponowanych rozwiązań wykorzystywane są jednak zazwyczaj dane testowe, często przyjęte przez autorów na podstawie opracowanych założeń upraszczających.

W publikacjach [8, 19] autorzy zwracają uwagę, iż istotną kwestią jest bazowanie na zbiorach rzeczywistych danych dotyczących procesu. Jest to sugestia, która stanowi nowe podejście w procesie predykcji awarii. Determinuje ona potrzebę opracowywania metod zorientowanych na praktyczne wykorzystanie historycznych danych dotyczących awaryjności maszyn technologicznych. W literaturze można spotkać takie rozwiązania, jednak ich liczba jest wciąż bardzo mała [33]. Jest to wyraźny trend w obszarze predykcji awarii.

Niestety mimo wielu proponowanych przez badaczy metod, brak jest rozwiązań zorientowanych na praktyczne wykorzystanie historycznych danych dotyczących awaryjności maszyn technologicznych. Ponadto w praktyce produkcyjnej proponuje się niejednokrotnie wdrażanie rozbudowanych i kosztownych systemów monitorowania, podczas gdy w zakresie działań związanych ze strategią TBM zastosowanie zaleźć mogą dane posiadane przez wszystkie działy utrzymania ruchu. Dlatego też, w niniejszej pracy zaproponowany został algorytm predykcji awarii maszyn w wielomaszynowych systemach wytwórczych, który poprzez wnikliwą analizę rzeczywistych danych produkcyjnych pozwala na wnioskowanie o przyszłych czasach występowania usterek oraz podejmowanie skutecznych działań prewencyjnych. Jest on rozwiązaniem alternatywnym w stosunku do metod już istniejących, które zostały scharakteryzowane powyżej. Proponowane rozwiązanie pozwala na wykorzystanie danych posiadanych przez służby utrzymania ruchu do osiągnięcia zamierzonego celu w postaci identyfikacji możliwego momentu powstania awarii. Nowatorskim elementem proponowanej metody jest wykorzystanie elementów teorii analizy przeżycia w obszarze analizy awaryjności maszyn technologicznych, umożliwiającej wnioskowanie na podstawie danych historycznych.

2. Predykcja awarii z wykorzystaniem elementów analizy czasu trwania

2.1. Czas pracy maszyny jako czas trwania

Problem predykcji awarii polega w znacznym uproszczeniu na wyznaczeniu czasu w którym może wystąpić potencjalna usterka danej maszyny technologicznej wraz z prawdopodobieństwem jej wystąpienia. Do tego celu wykorzystać można elementy Analizy Przeżycia, nazywanej także Analizą Czasu Trwania [11, 23].

Ważnym elementem wykorzystania Analizy Czasu Trwania jest dokładne ustalenie istoty badanego procesu, który powinien spełniać następujące warunki [11]:

- 1. Zmiany dotyczące jednostki objętej badaniem muszą dokonywać się pomiędzy stanami dyskretnymi.
- 2. Zmiany stanów mogą występować w dowolnym momencie i nie są z góry ograniczone ustalonymi punktami w czasie.
- 3. Zmiany mogą być odwracalne lub nieodwracalne (w zależności od formy procesu).
- 4. Zmiany są ustalone z góry przez stan, w jakim znajduje się proces.
- 5. Istnieją czynniki wpływające na proces, a analiza pozwala na ich wykrycie.

Analizując powyższe na tle procesu występowania awarii maszyn technologicznych, należy stwierdzić, iż proces ten spełnia te wymagania. Awaria maszyny może wystąpić w dowolnej chwili i jest zmianą zachodzącą pomiędzy dwoma stanami – sprawna i uszkodzona. Ponadto uszkodzenie maszyny jest zmianą odwracalną – naprawa powoduje powrót do pierwotnego stanu, który jest definiowany przez stan, w jakim znajduje się urządzenie. Istnieje także szereg czynników, które mogą wpływać na analizowany proces i mogą być identyfikowane dzięki wykorzystaniu Analizy Czasu Trwania [36]. Czas trwania w przypadku maszyny należy rozumieć jako czas jej sprawnej pracy, na podstawie którego możliwe jest również wnioskowanie o czasie wystąpienia awarii. W konsekwencji atutem tej techniki jest możliwość wyznaczania wzorców występowania awarii (charakterystyk występowania awarii w czasie) zwłaszcza wtedy, gdy posiadane dane historyczne nie pozwalają na zastosowanie typowych technik wnioskowania [33].

Niech zatem T będzie nieujemną zmienną losową reprezentującą czas wystąpienia awarii maszyny technologicznej, która przyjmuje wartości z przedziału (0; ∞). Ponadto f(t)

jest funkcją gęstości prawdopodobieństwa, gdzie t > 0 oraz F(t) jest dystrybuantą zmiennej losowej T – funkcją niemalejącą określającą, iż obiekt doświadczy zdarzenia w czasie (0; t]:

$$F(t) = P(T < t). \tag{1}$$

Bazując na dystrybuancie F(t) zdefiniować można funkcję przeżycia S(t):

$$S(t) = 1 - F(t) = P(T \ge t) = \int_{t}^{\infty} f(s) ds, \qquad (2)$$

pozwalającą określić prawdopodobieństwo poprawnej pracy maszyny, aż do chwili *t*. Pozwala ona zatem określić także prawdopodobieństwo, iż awaria nie wystąpi do tego czasu. Wyznaczona funkcja jest doskonałym sposobem określania wzorców poprawnej pracy maszyny, a w konsekwencji także występowania jej awarii. Funkcja przeżycia oraz dystrybuanta zostały przedstawione na rysunku 1.

Rys. 1. Dystrybuanta F(t) oraz funkcja przeżycia S(t)

W celu wyznaczenia poszczególnych funkcji zaprezentowanych powyżej, wykorzystać należy odpowiednie dane historyczne dotyczące awaryjności maszyny technologicznej. Ich analiza dostarcza bowiem wielu informacji, które mogą zostać wykorzystane w dalszym procesie predykcji.

2.2. Wykorzystanie danych historycznych

Do wyznaczenia charakterystyk występowania awarii, niezbędne jest zdefiniowanie odpowiedniego źródła danych. Takie informacje gromadzone są zazwyczaj przez działy utrzymania ruchu przedsiębiorstw produkcyjnych [3, 10]. Dokonując analizy rozwiązań dotyczących zapisu wiedzy z zakresu historii konserwacji i napraw maszyn technologicznych stosowanych w przedsiębiorstwach produkcyjnych należy stwierdzić, iż najczęściej stosowanymi rozwiązaniami są:

- prowadzenie papierowej dokumentacji serwisowej najczęściej w formie Kart Obsługi oraz Książek Serwisowych,
- wykorzystanie w procesie gromadzenia informacji serwisowych oprogramowania komputerowego wraz z dedykowanymi arkuszami danych (rys. 2),
- gromadzenie danych bezpośrednio z maszyn technologicznych, z wykorzystaniem systemów klasy SCADA (ang. *Supervisory Control And Data Acquisition*) oraz MES (ang. *Manufacturing Execution Systems*).

Rys. 2. Przykład danych serwisowych zapisanych z wykorzystaniem komputerowego arkusza danych

Wszystkie z przedstawionych powyżej metod gromadzenia danych łączy wspólna cecha – każda z nich dostarcza danych, które odpowiednio przetworzone mogą zostać wykorzystane w procesie predykcji awarii maszyn z zastosowaniem elementów Analizy Przeżycia.

Podstawową informację zawartą we wspomnianej dokumentacji są historyczne czasy występowania usterek. Dla danej maszyny technologicznej M_j można zapisać je jako zbiór danych T_{Mj} :

$$T_{Mi} = \{t_1, t_2, \dots, t_n\} \text{ [godz.]}, \tag{3}$$

gdzie: $t_i - i$ -ty czas wystąpienia awarii.

Przykładowy zbiór historycznych danych dotyczący czasów awarii dla maszyny M_1 przyjmie postać:

$$T_{M1} = \{4, 8, 20, 16, 10, 28, 43, 15, 24, 2, \dots\}$$
 [godz.].

Wykorzystanie w procesie predykcji danych zawartych w odpowiednich zbiorach T_{Mj} pozwala na określenie potencjalnych czasów wystąpienia awarii danej maszyny, które zapisać można w zbiorze FT_{Mij} :

$$FT_{Mj} = \{ ft_{Mj1}, ft_{Mj2}, \dots, ft_{Mjn} \},$$
(4)

gdzie: ft_{Mji} – czas wystąpienia awarii maszyny j,

j – numer rozpatrywanej maszyny technologicznej.

Dla każdego czasu ft_{Mji} wyznaczone zostanie ponadto prawdopodobieństwo wystąpienia awarii zapisane w zbiorze P_{Mj} .

$$P_{Mj} = \{ p_{Mj1}, p_{Mj2}, \dots, p_{Mjn} \},$$
(5)

gdzie: p_{Mji} – wartość prawdopodobieństwa wystąpienia awarii maszyny *j*, przy czym:

$$\bigwedge_{ft_{Mij}\neq 0} p_{Mij}\neq 0.$$

Zatem rezultatem procesu predykcji będzie wyznaczenie par (p_{Mji}, ft_{Mji}) definiujących prawdopodobieństwo oraz czas wystąpienia awarii maszyny M_j .

2.3. Proponowany algorytm predykcji wspierający działania TBM

W celu predykcji szukanych wartości prawdopodobieństwa wystąpienia awarii oraz czasu usterki opracowano czteroetapowy algorytm umożliwiający analizę oraz odpowiednie wykorzystanie zgromadzonych danych dotyczących historii napraw (rys. 3).

Etap 1 proponowanego algorytmu polega na zdefiniowaniu maszyny dla której prowadzony będzie proces predykcji, a także zaimportowaniu danych historycznych zawartych w zbiorze T_{Mj} .

Rys. 3. Algorytm predykcji czasu wystąpienia awarii

W etapie 2 realizowany jest odpowiedni zapis zaimportowanych danych – czasy awarii wybranej maszyny technologicznej M_j zostają wówczas zapisane za pomocą odpowiedniej sekwencji:

$$\{(t_i, d_i)\}_{1 \le k \le n}, t_i \in T_{M_i},$$
(6)

gdzie: t_i – czas pomiędzy kolejnymi awariami,

d_i – liczba przypadków.

Ponadto na tym etapie realizowana jest operacja sortowania – sekwencje zostają uporządkowane według rosnących wartości $\{t_i\}_{1 \le k \le n}$:

$$0 < t_1 < t_2 < \dots < t_n, \tag{7}$$

po czym następuje filtracja zgromadzonych danych i usunięcie obserwacji odstających (wartości nietypowych) (rys. 4). Następnie wyznaczone zostają podstawowe statystki dla zgromadzonych danych (wartość minimalna, maksymalna, średnia, rozstęp, kwartyle).

Rys. 4. Wykres pudełkowy dla przykładowych danych (Me – mediana, Q1 i Q3 – kwartyl 1 i 3, OUT – obserwacje odstające)

Etap 3 stanowi kluczowy element procesu wnioskowania, gdyż właśnie na tym etapie wyznaczana jest funkcja przeżycia charakteryzująca rozpatrywany proces awaryjności analizowanej maszyny. Uszeregowanie przypadków awarii według rosnących czasów ich wystąpienia, a także określenie liczby przypadków dla każdego z czasów pozwala na wyznaczenie funkcji przeżycia danego procesu. Wyznaczona postać funkcji przeżycia jest doskonałym sposobem określania wzorców występowania awarii – pozwala w przystępny sposób wyznaczyć charakterystyki awaryjności dla konkretnej maszyny technologicznej. Zastosowanie znajduje tu estymacja Kaplana-Meier'a – funkcja przeżycia wyznaczana jest wówczas na podstawie zależności:

$$\hat{S}(t) = \begin{cases} 1, & dla \ t < t_1, \\ \prod_{t_i \le t} \frac{r_i - d_i}{r_i}, dla \ t_1 < t, \end{cases}$$
(8)

gdzie: r_i – liczba wszystkich przypadków awarii określana jako:

$$r_i = \sum_{j=i}^k d_j \,. \tag{9}$$

Wówczas wyznaczona zostaje funkcja przeżycia na podstawie której (z określonym poziomem prawdopodobieństwa) określane są czasy sprawnej pracy maszyny (rys. 5).

Rys. 5. Przykładowa funkcja przeżycia wyznaczona za pomocą estymacji Kaplana-Meier'a

W konsekwencji wyznaczona funkcja przeżycia wykorzystana zostaje na etapie 4, gdzie bazując na uzyskanych wynikach można wyznaczyć elementy poszukiwanych zbiorów:

- potencjalnych czasów wystąpienia awarii rozpatrywanej maszyny FT_{M_i} ,
- prawdopodobieństwa wystąpienia awarii rozpatrywanej maszyny P_{Mj} .

Idea procesu wnioskowania na podstawie wyznaczonej postaci funkcji przeżycia została przedstawiona na rys. 6. Dla odpowiednich poziomów prawdopodobieństwa p_i wyznaczone zostają prognozowane czasy wystąpienia awarii f_{Mji} .

Rys. 6. Określenie czasu wystąpienia awarii na podstawie przyjętej wartości prawdopodobieństwa przeżycia

Z uwagi, iż na podstawie funkcji przeżycia określone są prawdopodobieństwa sprawnej pracy maszyny (p_i) , zatem prawdopodobieństwo wystąpienia awarii p_{Mji} definiuje zależność:

$$p_{Mji} = 1 - p_i, \qquad (10)$$

gdzie: *p_{Mji}* – prawdopodobieństwo doświadczenia usterki,

 p_i – prawdopodobieństwo sprawnej pracy maszyny.

Określenie szukanych wartości prawdopodobieństwa wystąpienia awarii p_{Mji} umożliwia wyznaczenie szukanych wartości ft_{Mji} , a w konsekwencji wyznaczenie par (p_{Mji}, ft_{Mji}) . Wyznaczone dane gromadzone są w zbiorach P_{Mji} oraz FT_{Mji} . Etap 4 ma charakter iteracyjny,

a zatem jest powtarzany w zależności od decyzji użytkownika co do ilości rozpatrywanych poziomów prawdopodobieństwa. Realizację algorytmu należy powtórzyć dla kolejnych maszyn technologicznych, dla których analizowana będzie ich awaryjność.

3. Weryfikacja eksperymentalna proponowanego algorytmu

3.1. Dane wykorzystane w procesie weryfikacji

Podstawą realizacji prezentowanej poniżej weryfikacji było pozyskanie i wykorzystanie odpowiednich danych, które dotyczyły zarówno procesów technologicznych, jak i awaryjności maszyn technologicznych. Przedstawione badania przeprowadzono w oparciu o rzeczywiste dane produkcyjne dotyczące realizacji 12 zadań produkcyjnych na 12 stanowiskach wytwórczych, zorganizowanych w postaci gniazd produkcyjnych. Wśród realizowanych procesów przeważa obróbka ubytkowa. Przykłady procesów technologicznych wybranych zadań produkcyjnych zostały przedstawione w tab. 1.

Nr wyrobu (zadania)	Nr operacji	Stanowisko	Nazwa operacji	tp zij [godz.]	<i>to</i> ij [godz.]
	10	Laser1	Cięcie blach	0,25	0,042
	20	Laser2	Cięcie rur i profili	0,20	0,017
1	30	Prasa CNC	Gięcie krawędziowe	0,13	0,018
	40	Wiertarka	Wiercenie otworów	0,17	0,017
	50	Ślus.	Operacja ślusarska	0,08	0,017
	60	Spaw. – MIG	Spawanie MIG	0,13	0,092
	10	Laser2	Cięcie laserem rur i profili	0,15	0,005
	20	Piła CNC	Cięcie na pile taśmowej	0,10	0,008
	30	Frezarka	Frezowanie	0,27	0,050
3	40	Wiertarka	Wiercenie otworów	0,17	0,017
	50	Ślus.	Operacja ślusarska	0,08	0,033
	60	Spaw MIG	Spawanie MIG	0,13	0,033
	70	Tokarka	Toczenie	0,33	0,092
	10	Laser1	Cięcie laserem blach	0,27	0,012
	20	Gilotyna	Cięcie na gilotynie	0,10	0,004
	30	Piła CNC	Cięcie na pile taśmowej	0,10	0,017
5	40	Prasa CNC	Gięcie krawędziowe	0,17	0,025
5	50	Wiertarka	Gwintowanie	0,13	0,100
	60	Ślus.	Operacja ślusarska	0,08	0,033
	70	Spaw.– TIG	Spawanie TIG	0,13	0,033
	80	Tokarka	Toczenie	0,33	0,108

Tab. 1. Przykładowe procesy technologiczne zawarte w danych produkcyjnych

Pozyskane dane rzeczywiste zostały wykorzystane w procesie weryfikacji w następującym zakresie:

- dane dotyczące awaryjności maszyn technologicznych posłużyły za dane wejściowe podczas weryfikacji opracowanego algorytmu,
- dane dotyczące realizowanych procesów wytwórczych zostały wykorzystane podczas badań symulacyjnych mających na celu ocenę skuteczności i zasadności wykorzystania proponowanego algorytmu w realnych warunkach produkcyjnych (z uwzględnieniem występowania awarii maszyn technologicznych).

3.2. Predykcja czasu wystąpienia awarii

W celu weryfikacji proponowanego algorytmu opracowano w języku R odpowiedni skrypt umożliwiający jego realizację. Następnie z wykorzystaniem pozyskanych danych historycznych przeprowadzono proces wnioskowania o potencjalnych czasach awarii maszyn znajdujących się na poszczególnych stanowiskach. Dla poszczególnych maszyn przyjęto odpowiednie oznaczenia:

- Laser 1 maszyna M_1 ,
- Laser 2 maszyna M_2 ,
- Prasa CNC maszyna M_3 ,
- Piła CNC maszyna M_4 ,
- Stanowisko ślusarskie maszyna M5,
- Spawalnia MIG maszyna M_6 ,
- Spawalnia TIG maszyna M_7 ,
- Wiertarka maszyna M_8 ,
- Frezarka maszyna M_9 ,
- Tokarka maszyna M_{10} ,
- Gilotyna maszyna M_{11} ,
- Wykrawarka maszyna M_{12} .

W dalszej części przedstawiono przykładową realizację procesu predykcji awarii dla maszyny M_6 , w przypadku której dane historyczne liczyły 121 obserwacji

Przed rozpoczęciem procesu predykcji w skrypcie zawarto odpowiednie polecenia przygotowujące środowisko do pracy, po czym następuje zdefiniowanie numeru maszyny, oraz wczytanie danych zgromadzonych w pliku CSV. Import danych do zbioru T_{M6} przechowywanej w przestrzeni roboczej umożliwił realizację procesu sortowania obserwacji rosnąco, a także filtrację danych w której zastosowanie znalazły wygenerowane wykresy pudełkowe (rys. 7). Dodatkowo wyznaczone zostały podstawowe statystyki (rys. 8).

Rys. 7. Wykresy pudełkowe – przed oraz po filtrowaniu danych

"Awa	aryjność	maszyny	M6 - zb	iór ⊤M6	-	podstawowe	statystyki:"
Min.	1st Qu.	Median	Mean	3rd Qu.		Max.	
8.00	8.00	24.00	32.48	48.00)	104.00	

Rys. 8. Podstawowe statystki wygenerowane w ramach opracowanego skryptu

Kluczowym etapem algorytmu predykcji awarii jest wyznaczenie funkcji przeżycia

 $\hat{S}(t)$ z wykorzystaniem estymacji Kaplana-Meier'a. W opracowanym skrypcie była ona możliwa dzięki zastosowaniu biblioteki "SURVIVAL". Kolejne różnice krzywej schodkowej obliczane zostały w sposób automatyczny na podstawie utworzonych sekwencji obserwacji. Rezultatem było wyznaczenie funkcji przeżycia w postaci krzywej schodkowej z 95% przedziałem ufności.

Wyznaczenie przebiegu szukanej funkcji S(t), umożliwiło rozpoczęcie kolejnego etapu algorytmu jakim jest predykcja wartości czasu wystąpienia awarii rozpatrywanej maszyny dla zdefiniowanych poziomów prawdopodobieństwa (rys. 9). Ponieważ na wykresie odczytać można prawdopodobieństwo sprawnej pracy maszyny, dodatkowo generowana była legenda pomocnicza z objaśnieniami. W przypadku obliczeń dla danych maszyny M_6 (jak i pozostałych maszyn) rozpatrywano następujące poziomy prawdopodobieństwa:

$$p_1 = 0.75;$$
 $p_2 = 0.50;$ $p_3 = 0.25.$

Wartości rozpatrywanych poziomów zostały zaś dobrane tak, aby wyznaczały: niski, średni oraz wysoki stopień ryzyka wystąpienia usterki rozpatrywanej maszyny. Stąd też:

$$p_{M61} = 1 - p_1 = 0,25; \quad p_{M62} = 1 - p_2 = 0,50; \quad p_{M63} = 1 - p_3 = 0,75.$$

Rys. 9. Predykcja awarii na podstawie wyznaczonej funkcji przeżycia

W ten sposób wyznaczone zostały szukane wartości prawdopodobieństw wystąpienia awarii oraz czasów potencjalnych usterek, które zapisać można jako pary:

 $(p_{M61}, ft_{M61}) = (0,25, 8 \text{ godz.}),$ $(p_{M62}, ft_{M62}) = (0,50, 24 \text{ godz.}),$ $(p_{M63}, ft_{M63}) = (0,75, 48 \text{ godz.}).$ W konsekwencji wyznaczono zbiory $P_{M61} = \{0, 25, 0, 50, 0, 75\}$ oraz $FT_{M61} = \{8, 24, 48\}$ [godz.].

Proponowany algorytm wykorzystano w takim samym zakresie dla pozostałych maszyn technologicznych. Jedynie z uwagi na charakter stanowiska ślusarskiego (M_5) proces predykcji w tym przypadku nie był realizowany. Uzyskane czasy wystąpienia awarii zostały zestawione w tab. 2.

	Czas wystąpienia awarii [godz.]					
Maszyna	$p_{Mj1} = 0,25$	$p_{Mj2} = 0,50$	$p_{Mj3} = 0,75$			
M_1	8	16	40			
M_2	8	24	32			
<i>M</i> ₃	8	16	24			
M_4	8	24	104			
M_5	_	-	-			
M_6	8	24	48			
M_7	8	16	40			
M_8	8	24	48			
M_9	8	16	40			
M_{10}	8	24	40			
M_{11}	8	16	40			
M_{12}	8	16	32			

Tab. 2. Czasy awarii maszyn technologicznych uzyskane w wyniku predykcji

Uzyskane rezultaty realizacji algorytmu zostały wykorzystane w dalszej części procesu weryfikacji polegającej na symulacji produkcji w warunkach występowania awarii maszyn technologicznych.

3.3. Symulacja produkcji z warunkach niepewności

W celu weryfikacji proponowanego algorytmu w realnych warunkach produkcyjnych, związanych z występowaniem niepewności dotyczącej awaryjności maszyn technologicznych, przeprowadzono dwuetapowy eksperyment w którym:

- 1. Dla rzeczywistych danych produkcyjnych zbudowano harmonogramy produkcji (harmonogramy nominalne), a następnie opracowano ich odpowiedniki z zaimplementowanymi buforami serwisowymi (harmonogramy odporne) w miejscach, na jakie wskazywały rezultaty zastosowania opracowanego algorytmu.
- 2. Przeprowadzono symulację produkcji zgodnie z opracowanymi harmonogramami, a następnie zbadano, które z harmonogramów wskazywały bliższy termin zakończenia produkcji w warunkach, gdy wystąpić mogą awarie maszyn.

3.3.1. Opracowanie harmonogramów produkcji

W celu weryfikacji metody dla różnego uszeregowania zadań na poszczególnych stanowiskach produkcyjnych w procesie budowania harmonogramów wykorzystano 4 popularne reguły priorytetów:

- 1. Regułę FCFS (First Come First Service Pierwsza Przybyła Pierwsza Obsłużona).
- 2. Regułę EDD (Earliest Due Date Najwcześniejszy Termin Dyrektywny).
- 3. Regułę SPT (Shortest Processing Time Najkrótszy Czas Operacji).
- 4. Regułę LPT (Longest Processing Time Najdłuższy Czas Operacji).

Przyjęto, iż wyroby produkowane są w partiach po 50 sztuk, a kryterium celu był termin zakończenia wszystkich zadań produkcyjnych – wskaźnik C_{max} .

Narzędziem harmonogramowania zadań było oprogramowanie LiSA będące zbiorem powszechnie stosowanych algorytmów szeregowania zadań i umożliwiające budowanie harmonogramów w typowych środowiskach produkcyjnych (*flow-shop, job-shop czy open-shop*) wraz z uwzględnieniem wybranych ograniczeń i kryteriów oceny [7]. Na rys. 10 przestawiono przykładowy harmonogram uzyskany w wyniku działania reguły LPT.

Rys. 10. Harmonogram nominalny – działanie reguły LPT

W celu uwzględnienia potencjalnych awarii maszyn technologicznych dokonano modyfikacji harmonogramów poprzez implementację buforów serwisowych o wielkości 0,5 godziny, mających charakter zabezpieczeń czasowych w przypadku wystąpienia awarii oraz czasu na dokonanie niezbędnej inspekcji, bądź działań serwisowych. Bufory implementowano zgodnie z czasami wyznaczonymi w wyniku realizacji algorytmu (tabela 2). Przyjęto, iż jest to wyłącznie czas pracy maszyny (realizacji zadań), po jakim może wystąpić usterka. Jeżeli w danym miejscu harmonogramu występowała operacja technologiczna – była ona przesuwana w prawo (zaraz za bufor) przy jednoczesnym zachowaniu kolejności zadań na jaki wskazywał harmonogram nominalny. Przykład harmonogramu odpornego z zaimplementowanymi buforami serwisowymi został przedstawiony na rysunku 11 (bufory oznaczono w postaci białych bloków).

Rys. 11. Harmonogram produkcji po implementacji buforów serwisowych

Uzyskane czasy zakończenia wszystkich zadań produkcyjnych w harmonogramach nominalnych oraz odpornych przedstawiono w tabeli 3.

Regula	Termin zakończenia zadań produkcyjnych – wskaźnik C _{max} [godz.]					
priorytetu	harmonogram nominalny	harmonogram odporny	wydłużenie [%]			
FCFS	43,68	52,44	16,7%			
EDD	42,59	49,42	13,8%			
SPT	48,92	55,75	12,3%			
LPT	49,10	53,69	8,5%			

Гаb. 3. U.	zyskane	wartości	wskaźnika	C_{\max}
------------	---------	----------	-----------	------------

Uzyskane podczas eksperymentu wartości terminów zakończenia wszystkich zleceń po implementacji buforów serwisowych spowodowały wydłużenie kryterium celu dla każdego z przypadków. Średnia różnica pomiędzy wskaźnikiem C_{max} harmonogramu nominalnego i odpornego wyniosła 6,75 godz. Można zatem stwierdzić, iż uwzględnienie aspektu występowania awarii maszyn powoduje, iż produkcja będzie realizowana o około jedną zmianę dłużej. Procentowe wydłużenia analizowanego wskaźnika były odmienne dla harmonogramów uzyskanych z wykorzystaniem różnych reguł priorytetu. Przyjmowały one wartości od 8,5% dla harmonogramu opracowanego zgodnie z regułą LPT do 16,7% dla harmonogramu opracowanego z wykorzystaniem reguły FCFS. Uzyskane wartość terminów realizacji wszystkich zadań dla poszczególnych harmonogramów zostały zestawione na rysunku 12.

Rys. 12. Wartości wskaźnika C_{max} – terminu zakończenia wszystkich zadań

W celu oceny zasadności implementacji buforów, a w konsekwencji wydłużenia harmonogramu produkcji przeprowadzono drugą część eksperymentu polegającą na symulacji produkcji w warunkach niepewności. Pozwolił on wskazać, który z harmonogramów – nominalny czy odporny (uzyskany z wykorzystaniem proponowanego algorytmu) – wskazuje bliższy realnemu termin zakończenia wszystkich zadań produkcyjnych.

3.3.2. Symulacja produkcji w warunkach występowania awarii maszyn

Drugi etap eksperymentu został zrealizowany w środowisku symulacyjnym Enterprise Dynamics, którego obszary zastosowań obejmują: produkcję, magazynowanie, zarządzanie łańcuchem dostaw, systemy transportu i inne. Umożliwia ono zarówno modelowanie, symulację, jak i wizualizację procesów, co czyni z niego narzędzie pomocne w procesie kontroli procesów dynamicznych [14, 16, 22]. Za pomocą dostępnych elementów środowiska wykonano model pozwalający analizować realizację produkcji w rozpatrywanym systemie wytwórczym (rys. 13).

Rys. 13. Model systemu produkcyjnego opracowany w środowisku ED

W celu uwzględnienia awaryjności maszyn technologicznych dla każdej z nich (we właściwościach danego bloku) zdefiniowano wartości wskaźników MTTF oraz MTTR. Wartości parametru MTTF zostały zdefiniowane z wykorzystaniem jednostajnego rozkładu prawdopodobieństwa tak, aby awarie występowały w dowolnym czasie – od chwili rozpoczęcia pracy na danej maszynie, aż do chwili jej zakończenia. Parametr MTTR został określony z wykorzystaniem rozkładu gamma, gdyż właśnie taki rozkład został zidenty-fikowany oraz dopasowany podczas analizy statystycznej posiadanych danych historycznych dotyczących czasów napraw maszyn. Przyjęte parametry wskaźników MTTF oraz MTTR dla poszczególnych maszyn zostały przedstawione w tabeli 4. Czas stanowiące parametry rozkładów zostały wyrażone w godzinach.

	Parametry wskaźników efektywności				
Maszyna	MTTF	MTTR			
M_1	Uniform(0, 18,42)	Gamma(0,85, 1,62)			
M_2	Uniform(0, 8,0)	Gamma(0,75, 2,07)			
M_3	Uniform(0, 16,08)	Gamma(0,69, 2,79)			
M_4	Uniform(0, 3,33)	Gamma(0,77, 1,88)			
M_5	_	_			
M_6	Uniform(0, 23,74)	Gamma(0,95, 2,43)			
M_7	Uniform(0, 8,34)	Gamma(0,93, 1,96)			
M_8	Uniform(0, 22,41)	Gamma(0,66, 2,45)			
M_9	Uniform(0, 6,67)	Gamma(0,80, 1,64)			
M_{10}	Uniform(0, 16,84)	Gamma(0,72, 1,85)			
\overline{M}_{11}	Uniform(0, 0,21)	Gamma(0,88, 2,16)			
M_{12}	Uniform(0, 5,5)	Gamma(0,84, 1,78)			

Tab. 4. Czasy awarii maszyn technologicznych uzyskane w wyniku predykcji

W opracowanym modelu modyfikowano także kolejność realizacji zadań na poszczególnych maszynach (tak, aby produkcja odbywała się zgodnie z harmonogramami opracowanymi z wykorzystaniem reguł: FCFS, EDD, SPT oraz LPT). W sumie badaniu poddano 4 modele, a w każdym z nich zrealizowano 25 symulacji produkcji.

Podczas oceny rezultatów przeprowadzonych badań symulacyjnych wykorzystano następujące wskaźniki stabilności:

– wskaźnik odchylenia terminu zakończenia wszystkich zadań ΔC_{max} określany jako:

$$\Delta C_{\max} = C_{\max} - C'_{\max}, \qquad (11)$$

gdzie: ΔC_{max} – odchylenie terminu zakończenia wszystkich zadań,

Cmax – długość harmonogramu bazowego,

C'max – długość harmonogramu aktualnego (zrealizowanego).

– wskaźnik względnego wydłużenia terminu zakończenia wszystkich prac E_{Cmax} , określanego na podstawie zależności:

$$E_{C_{\max}} = \frac{C_{\max}}{C'_{\max}},\tag{12}$$

gdzie: E_{Cmax} – wskaźnik względnego wydłużenia terminu zakończenia wszystkich prac.

W tabeli 5 przedstawiono wyniki symulacji dla przypadku, gdy zadania produkcyjne uszeregowane były zgodnie z działaniem reguły SPT. Dla każdej z symulacji uzyskane wartości wskaźników stabilności potwierdziły skuteczność oraz zasadność wykorzystania proponowanego algorytmu. Zarówno wartości odchylenia terminu zakończenia wszystkich zadań ΔC_{max} , jak i względnego wydłużenia terminu zakończenia wszystkich $E_{C\text{max}}$ wykazały, iż harmonogram uwzględniający potencjalne awarie maszyn technologicznych wskazuje bliższy realnemu termin zakończenia wszystkich zadań produkcyjnych.

Nr	Harmonogram	Odchylenie terminu zakończenia oraz względne wydłużenia terminu zakończenia						
svm.	sym (symulacia)		harmonogram nominalny			harmonogram odporny		
5,111	C'_{max} [godz.]	C_{\max}	$\Delta C_{ m max}$	E_{Cmax}	C_{\max}	$\Delta C_{ m max}$	E_{Cmax}	
		[godz.]	[godz.]	[-]	[godz.]	[godz.]	[-]	
1	56,10		-7,18	0,87		-0,35	0,99	
2	53,88		-4,96	0,91		1,87	1,03	
3	54,09		-5,17	0,90		1,66	1,03	
4	56,91		-7,99	0,86		-1,16	0,98	
5	52,60		-3,68	0,93		3,15	1,06	
6	55,50		-6,58	0,88		0,25	1,00	
7	56,43		-7,51	0,87		-0,68	0,99	
8	55,88		-6,96	0,88		-0,13	1,00	
9	53,48		-4,56	0,91		2,27	1,04	
10	54,04		-5,12	0,91		1,71	1,03	
11	58,31		-9,39	0,84		-2,56	0,96	
12	52,97	48,92	-4,05	0,92	55,75	2,78	1,05	
13	54,20		-5,28	0,90		1,55	1,03	
14	55,33		-6,41	0,88		0,42	1,01	
15	55,98		-7,06	0,87		-0,23	1,00	
16	56,01		-7,09	0,87		-0,26	1,00	
17	53,53		-4,61	0,91		2,22	1,04	
18	56,51		-7,59	0,87		-0,76	0,99	
19	55,18		-6,26	0,89		0,57	1,01	
20	56,49		-7,57	0,87		-0,74	0,99	
21	52,37		-3,45	0,93		3,38	1,06	
22	57,52		-8,60	0,85		-1,77	0,97	
23	54,86		-5,94	0,89		0,89	1,02	
24	55,04		-6,12	0,89		0,71	1,01	
25	54,83		-5,91	0,89		0,92	1,02	

Tab. 5. Wartości wskaźników stabilności – kolejność zadań zgodnie z regułą SPT

W przypadku pozostałych symulacji również została potwierdzona zasadność proponowanych w niniejszej publikacji rozwiązań. Świadczą o tym wartości średnie z poszczególnych symulacji zestawione w tabeli 6.

Tab. 6. Wartości średnie rozpatrywanych wskaźników stabilności

Reguła priorytetu	Harmonogram zrealizowany (symulacja) \overline{C}'_{max} [godz.]	Odchylenie terminu zakończenia oraz względne wydłużenia terminu zakończenia					
		harmonogram nominalny			harmonogram odporny		
		C_{\max}	$\Delta \overline{C}_{\max}$	$\overline{E}_{_{C_{\mathrm{max}}}}$	C_{\max}	$\Delta \overline{C}_{\max}$	$\overline{E}_{_{C_{\mathrm{max}}}}$
		[godz.]	[godz.]	[–]	[godz.]	[godz.]	[-]
FCFS	49,87	43,68	-6,19	0,88	52,44	2,57	1,05
EDD	47,90	42,59	-5,31	0,89	49,42	1,52	1,03
SPT	55,12	48,92	-6,20	0,89	55,75	0,63	1,01
LPT	53,14	49,10	-4,04	0,92	53,69	0,55	1,01

Uzyskane wartości wskazują wyraźnie, iż harmonogram z zaimplementowanymi buforami serwisowymi wskazywał bliższy realnemu termin zakończenia produkcji.

Na rysunku 14 oraz 15 zestawiono uzyskane wartości rozpatrywanych wskaźników, które również potwierdzają zasadność wykorzystania proponowanego algorytmu.

Rys. 14. Wartość wskaźnika odchylenia terminu zakończenia wszystkich zadań ΔC_{max}

Rys. 15. Wartości wskaźnika względnego wydłużenia terminu zakończenia wszystkich prac E_{Cmax}

Wykorzystanie opracowanego algorytmu pozwala wskazać bliższy realnemu termin zakończenia produkcji w warunkach, gdy istnieje ryzyko wystąpienia awarii maszyn technologicznych. Świadczy o tym chociażby fakt, iż dla harmonogramu odpornego wartości wskaźnika E_{Cmax} koncentrują się w okolicy wartości 1, zaś wartość wskaźnika ΔC_{max} w okolicy 0 – oznacza to dużą zgodność terminów zakończenia produkcji w harmonogramach odpornych z terminami uzyskanymi w wyniku symulacji produkcji.

4. Podsumowanie i wnioski końcowe

Predykcja awarii maszyn jest tematem wielu publikacji naukowych. Autorzy liczny prac starają się implementować różnorodne metody w celu wyznaczania informacji dotyczących awaryjności maszyn technologicznych. Wiarygodne i dobrze opracowane plany prac prewencyjnych stanowią kluczowy element działań związanych z utrzymaniem ruchu, szczególnie w obszarze wykorzystania strategii *Time-Based Maintenance*.

W niniejszej pracy zaprezentowano algorytm predykcji zorientowany na wykorzystanie typowych danych historycznych, posiadane przez działy UR. Proponowany algorytm stanowi alternatywne podejście do problemu predykcji awarii, bowiem wykorzystanie estymacji Kaplana-Meier'a pozwala na wyznaczenie charakterystyk występowania awarii w czasie dla poszczególnych maszyn technologicznych systemu wytwórczego, co w konsekwencji wspomaga działania TBM. Zastosowanie elementów analizy czasu trwania powoduje, iż przedstawione rozwiązanie jest innowacyjnym oraz konkurencyjny w zakresie wnioskowania na podstawie rzeczywistych danych historycznych. W konsekwencji kluczowym aspektem staje się zatem gromadzenie rzetelnych danych dotyczących awaryjności maszyn. Tylko odpowiednia ilość oraz jakoś danych historycznych pozwala uzyskać wiarygodne i miarodajne rezultaty.

Opracowany algorytm wpisuje się w tendencję coraz szerszego wykorzystania narzędzi informatycznych w pracach działów UR. Dlatego też został on opracowany w taki sposób, aby możliwa była jego implementacja w postaci programu komputerowego, bądź dodatku do znanych już rozwiązań. Weryfikacja proponowanego algorytmu pozwoliła wyznaczyć potencjalne czasy występowania awarii maszyn technologicznych. Należy zauważyć, iż dla analizowanych maszyn czasy te były różne, co oznacza, iż każda z nich posiada własną charakterystykę występowania usterek. Potwierdza to słuszność oraz potrzebę wykorzystania strategii TBM w procesie utrzymywania ruchu obiektów technicznych. Uzyskane informacje są również niezwykle istotne w aspekcie realizacji produkcji w warunkach niepewności. Przeprowadzone w drugiej części publikacji badania symulacyjne dowodzą, iż wykorzystanie rezultatów proponowanego algorytmu w procesie planowania produkcji, pozwala uzyskać stabilność realizowanych procesów, a w konsekwencji wskazywać bliższe realnemu terminy zakończenia produkcji.

Zrealizowane badania potwierdzają skuteczność opracowanego algorytmu predykcji, a także wskazują na potrzebę realizacji działań prewencyjnych w kierunku zapobiegania występowaniu awarii maszyn w celu zapewnienia większej stabilności realizowanych procesów.

Projekt/Badania zostały sfinansowane z Projektu Politechnika Lubelska – Regionalna Inicjatywa Doskonałości ze środków Ministerstwa Nauki i Szkolnictwa Wyższego na podstawie umowy nr 030/RID/2018/19.

References

- 1. Albrice D, Branch M. A Deterioration Model for Establishing an Optimal Mix of Time-Based Maintenance (TbM) and Condition-Based Maintenance (CbM) for the Enclosure System. Fourth Building Enclosure Science & Technology Conference (BEST4), Kansas City, Missouri, April 13–15, 2015.
- 2. Al-Hinai N, ElMekkawy TY. Robust and Stable Flexible Job Shop Scheduling with Random Machine Breakdowns Using a Hybrid Genetic Algorithm. International Journal of Production Economics 2011, 132(2): 279–291, http://dx.doi.org/10.1016/j.ijpe.2011.04.020.

- 3. Antosz K, Stadnicka D. Evaluation measures of machine operation effectiveness in large enterprises: study results. Eksploatacja i Niezawodnosc Maintenance and Reliability 2015; 17(1): 107–117, http://dx.doi.org/10.17531/ein.2015.1.15.
- 4. Baptista M, Sankararaman S, de Medeiros IP, Nascimento C, Prendinger H, Henriques EMP. Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling, Computers & Industrial Engineering 2018, 115: 41–53, https://doi.org/10.1016/j.cie.2017.10.033.
- 5. Bartochowska D, Ferenc R. Instrumenty wsparcia utrzymania ruchu w małych i średnich przedsiębiorstwach. Zeszyty naukowe Politechniki Śląskiej 2015, 80: 21–50.
- 6. Bei XQ, Zhu XY, Coit DW. A risk-averse stochastic program for integrated system design and preventive maintenance planning. European Journal Of Operational Research 2019, 276(2): 536–548, http://dx.doi.org/10.1016/j.ejor.2019.01.038.
- 7. Bräsel H, Dornheim L, Kutz S, Mörig M, Rössling I. LiSA A Library of Scheduling Algorithms. Magdeburg University, 2001.
- 8. Davenport A, Gefflot C, Beck C. Slack-based Techniques for Robust Schedules. Sixth European Conference on Planning, Toledo, Spain, September 12–14, 2001.
- 9. Deepu P. Robust Schedules and Disruption Management for Job Shops. Bozeman, Montana, 2008.
- Fernandes M, Canito A, Bolon-Canedo V, Conceicao L, Praca I, Marreiros G. Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. International Journal Of Information Management 2019, 45: 252–262, http://dx.doi.org/10.1016/j.ijinfomgt.2018.10.006.
- 11. Frątczak E, Sienkiewicz U, Babiker H. Analiza historii zdarzeń Elementy teorii, wybrane przykłady zastosowań. Oficyna Wydawnicza Szkoła Główna Handlowa w Warszawie, Warszawa 2014.
- Gao H. Bulding Robust Schedules using Temporal Potection An Empirical Study of Constraint Based Scheduling Under Machine Failure Uncertainty. Toronto, Ontario, 1996.
- Gao Y, Feng Y, Zhang Z, Tan J. An optimal dynamic interval preventive maintenance scheduling for series systems. Reliability Engineering & System Safety 2015, 142: 19–30, http://dx.doi.org/10.1016/j.ress.2015.03.032.
- 14. Gola A. Reliability analysis of reconfigurable manufacturing structures using computer simulation methods. Eksploatacja i Niezawodnosc Maintenance and Reliability 2019; 21(1): 90–102, http://dx.doi.org/10.17531/ein.2019.1.11.
- 15. Gürel S, Körpeoğlu E, Aktürk MS. An Anticipative Scheduling Approach with Controllable Processing Times. Computers & Operations Research 2010, 37(6): 1002–1013, http://dx.doi.org/10.1016/j.cor.2009.09.001.
- 16. Jasiulewicz-Kaczmarek M, Bartkowiak T. Improving the performance of a filling line based on simulation, ModTech International Conference – Modern Technologies in Industrial Engineering IV, Romania, Iasi, June 15–18, IOP Conf. Series: Materials Science and Engineering 2016, 145(042024), https://doi.org/10.1088/1757-899X/145/4/042024.
- 17. Jensen MT. Improving robustness and flexibility of tardiness and total flow-time job shops using robustness measures. Applied Soft Computing 2001, 1: 35–52, http://dx.doi.org/10.1016/S1568-4946(01)00005-9.
- 18. Jian X, Li-Ning X, Ying-Wu Ch. Robust Scheduling for Multi-Objective Flexible Job-Shop Problems with Random Machine Breakdowns. International Journal of Production Economics 2013, 141(1): 112–126. https://doi.org/10.1016/j.ijpe.2012.04.015.

- 19. Kalinowski K, Krenczyk D, Grabowik C. Predictive-reactive strategy for real time scheduling of manufacturing systems. Applied Mechanics and Materials 2013, 307: 470–473, https://doi.org/10.4028/www.scientific.net/AMM.307.470.
- 20. Kempa W, Paprocka I, Kalinowski K, Grabowik C. Estimation of reliability characteristics in a production scheduling model with failures and time-changing parameters described by Gamma and exponential distributions. Advanced Materials Research 2014, 837: 116–121.
- 21. Kempa W, Wosik I, Skołud B. Estimation of Reliability Characteristics in a Production Scheduling Model with Time-Changing Parameters First Part, Theory. Management and Control of Manufacturing Processes. Lublin, 2011: 7–18.
- 22. Kłos S, Patalas-Maliszewska J, Trebuna P. Improving manufacturing processes using simulation methods. Applied Computer Science 2016, 12(4): 7–17.
- 23. Lawless J. F. Statistical Models and Methods for Lifetime Data. John Wiley & Sons, 2003.
- 24. Leon VJ., Wu SD., Storer RH. Robustness Measures and Robust Scheduling for Job Shops. IIE transactions 1994, 26(5): 32–43, https://doi.org/10.1080/07408179408966626.
- 25. Liao W, Zhang X, Jiang M. An optimization model integrated production scheduling and preventive maintenance for group production. IEEE International Conference on Industrial Engineering and Engineering Management 2016, December, 936–940, http://dx.doi.org/10.1109/IEEM.2016.7798015.
- 26. Loska A. Scenario modeling exploitation decision-making process in technical network systems. Eksploatacja i Niezawodnosc Maintenance and Reliability 2017; 19 (2): 268–278, http://dx.doi.org/10.17531/ein.2017.2.15.
- Lü Y, Zhang Y. Reliability Modeling and Maintenance Policy Optimization for Deteriorating System Under Random Shock. Journal of Shanghai Jiaotong University (Science) 2018, 23(6): 791–797, http://dx.doi.org/10.1007/s12204-018-1985-y.
- 28. Mehta SV., Uzsoy RM. Predictable Scheduling of a Job Shop Subject to Breakdowns. IEEE Transactions on Robotics and Automation 1998, 14(3): 365–378, https://doi.org/10.1109/70.678447.
- 29. Rawat M, Lad BK., Novel approach for machine tool maintenance modelling and optimization using fleet system architecture. Computers & Industrial Engineering 2018, 126: 47–62, http://dx.doi.org/10.1016/j.cie.2018.09.006.
- 30. Rosmaini A, Shahrul K. An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering 2012; 63(1): 135–149, http://dx.doi.org/10.1016/j.cie.2012.02.002.
- 31. Sabuncuoglu I, Bayõz M. Analysis of reactive scheduling problems in a job shop environment. European Journal of Operational Research 2000, 126(3): 567–586, https://doi.org/10.1016/S0377-2217(99)00311-2.
- 32. Skołud B., Wosik I., Immune Algorithms in Production Jobs Scheduling. Zarządzanie Przedsiębiorstwem 2008, 1: 47–48.
- 33. Sobaszek Ł, Gola A, Kozłowski E. Job-shop scheduling with machine breakdown prediction under completion time constraint. Annals of Computer Science and Information Systems 2018; 15: 437–440, http://dx.doi.org/10.15439/2018F83.
- Szwedzka K, Szafer P, Wyczółkowski R. Structural analysis of factors affecting the effectiveness of complex technical systems. Proceedings of the 30th International Business Information Management Association Conference, IBIMA 2017 – Vision 2020: Sustainable Economic development, Innovation Management, and Global Growth Volume 2017, 4096–4105.

- Timofiejczuk A, Brodny J, Loska A. Exploitation Policy in the Aspect of Industry 4.0 Concept – Overview of Selected Research. Multidisciplinary Aspects of Production Engineering 2018, 1(1): 353–359. https://doi.org/10.2478/mape-2018-0045.
- 36. Vonta F. Frailty or Transformation Models in Survival Analysis and Reliability. Recent Advances In System Reliability: Signatures, Multi-State Systems And Statistical Inference 2012, 237–251, http://dx.doi.org/10.1007/978-1-4471-2207-4_17.
- Wei-Wei C, Zhiqiang L, Ershun P. Integrated Production Scheduling and Maintenance Policy for Robustness in a Single Machine. Computers & Operations Research 2014, 47: 81–91, https://doi.org/10.1016/j.cor.2014.02.006.
- 38. Yang BY, Liu RN, Zio E. Remaining Useful Life Prediction Based on a Double-Convolutional Neural Network Architecture. IEEE Transactions On Industrial Electronics 2019, 66(12): 9521–9530, https://doi.org/10.1109/TIE.2019.2924605.
- 39. Zhang F, Shen J, Ma Y. Optimal maintenance policy considering imperfect repairs and non-constant probabilities of inspection errors. Reliability Engineering and System Safety 2020, 193, http://dx.doi.org/10.1016/j.ress.2019.106615.
- 40. Zhao X, He S, He Z, Xie M. Optimal condition-based maintenance policy with delay for systems subject to competing failures under continuous monitoring. Computers & Industrial Engineering 2018, 124: 535–544, http://dx.doi.org/10.1016/j.cie.2018.08.006.