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PART IV

A b s t r a c t. In the present paper, which is a sequel to

[20, 4, 12], we investigate further the structure theory of quasi-

MV algebras and
√′quasi-MV algebras. In particular: we pro-

vide a new representation of arbitrary
√′qMV algebras in terms

of
√′qMV algebras arising out of their MV* term subreducts of

regular elements; we investigate in greater detail the structure

of the lattice of
√′qMV varieties, proving that it is uncountable,

providing equational bases for some of its members, as well as

analysing a number of slices of special interest; we show that the

variety of
√′qMV algebras has the amalgamation property; we

provide an axiomatisation of the 1-assertional logic of
√′qMV

algebras; lastly, we reconsider the correspondence between Carte-

sian
√′qMV algebras and a category of Abelian lattice-ordered

groups with operators first addressed in [10].
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.1 Introduction

Quasi-MV algebras are generalisations of MV algebras that have been in-

troduced in [16] and investigated over the past few years. The original

motivation for their study arises in connection with quantum computation;

more precisely, as a result of the attempt to provide a convenient abstrac-

tion of the algebra over the set of all density operators of the Hilbert space

C2, endowed with a suitable stock of quantum logical gates. Quite inde-

pendently of this aspect, however, qMV algebras present several, purely

algebraic, motives of interest within the frameworks of quasi-subtractive

varieties [15] and of the subdirect decomposition theory for varieties [13].√′quasi-MV algebras (for short,
√′qMV algebras) were introduced as term

expansions of qMV algebras by an operation of square root of the nega-

tion [9]. The above referenced papers contain the basics of the structure

theory for these varieties, including appropriate standard completeness the-

orems w.r.t. the algebras over the complex numbers which constituted the

starting point of the whole research project. In the subsequent papers

[20, 4, 10, 12, 14] the algebraic properties of qMV algebras and
√′qMV

algebras were investigated in greater detail.

The present paper continues the series initiated with [20, 4, 12] by gath-

ering some more results of the same kind. Actually, the main focus of the

present article is on
√′qMV algebras alone, but we preferred to keep the

same title as in the previous members of the series to underscore the re-

semblance of the underlying approaches and themes. In particular, after a

quick recap in § 2, aimed at making this paper as self-contained as possi-

ble, in § 3 we provide a new representation of arbitrary
√′qMV algebras

in terms of
√′qMV algebras arising out of their MV* term subreducts of

regular elements. In § 4 we investigate in greater detail the structure of

the lattice of
√′qMV varieties, explicitly proving for the first time that it

is uncountable, providing equational bases for some of its members, as well

as analysing a number of slices of special interest. § 5 amounts to a short

note to the effect that the whole variety of
√′qMV algebras has the amal-

gamation property. § 6 gives an axiomatisation of the 1-assertional logic

of
√′qMV algebras. Finally, in § 7 we reconsider the correspondence be-

tween Cartesian
√′qMV algebras and a category of Abelian lattice-ordered

groups with operators first addressed in [10], establishing a few additional

results on that score.
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The terminology and notation used in the paper is duly explained in the

Preliminaries section. As to the rest, except where indicated otherwise, we

keep to the conventions typically adopted in universal algebra and abstract

algebraic logic.

.2 Preliminaries

The concept of quasi-MV algebra is introduced first.

Definition 1. A quasi-MV algebra (for short, qMV algebra) is an alge-

bra A = 〈A,⊕,′ , 0, 1〉 of type 〈2, 1, 0, 0〉 satisfying the following equations:

A1. x⊕ (y ⊕ z) ≈ (x⊕ z)⊕ y

A2. x′′ ≈ x

A3. x⊕ 1 ≈ 1

A4. (x′ ⊕ y)′ ⊕ y ≈ (y′ ⊕ x)′ ⊕ x

A5. (x⊕ 0)′ ≈ x′ ⊕ 0

A6. (x⊕ y)⊕ 0 ≈ x⊕ y

A7. 0′ ≈ 1

We can think of a qMV algebra as identical to an MV algebra, except

for the fact that 0 need not be a neutral element for the truncated sum ⊕.

Of course, a qMV algebra is an MV algebra iff it satisfies the additional

equation x ⊕ 0 ≈ x. An immediate consequence of Definition 1 is the fact

that the class of qMV algebras is a variety in its signature. Henceforth,

such a variety will be denoted by qMV. The subvariety of MV algebras will

be denoted by MV.

Definition 2. We introduce the following abbreviations:

x⊗ y = (x′ ⊕ y′)′;
x � y = x⊕ (x′ ⊗ y);

x � y = x⊗ (x′ ⊕ y).

The relation x ≤ y defined by x � y = x⊕ 0 is a preorder on any qMV

algebra A, which is however a partial order if and only if A is an MV

algebra. Examples of “pure” qMV algebras, i.e. qMV algebras that are

not MV algebras, are given by the next two structures over the complex

numbers, S (for square) and D (for disc).
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Example 3. (standard quasi-MV algebras). We introduce two standard

quasi-MV algebras. S is the algebra
〈
[0, 1]× [0, 1] ,⊕S,′S , 0S, 1S

〉
, where:

• 〈a, b〉 ⊕S 〈c, d〉 = 〈
min(1, a+ c), 12

〉
;

• 〈a, b〉′S = 〈1− a, 1− b〉;
• 0S =

〈
0, 12

〉
;

• 1S =
〈
1, 12

〉
.

Note that 〈a, b〉 ⊕S
〈
0, 12

〉 
= 〈a, b〉 whenever b 
= 1
2 .

D is the subalgebra of S whose universe is the set

{〈a, b〉 : a, b ∈ R and (1− 2a)2 + (1− 2b)2 ≤ 1}.

Next, we expand qMV algebras by an additional unary operation of

square root of the inverse and by a constant k, which realises in the standard

algebras the element
〈
1
2 ,

1
2

〉
.

Definition 4. A
√′ quasi-MV algebra (for short,

√′qMV algebra) is an

algebra A =
〈
A,⊕,

√′, 0, 1, k
〉
of type 〈2, 1, 0, 0, 0〉 such that, upon defining

a′ =
√′√′a for all a ∈ A, the following conditions are satisfied:

SQ1. 〈A,⊕,′ , 0, 1〉 is a quasi-MV algebra;

SQ2. k =
√′k;

SQ3.
√′(a⊕ b)⊕ 0 = k for all a, b ∈ A.

√′qMV algebras form a variety in their own similarity type, hereafter

named
√′qMV. We remark in passing that it is impossible to add a square

root of the inverse to a nontrivial MV algebra. Examples of
√′qMV algebras

are the following expansions of the standard qMV algebras over the complex

numbers:

Example 5. (standard
√′qMV algebras). We introduce two standard√′qMV algebras. Sr is the algebra

〈
[0, 1]× [0, 1] ,⊕Sr ,

√′Sr
, 0Sr , 1Sr , kSr

〉
,

where:

• 〈
[0, 1]× [0, 1] ,⊕Sr ,′Sr , 0Sr , 1Sr

〉
is the qMV algebra S of Example 3;

• √′Sr 〈a, b〉 = 〈b, 1− a〉;
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• kSr =
〈
1
2 ,

1
2

〉
.

Dr is the subalgebra of Sr whose universe is the set

{〈a, b〉 : a, b ∈ R and (1− 2a)2 + (1− 2b)2 ≤ 1}.

An element a of a
√′qMV algebra A is said to be:

• regular, if a⊕ 0 = a;

• coregular, if
√′a⊕ 0 =

√′a;

• irregular, if it is neither regular nor coregular.

A term (formula) t (−→x ) of the same type as
√′qMV is called regular iff

for all
√′qMV algebras A and all −→a ∈ A, tA (−→a ) is a regular element.

Definition 6. Let A be a
√′qMV algebra and let a, b ∈ A. We set:

aλb iff a⊕ 0 = b⊕ 0 and
√′a⊕ 0 =

√′b⊕ 0

or, equivalently,

aλb iff a ≤ b, b ≤ a,
√′a ≤

√′b and
√′b ≤

√′a.

Moreover,

aμb iff either a = b or neither a nor b is irregular.

λ and μ are congruences on every
√′qMV algebra whose intersection is

the identity. These congruences allow us to introduce two special classes of√′qMV algebras: Cartesian algebras, where λ is the identity relation Δ,

and flat algebras, where λ is the universal relation ∇.

Definition 7. A
√′qMV algebra A is called Cartesian iff λ = Δ, i.e.

iff it satisfies the quasiequation

x⊕ 0 ≈ y ⊕ 0 ∧
√′x⊕ 0 ≈

√′y ⊕ 0 ⇒ x ≈ y

A
√′qMV algebra A is called flat iff λ = ∇. We denote by F the class

of flat
√′qMV algebras, and by C the class of Cartesian

√′qMV algebras.
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F is a subvariety of
√′qMV, axiomatised relative to it by the equation

x⊕0 ≈ 0; C, on the other hand, is a proper subquasivariety of
√′qMV. By

extension, a congruence θ of a
√′qMV algebra A is called Cartesian (flat)

iff A/θ is Cartesian (flat). Algebras with no irregular elements are called

strongly Cartesian; strongly Cartesian
√′qMV algebras are Cartesian, but

not always conversely. For example, the algebras of Example 5 are Carte-

sian but not strongly Cartesian. The algebras in the next example, on the

other hand, are flat.

Example 8. F100 is the algebra whose universe is the 2-element set

{0, b}, s.t. all truncated sums equal 0, while
√′0 = 0 and

√′b = b. F020 is

the algebra whose universe is the 3-element set {0, a, b}, whose semigroup

reduct is again the constant 0-valued semigroup and whose table for
√′ is

given by √′

0 0

a b

b a

Both F100 and F020 are flat; moreover, F100 is simple, while F020 is a

nonsimple subdirectly irreducible algebra having three congruences: Δ, λ =

∇ and the monolith θ whose cosets are {a, b} and {0}.
More generally, we denote by Fnmp the finite flat algebra which con-

tains n fixpoints for
√′ beside 0, m fixpoints for the inverse which are

not fixpoints for
√′, and p elements which are not fixpoints under either

operation.

By “MV* algebras” we mean expansions of MV algebras by an ad-

ditional constant k, satisfying the axiom k ≈ k′. This variety has been

investigated by Lewin and his colleagues [17], who proved that: i) the cat-

egory of such algebras is equivalent to the category of MV algebras; ii)

the variety itself is generated as a quasivariety by the standard algebra

over the [0, 1] interval. Although e.g. all nontrivial Boolean algebras are

ruled out by this definition, in virtue of the above-mentioned results the

two concepts can be considered, for many purposes, interchangeable. Two

important constructions yield
√′qMV algebras out of an MV* algebra:

Definition 9. Let A =
〈
A,⊕A,′A , 0A, 1A, kA

〉
be an MV* algebra. If

f(A) is a bijective copy of A−{k} disjoint from A, the rotation of A is the
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algebra

Rt (A) =
〈
A ∪ f(A),⊕Rt(A),

√′Rt(A)
, 0A, 1A, kA

〉
uniquely determined by the following stipulations:

a⊕Rt(A) b =

{
a⊕A b if a, b ∈ A,

a⊕A kA otherwise.

√′Rt(A)
(a) =

{
f (a) if a ∈ A,(
f−1 (a)

)′A
otherwise.

The pair algebra over A is the algebra

P(A) =
〈
A2,⊕P(A),

√′P(A)
, 0P(A), 1P(A), kP(A)

〉
where:

• 〈a, b〉 ⊕P(A) 〈c, d〉 = 〈
a⊕A c, kA

〉
;

• √′P(A) 〈a, b〉 = 〈
b, a′A

〉
;

• 0P(A) =
〈
0A, kA

〉
;

• 1P(A) =
〈
1A, kA

〉
;

• kP(A) =
〈
kA, kA

〉
.

As an illustration of the rotation construction, Rt (�L5) is depicted in

Fig. 2.2.

Fig. 2.2. Rt (�L5).
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P(A) is always Cartesian, while Rt (A) is even strongly Cartesian. Con-

versely, every Cartesian
√′qMV algebra is embeddable into a pair algebra:

Theorem 10. [9, Theorem 36] Every Cartesian
√′qMV algebra A is

embeddable into the pair algebra P(RA) over its MV* term subreduct RA

of regular elements.

Generic
√′qMV algebras are not amenable to such a representation.

However, we have the following result.

Theorem 11. [9, Theorem 37] For every
√′qMV algebra Q, there exist

a Cartesian algebra C and a flat algebra F such that Q can be subdirectly

embedded into C× F.

A standard completeness theorem holds for
√′qMV:

Theorem 12. [9, Corollary 53] Sr generates
√′qMV as a variety.

On the other hand, the subvariety of
√′qMV generated by Dr is not

finitely based, as shown in [14, Theorem 40].

We also make a note once and for all of the following result (a sort of

restricted Jónsson’s Lemma for
√′qMV since these algebras are not con-

gruence distributive), which will be repeatedly used in the sequel without

special mention:

Lemma 13. [12, Corollary 32] Let K be a class of
√′qMV algebras.

If A ∈ V (K) is a subdirectly irreducible Cartesian algebra, then A ∈
HSPU (K).

.3 A representation theorem for
√′qMV algebras

The two representation results for
√′qMV algebras contained in Theorems

10 and 11 are flawed by a common shortcoming: the representation map-

pings are embeddings, rather than isomorphisms. It would be desirable

to amend this defect and characterise
√′qMV algebras along the lines of

the analogous theorem for qMV algebras to be found in [4, § 2], where a

generic qMV algebra is proved isomorphic to a qMV algebra arising out of

an MV algebra with additional labels. This much will be accomplished in

the present section.



ON SOME PROPERTIES OF QUASI-MV ALGEBRAS 11

Definition 14. Let A be an MV* algebra. A numbered MV* algebra

over A is an ordered quintuple A = 〈A, γ, κ1, κ2, κ3〉, where γ is a cardinal

function with domain A2 and κ1, κ2, κ3 are cardinals s.t.: 1) κ1+κ2+κ3 =

γ
(
kA, kA

)
; 2) if κ2 is a natural number, then it is even; 3) if κ3 is a natural

number, then it is a multiple of 4.

If one thinks of a
√′qMV algebra as a subalgebra of a pair algebra

P (A) over an MV* algebra (possibly) along with an additional number

of elements corresponding to non-singleton λ-cosets, then, intuitively, the

function γ assigns to every member 〈a, b〉 the cardinality of 〈a, b〉 /λ, while
κ1, κ2 and κ3 respectively express the number of fixpoints for

√′ , of fix-
points for ′ that are not themselves fixpoints for

√′, and of non-fixpoints

for ′ to be found in 〈k, k〉 /λ. Bearing this interpretation in mind, we are

ready to define label
√′qMV algebras.

Definition 15. Let A = 〈A, γ, κ1, κ2, κ3〉 be a numbered MV* algebra.

Let moreover

K1 = {δ + 1 : δ < κ1} ;
K2 = {1 + κ1 + δ : δ < κ2} ;
K3 = {1 + κ1 + κ2 + δ : δ < κ3} ,

and let g, h be, respectively, an involution on K2 and a function of period

4 on K3. A label
√′qMV algebra on A is an algebra

B =
〈
B, ⊕B,

√′B, 0B, 1B, kB
〉

of type 〈2, 1, 0, 0, 0〉 s.t.:

• B =
⋃

a,b∈A
({〈a, b〉} × γ (a, b));

• 〈a1, b1, l1〉 ⊕B 〈a2, b2, l2〉 =
〈
a1 ⊕A a2, k

A, 0
〉
;

• √′B 〈a, b, l〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
b, a′A, l

〉
, if a 
= k or b 
= k

or (a = b = k and l ∈ K1)〈
b, a′A, g (l)

〉
, if a = b = k and l ∈ K2〈

b, a′A, h (l)
〉
, if a = b = k and l ∈ K3

• 0B =
〈
0A, kA, 0

〉
;
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• 1B =
〈
1A, kA, 0

〉
;

• kB =
〈
kA, kA, 0

〉
.

Observe that we omitted some angle brackets and parentheses for the

sake of notational irredundancy; accordingly, we sometimes refer to ele-

ments of B as “triples”, with a slight linguistic abuse. Keeping in mind

our previous intuitive description of a
√′qMV algebra Q as a subalgebra of

the pair algebra P (RQ) over the MV* algebra RQ (possibly) along with

an additional number of elements corresponding to non-singleton λ-cosets,

every member a ∈ Q appears in B as the triple consisting of its projections

a ⊕ 0 and
√′a ⊕ 0 and a label uniquely characterising a within a/λ. We

remark that B is defined in such a way as to exclude triples whose first

projection a and second projection b are such that γ (a, b) = 0. Intuitively,

this corresponds to the fact that, in general, not all elements of P (RQ)

belong to the subalgebra Q.

We now show that the name “label
√′qMV algebra” is not a misnomer.

Lemma 16. Every label
√′qMV algebra is a

√′qMV algebra.

Proof. We check only a few representative axioms, leaving the remain-

der of this task to the reader and omitting all unnecessary subscripts and

superscripts.
√′√′ 〈a, b, l〉 ⊕ 〈0, k, 0〉 = 〈a′, b′, l∗〉 ⊕ 〈0, k, 0〉

= 〈a′, k, 0〉
=
√′√′ 〈a, k, 0〉

=
√′√′ (〈a, b, l〉 ⊕ 〈0, k, 0〉) .

That
√′√′k = k is clear enough, while

√′ (〈a1, b1, l1〉 ⊕ 〈a2, b2, l2〉)⊕ 〈0, k, 0〉 =
√′ (〈a1 ⊕ a2, k, 0〉)⊕ 〈0, k, 0〉

=
〈
k, (a1 ⊕ a2)

′ , 0
〉⊕ 〈0, k, 0〉

= 〈k, k, 0〉 .
�

Before going on to show that every
√′qMV algebra is isomorphic to a

label
√′qMV algebra, we establish a useful auxiliary lemma.

Lemma 17. If A is a
√′qMV algebra and a ∈ A, then the function

f (x) =
√′x is a bijection between a/λ and

√′a/λ.
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Proof. Injectivity is clear: if
√′b =

√′c, then b =
√′√′√′√′b =√′√′√′√′c = c.

As regards surjectivity, suppose b ∈ √′a/λ, i.e. b ⊕ 0 =
√′a ⊕ 0 and√′b ⊕ 0 = a′ ⊕ 0. Then

√′b′ ⊕ 0 =
(√′b⊕ 0

)′
= (a′ ⊕ 0)′ = a ⊕ 0, while

b′′ ⊕ 0 = b⊕ 0 =
√′a⊕ 0, whence

√′b′ ∈ a/λ and, clearly, f(
√′b′) = b. �

We now have to define the target structure of our representation. If

Q is an arbitrary
√′qMV algebra, then the term subreduct RQ of regular

elements is an MV* algebra, whence

RQ= 〈RQ, γ, κ1, κ2, κ3〉

where:

• γ (a, b) =
∣∣∣{c ∈ Q : c⊕ 0 = a and

√′c⊕ 0 = b
}∣∣∣;

• κ1 =
∣∣∣{c ∈ Q : c⊕ 0 =

√′c⊕ 0 = k and
√′c = c

}∣∣∣;
• κ2 =

∣∣∣{c ∈ Q : c⊕ 0 =
√′c⊕ 0 = k and

√′c 
= c and c = c′
}∣∣∣;

• κ3 =
∣∣∣{c ∈ Q : c⊕ 0 =

√′c⊕ 0 = k and c 
= c′
}∣∣∣,

is a numbered MV* algebra. The fact that κ2 (κ3) is the union of two

(four) disjoint equipotent subsets via the bijection induced by
√′ auto-

matically determines an obvious involution g on K2 and a corresponding

function h of period 4 on K3, and this, in turn, according to Definition 15,

univocally specifies a label
√′qMV algebra on RQ, which we call Bg,h

Q . We

now prove that:

Theorem 18. Every
√′qMV algebra Q is isomorphic to a label

√′qMV

algebra Bg,h
Q on the numbered MV* algebra RQ over its own term subreduct

RQ of regular elements.

Proof. For a ∈ Q, let a/λ =
{
cj : j < γ

(
a⊕ 0,

√′a⊕ 0
)}

, where

b = c0 in case b = b ⊕ 0. If a = ci, we define ϕ (a) =
〈
a⊕ 0,

√′a⊕ 0, i
〉
.

We first have to check that ϕ is one-one. However, if ϕ (a) = ϕ (b), we have

in particular that
〈
a⊕ 0,

√′a⊕ 0
〉
=

〈
b⊕ 0,

√′b⊕ 0
〉
, whence a/λ = b/λ.

Since i = j, we get that a = ci = cj = b. Also, ϕ is onto Bg,h
Q because
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a generic element of Bg,h
Q has the form 〈a, b, i〉, whence γ (a, b) 
= 0 and so

there exists a c ∈ Q s.t. c = ci in
{
d ∈ Q : d⊕ 0 = a and

√′d⊕ 0 = b
}
;

clearly, ϕ (c) = 〈a, b, i〉.
It remains to check that ϕ is a homomorphism. However, applying

the appropriate
√′qMV axioms and our stipulation that q = c0 in case

q = q ⊕ 0,

ϕ
(
a⊕Q b

)
=

〈
a⊕Q b, k, 0

〉
=

〈
a⊕Q 0,

√′a⊕Q 0, i
〉
⊕Bg,h

Q

〈
b⊕Q 0,

√′b⊕Q 0, j
〉

= ϕ (a)⊕Bg,h
Q ϕ (b) .

In a similar fashion, we can prove that the constants are all preserved.

As regards the square root of the negation, we have to go through a case-

splitting argument. If a /∈ k/λ, we observe that by Lemma 17 the equiva-

lence classes a/λ and
√′a/λ can be enumerated in such a way that a and√′a are assigned the same label i. Then

ϕ
(√′Qa

)
=

〈√′Qa⊕Q 0, a′Q ⊕Q 0, i
〉

=
√′B

g,h
Q

〈
a⊕Q 0,

√′Qa⊕Q 0, i
〉

=
√′B

g,h
Q ϕ (a) .

In the remaining cases, we only have to make sure that the application

of ϕ gets the third component of ϕ
(√′a

)
right, because the definition of

√′

in label
√′qMV algebras is identical in all cases relatively to the first two

components. Indeed, if a ∈ k/λ and a =
√′a = ci, then π3

(
ϕ
(√′Qa

))
=

i = π3

(√′B
g,h
Q ϕ (a)

)
because a is a fixpoint for

√′, while if a ∈ k/λ,

a 
= √′a and a = a′ = ci, then π3

(
ϕ
(√′Qa

))
= g (i) = π3

(√′B
g,h
Q ϕ (a)

)
.

The remaining fourth case is handled similarly, using the function h. �

.4 The lattice of subvarieties of
√′qMV

Recall that a finite �Lukasiewicz chain is of the form

�Ln+1 =

〈
{0, 1

n
,
2

n
, . . . ,

n− 1

n
, 1},⊕,′ , 0, 1

〉
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for n > 0 where x⊕y = min(1, x+y) and x′ = 1−x. Alternatively �Ln+1 =

〈{0, 1, . . . , n},⊕,′ , 0, n〉 where x⊕y = min(n, x+y) and x′ = n−x. Let C =

Z× Z be ordered lexicographically by 〈a, b〉 < 〈c, d〉 if and only if a < b or

(a = b and c < d). The countable �Lukasiewicz chains with infinitesimals are

defined by �Ln+1,ε = 〈{x ∈ C : 〈0, 0〉 ≤ x ≤ 〈n, 0〉},⊕,′ , 〈0, 0〉 , 〈n, 0〉〉, where
〈a, b〉 ⊕ 〈c, d〉 = min(〈n, 0〉 , 〈a+ c, b+ d〉) and 〈a, b〉′ = 〈n, 0〉 − 〈a, b〉. The

elements 〈i, 0〉 are the standard elements and the remaining elements are the

infinitesimals, with 〈0, 1〉 denoted by ε. The join-irreducible MV varieties

are generated by either �Ln or �Ln,ε or the standard MV-algebra �L[0,1] =

〈[0, 1],⊕,′ , 0, 1〉, and all other varieties are generated by finite collections of

these algebras, hence there are only countably many MV varieties [11]. The

same result holds for quasi MV-algebras [4, § 3], though the classification

of subvarieties is somewhat more involved.

Although the lattice of
√′qMV varieties was investigated in detail in

[12] and in [14], several problems concerning its structure were left open.

In particular, it was conjectured that, although there are only countably

many subvarieties of qMV, the number of
√′qMV varieties is uncountable

— however, the above-referenced papers did not settle the issue either way.

After dispatching a mandatory recap of known results in the next subsec-

tion, we go on to fill some gaps concerning the structure of some slices and

to provide equational bases for some interesting varieties.

.4.1 Structure of the lattice

The lattice LV (
√′qMV) of subvarieties of

√′qMV can be depicted as in Fig.

4.1.1: the whole lattice sits upon the chain consisting of the four varieties

which contain only flat algebras: the trivial variety, its unique cover V (F100)

(axiomatised relative to
√′qMV by the single equation x ≈ √′x), V (F020)

(axiomatised by x ≈ x′) and the variety of all flat algebras, F =V (F004)

(axiomatised by x⊕ 0 ≈ 0).
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Fig. 4.1.1. The lattice of subvarieties of
√′qMV. V× and V♦ are

shorthands for, respectively, V ({Rt(A) : A ∈ VSI}) and
V ({℘(A) : A ∈ VSI}).

On top of this chain, the dark grey area represents the sublattice LV (S)
of varieties generated by strongly Cartesian algebras. The bottom of this

sublattice is V (Rt (�L3)), the variety generated by the smallest nontrivial

(5-element) Cartesian algebra, while its top is the variety V (S) generated

by all strongly Cartesian algebras. The main results we proved concerning

LV (S) are listed below.

Theorem 19. V (S) is axiomatised relative to
√′qMV by the single

equation

x �
√′x ≥ k.

Interpreted over Cartesian algebras whose regular elements are linearly

ordered, such an equation says that any element a is either greater than

or equal to k or such that its square root of the negation is greater than

or equal to k. Because of the properties of
√′, this is equivalent (over

Cartesian algebras with linearly ordered regular elements) to every element

being either regular or coregular.

If we define Rt (V) as V ({Rt(A) : A ∈V}) for a variety V of MV* alge-

bras, it is possible to prove that:
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Theorem 20. The lattice LV (MV∗) of all nontrivial MV* varieties is

isomorphic to LV (S) via the mapping ϕ(V) = Rt (V).

The light grey areas represent what we (in [12]) called “slices”, i.e.

intervals in LV (
√′qMV) whose bottom elements are members of LV (S).

By a non-flat variety of
√′qMV algebras we mean a variety which contains

at least an algebra not in F (equivalently, as we have seen, a variety above

or equal to V (Rt (�L3))). We have that:

Lemma 21. A non-flat
√′qMV algebra A is subdirectly irreducible

iff Rt(RA) is subdirectly irreducible iff P(RA) is subdirectly irreducible.

If V is a non-flat variety, the varieties V, V ({Rt(RA) : A ∈ V}), and

V ({P(RA) : A ∈ V}) have the same strongly Cartesian and flat subdirectly

irreducible members.

Slices are precisely intervals of LV (
√′qMV) of the form

[V ({Rt(A) : A ∈ VSI}) , V ({P(A) : A ∈ VSI})],
for some variety V of MV* algebras. Every non-flat variety is contained in

some slice:

Lemma 22. Every non-flat variety V belongs to the interval

[V ({Rt(RA) : A ∈ V}) , V ({P(RA) : A ∈ V})].
The preceding results have a noteworthy consequence: by our descrip-

tion of flat varieties, as well as by Theorem 20 and Lemma 22, V (F100) is

the single atom of LV (
√′qMV). However, the class of congruence lattices

of algebras in V (F100) coincides with the class of all equivalence lattices

over some set, whence no nontrivial variety V in LV (
√′qMV) satisfies any

nontrivial congruence identity.

The simplest slices have the form Sn = [V (Rt(�L2n+1)), V (P(�L2n+1))],

for some n ∈ N. If A ≤ P(�L2n+1), then V (A) is join-irreducible, and, con-

versely, every join-irreducible member of Sn is of the above form. Moreover,

since P(�L2n+1) is finite, by Lemma 13 all subdirectly irreducible Cartesian

algebras in V (P(�L2n+1)) belong to HS(P(�L2n+1)). Further, P(�L2n+1) has

no nontrivial Cartesian congruences, and thus, by the relative congruence

extension property for Cartesian algebras [20, Lemma 45], the same holds

for its subalgebras. It follows that HS above can be replaced by S. The

next theorem yields a fairly complete description of the slices Sn:
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Theorem 23. The lattice Sn contains a subposet order-isomorphic to

the interval [Rt(�L2n+1),P(�L2n+1)] in the lattice of subalgebras of P(�L2n+1),

and is itself isomorphic to the lattice of order ideals of the poset P+(n2) of

all nonempty subsets of a set with n2 elements.

.4.2 There are uncountably many subvarieties of
√′qMV

In this subsection we first show that the top slice of the lattice of subvari-

eties of
√′qMV, whose bottom element is V

(
Rt

(
MV[0,1]

))
and whose top

element is the whole of
√′qMV, contains uncountably many elements. Sub-

sequently, we prove that we do not have to wait until we reach the top slice

in order to find an uncountable one: there are uncountably many varieties

of
√′qMV algebras, even if we restrict ourselves to varieties generated by

algebras obtained from �Lukasiewicz chains with infinitesimals.

Recall that in [14, § 2.2] appropriate √′qMV terms χ
〈a,b〉
i (x) (1 ≤ i ≤ 4)

were used with the property that, if 〈a, b〉 and 〈c, d〉 are elements of Sr,

Lemma 24. 1. χ
〈a,b〉
1 (〈c, d〉) 
= 1 iff c < a and d < b,

2. χ
〈a,b〉
2 (〈c, d〉) 
= 1 iff c < a and d > b,

3. χ
〈a,b〉
3 (〈c, d〉) 
= 1 iff c > a and d > b,

4. χ
〈a,b〉
4 (〈c, d〉) 
= 1 iff c > a and d < b.

In particular, if a, b, c, d ∈ [0, 1], the χ
〈a,b〉
i ’s have the following form, for

some MV terms1 λa, λb, ρa, ρb:

• χ
〈a,b〉
1 (x) = λa(x) � λb(

√′x)

• χ
〈a,b〉
2 (x) = λa(x) � ρb(

√′x)

• χ
〈a,b〉
3 (x) = ρa(x) � ρb(

√′x)

• χ
〈a,b〉
4 (x) = ρa(x) � λb(

√′x)

1Actually, unbeknownst to us, the terms λa, λb, ρa, ρb had been defined, although in

a different notation, by Aguzzoli [1], to whom it is fair to credit their introduction.
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A rather obvious geometric intuition for visualising the terms χ
〈a,b〉
i (x)

is that each of these defines its own rejection rectangle, consisting of all

points u ∈ Sr that falsify χ
〈a,b〉
i (u) = 1 (Fig. 4.2.1). More precisely, these

rectangles are as follows:

• for χ
〈a,b〉
1 (u), the lower left-hand corner is 〈0, 0〉 and the upper right-

hand corner is 〈a, b〉,
• for χ

〈a,b〉
2 (u), the upper left-hand corner is 〈0, 1〉 and the lower right-

hand corner is 〈a, b〉,
• for χ

〈a,b〉
3 (u), the upper right-hand corner is 〈1, 1〉 and the lower left-

hand corner is 〈a, b〉,
• for χ

〈a,b〉
4 (u), the lower right-hand corner is 〈1, 0〉 and the upper left-

hand corner is 〈a, b〉.

Fig. 4.2.1. Rejection rectangle for χ
〈a,b〉
1 (x). 〈c, d〉 is in the rectangle

iff χ
〈a,b〉
1 (〈c, d〉) 
= 〈

1, 12
〉
.

Using these terms, we can show that:

Theorem 25. The top slice in LV (
√′qMV) contains uncountably many

varieties.

Proof. Consider the line segment with endpoints
〈
0, 12

〉
,
〈
1
2 , 0

〉
in Sr,

and let 〈a0, ..., ak, ...〉 be any countable sequence of points in the segment

converging to
〈
1
2 , 0

〉
. For X ⊆ N , let AX be the smallest subalgebra of

Sr which includes Rt
(
MV[0,1]

)
and contains {ak : k ∈ X}. It will suffice
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to show that, if X 
= Y , then AX and AY generate different varieties. In

fact, if X 
= Y , then w.l.g. there will be an aj ∈ AX which does not

belong to AY . Since the sequence 〈a0, ..., ak, ...〉 is countable, there will be

some neighbourhood N of aj (in the standard Euclidean topology of the

plane) and some b ∈ N such that b is point-wise greater than aj and has

the property that the rejection rectangle associated with the term χb
1(x)

includes aj but no other ak, for k 
= j. Therefore, AY � χb
1(x) ≈ 1, but

AX � χb
1(x) ≈ 1, for χb

1(aj) 
= 1. �

We now show that uncountability is not restricted to the top slice. Let

tn(x) = (((n+ 1)x)′ ⊕
√′x) � (nx⊕ (

√′x)′) � 2x � 2
√′x,

where the notation nx is defined by 0x = 0 and nx = x⊕(n−1)x for n > 0.

For each set S of positive integers we define a subalgebra of P(�L3ε) by

AS = Rt(�L3ε) ∪ {〈2ε, jε〉 , 〈jε, (2ε)′〉 , 〈(2ε)′, (jε)′〉 , 〈(jε)′, 2ε〉 :
j = 2i+ 1 for i ∈ S}

Theorem 26. Let S, T be two distinct sets of positive integers.

1. AS |= tn(x) ≈ 1 if and only if n /∈ S;

2. V (AS) 
= V (AT ).

Proof. (1) Note that AS 
|= tn(x) ≈ 1 is equivalent to 2c 
= 1, 2
√′c 
= 1,

((n + 1)c)′ ⊕ √′c 
= 1 and nc ⊕ (
√′c)′ 
= 1 for some c ∈ AS . The first two

inequations ensure that xAS = 〈a, b〉 for some a, b < k = 1
2 , hence a = 2ε

and b = jε for some j = 2i+ 1 where i ∈ S.

So,

((n+ 1) 〈a, b〉)′ ⊕
√′ 〈a, b〉 =

〈
1− (n+ 1)a,

1

2

〉

=

〈
min(1, 1− (n+ 1)a+ b,

1

2

〉

= 1

if and only if 1− (n+ 1)a+ b < 1, which is equivalent to b < (n+ 1)a, i.e.,

jε < 2(n+ 1)ε, so 2i+ 1 ≤ 2n+ 1, hence i ≤ n.

Similarly n(a, b) ⊕ (
√′ 〈a, b〉)′ = 〈

na, 12
〉 ⊕ 〈1− b, a〉 
= 1 if and only if

na+1− b < 1, or equivalently 2nε < (2i+1)ε, hence n ≤ i. It follows that

the identity tn(x) ≈ 1 fails in AS precisely when n = i for some i ∈ S.
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(2) is an immediate consequence of (1), since either n ∈ S\T or n ∈ T\S,
so the identity tn(x) ≈ 1 distinguishes the two varieties. �

The proof given above can be adapted to subalgebras of P(�L2m+1,ε).

Corollary 27. For m > 0 the lattice of subvarieties of V (P(�L2m+1,ε))

is uncountable.

Although the �L3ε-slice contains uncountably many varieties, it is pos-

sible to describe parts of the poset of join-irreducible varieties near the

bottom of the slice. For a finite set S ⊆ N , let

BS = Rt(�L3ε) ∪ {〈iε, 0〉 , 〈0, (iε)′〉 , 〈(iε)′, 1〉 , 〈1, iε〉 : i ∈ S}

Theorem 28. Let S, T be finite subsets of N . Then V (BS) ⊆ V (BT )

if and only if there is a positive integer m such that {mn : n ∈ S} ⊆ T .

Proof. For the forward implication, let y0, y1, . . . be a sequence of

distinct variables, let M = max(T ), assume V (BS) ⊆ V (BT ) and consider

the equation

eS :
∨
n∈S

[
(
((nx � yn)

M )′ ⊕ y′n
)
� 2yn � 2

√′yn] ≈ 1,

where x � y = (x′ ⊕ y) � (y′ ⊕ x) and
∨

generalises � to finitely but

otherwise arbitrarily many arguments. Note that eS fails in BS since if we

let xBS = 〈ε, 0〉 and yBS
n = 〈nε, 0〉 then each of the terms in the join gives a

value strictly less than 1. Therefore eS also fails in BT for some assignment

to the variables. From 2yBT
n < 1 and 2

√′yBT
n < 1 we deduce that the yn

are assigned irregular elements, hence for all n ∈ S, yBT
n = 〈qnε, 0〉 for

some qn ∈ T . Moreover, xBT = 〈mε, 0〉 or xBT =
〈
mε, 12

〉
for m > 0,

since in all other cases the term ((nx � yn)
M )′ ⊕ y′n evaluates to 1. In

addition ((nxBT � yBT
n )M )′ ⊕ (yBT

n )′ < 1 implies (nxBT � yBT
n )M 
≤

(yBT
n )′ ⊕ 0. If nxBT � yBT

n < 1 then nxBT � yBT
n ≤ 〈ε, 12〉′, hence

(nxBT � yBT
n )M ≤ 〈(Mε)′ , 12〉 ≤ yBT ′

n ⊕ 0, a contradiction. Therefore

nxBT � yBT
n = 1, whence nmε = qnε. Since qn ∈ T for all n ∈ S, we

conclude that {mn : n ∈ S} ⊆ T .

For the reverse implication, suppose {mn : n ∈ S} ⊆ T for some m > 0.

Define the map h : BS → BT by h(〈iε, jε〉) = 〈miε,mjε〉, and extend it

homomorphically to all of BS . This map is always an embedding on the
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regular and coregular elements of BS , and by assumption 〈mi, 0〉 ∈ BT for

all i ∈ S, whence the map is also an embedding on the irregular elements.

Therefore BS ∈ V (BT ), as required. �

Note that the above result implies that V (BS) and V (BT ) are distinct

if S 
= T , but this property does not hold for infinite sets S, T in general.

For example if S = N \ {0} and T = N then BS is a subalgebra of BT ,

and BT is a homomorphic image of any nonprincipal ultrapower of BS ,

hence V (BS) = V (BT ). Similarly the top variety of the �L3ε-slice, which is

generated by the pair algebra P(�L3ε), is also generated by the subalgebra

obtained by removing the 4 “corners” 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, 〈1, 1〉, or indeed,

by removing any finite set of irregular points that is invariant under
√′.

.4.3 Equational bases for some subvarieties

In [12, 14] the lattice LV (
√′qMV) was described to some extent, but —

differently from what had been done for LV (qMV) in [4] — no equational

bases were given for individual subvarieties. Here, we provide such bases

at least for some reasonably simple cases. We start with an easy task:

axiomatising the varieties generated by strongly Cartesian algebras. By

Theorem 20 every such variety is the rotation of some variety of MV*

algebras.

Lemma 29. Let V be a variety of MV* algebras whose equational basis

w.r.t. MV∗ is E. Then Rt (V) is axiomatised relative to
√′qMV by E and

the strongly Cartesian equation(
x �

√′x
)
⊕ k ≈ 1.

Proof. From left to right, Rt (A) ∈ Rt (V) is a
√′qMV algebra which

satisfies
(
x �

√′x
)
⊕ k ≈ 1 by Theorems 19 and 20. Moreover, since E can

be taken to be a set of normal MV* equations2 by results in [7, Chapter

8], A will satisfy E as a qMV algebra, whence it will satisfy these equations

altogether. Conversely, letA be a s.i.
√′qMV algebra which satisfies both E

and
(
x �

√′x
)
⊕k ≈ 1. Being subdirectly irreducible, it is either Cartesian

2Recall that an equation t ≈ s (of a given type) is said to be normal iff either t and s

are the same variable or else neither t nor s is a variable [6].
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or flat. If the latter, then A ∈ Rt (V) because flat algebras are contained in

every variety generated by strongly Cartesian algebras. If the former, then

its MV* term subreduct RA is also subdirectly irreducible and, therefore,

linearly ordered. As a consequence, the axiom
(
x �

√′x
)
⊕k ≈ 1 expresses

the fact that any element is either above k or such that its own square

root of the negation is above k. It follows that A = Rt (B) for some MV*

algebra B. Since A satisfies E , however, B (having fewer elements) also

satisfies it and thus A ∈ Rt (V). �
By Theorem 23, each slice whose bottom element is the variety gener-

ated by the rotation Rt (�L2n+1) of a single finite �Lukasiewicz chain �L2n+1,

and whose top element is the variety generated by the full pair algebra

P (�L2n+1), has exactly 2n
2
join irreducible elements, one for each set of

irregular elements in any one “quadrant” of P (�L2n+1). We are now going

to give explicit equational bases for all of them. For this purpose, it will

be expedient to identify their generating algebras with subalgebras of Sr.

If we do so, each meet and join irreducible variety in any such slice can

be identified with the variety generated by the algebra Ap, obtained by

removing from P (�L2n+1) exactly the point p =
〈
m1
2n ,

m2
2n

〉
, together with√′p, p′,

√′p′. With no loss of generality, of course, p can be taken to reside

in the first quadrant, i.e. m1,m2 ∈ {0, . . . , n− 1}.
Theorem 30. If E axiomatises V (�L2n+1) relative to MV∗, then V (Ap)

is axiomatised relative to
√′qMV by E as well as tp (x) ≈ 1, where

tp (x) = χ

〈
m1+1
2n

,
m2+1
2n

〉
1 (x) � χ

〈
m1−1
2n

,
m2−1
2n

〉
3 (x).

Proof. After observing that the term tp (x) can be further unwound as

λm1+1
2n

(x) � ρm1−1
2n

(x) � λm2+1
2n

(
√′x) � ρm2−1

2n

(
√′x),

our proof goes through a number of claims.

Claim 31. In the standard MV* algebra MV[0,1], λm1+1
2n

(a)�ρm1−1
2n

(a) <

1 iff a ∈ (
m1−1
2n , m1+1

2n

)
.

In fact, by Lemma 15 in [14], λm1+1
2n

(a) = 1 iff a > m1+1
2n , while

ρm1−1
2n

(a) = 1 iff a < m1−1
2n . Therefore, the indicated join is 1 exactly

for the points that lie outside of the open interval
(
m1−1
2n , m1+1

2n

)
. Now the

following claims are immediate consequences of Claim 31:



24 PETER JIPSEN, ANTONIO LEDDA, AND FRANCESCO PAOLI

Claim 32. In Sr, λm1+1
2n

(a) � ρm1−1
2n

(a) < 1 iff a ∈ (
m1−1
2n , m1+1

2n

)
.

Claim 33. In Sr, tp (a) < 1 iff a belongs to the open square with centre

p and radius 1
2n .

Having established these claims, it follows that Ap satisfies tp (x) ≈ 1,

while any subdirectly irreducible Cartesian algebra in the slice satisfying

tp (x) ≈ 1 must be a subalgebra of P(�L2n+1) in the light of the remarks

preceding Theorem 23 and at the same time exclude the point p, i.e. be a

subalgebra of Ap. �

Corollary 34. An arbitrary join irreducible variety V (A) in the slice

whose bottom element is V (Rt (�L2n+1)) is axiomatised relative to
√′qMV

by E as well as {tp (x) ≈ 1 : p /∈ A}, where p =
〈
m1
2n ,

m2
2n

〉
for m1,m2 ∈

{0, . . . , n− 1}.

.5
√′qMV has the amalgamation property

An amalgam is a tuple 〈A, f,B, g,C〉 such that A,B,C are structures of

the same signature, and f : A → B, g : A → C are embeddings (injective

morphisms). A class K of structures is said to have the amalgamation

property if for every amalgam with A,B,C ∈ K and A 
= ∅ there exists

a structure D ∈ K and embeddings f ′ : B → D, g′ : C → D such that

f ′ ◦ f = g′ ◦ g. A couple of decades ago, Mundici proved that MV algebras

have the amalgamation property [19], and his result was extended to the

variety qMV in [4, § 6.1]. In the same paper (§ 6.2) it was proved that both

Cartesian and flat
√′qMV algebras amalgamate, but the property was not

established for the entire variety of
√′qMV algebras, although it was to be

expected that it would hold. Since taking this further step is not completely

trivial, we answer the question in the affirmative in this subsection.

Theorem 35. The variety of
√′qMV algebras enjoys the amalgamation

property.

Proof. Let A,B,C be
√′qMV algebras such that:
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where f, g are embeddings. By the Third isomorphism theorem and the

representation theorem for
√′qMV algebras the following diagram com-

mutes:

But Cartesian and flat
√′qMV algebras possess the amalgamation prop-

erty. Therefore there exist a Cartesian algebra DC , and a flat algebra DF

such that the following is commutative:

Thus, combining the previous two diagrams, we see that DC × DF

amalgamates 〈A, f,B, g,C〉. �
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.6 The 1-assertional logic of
√′qMV

Recall that the 1-assertional logic [3] of a class K of similar algebras of

type ν (containing at least one constant 1) is the logic whose language is ν

and whose consequence relation �K is defined for all Γ ∪ {α} ⊆ For (ν) as

follows:

Γ �K α if and only if {γ ≈ 1 : γ ∈ Γ} �K α ≈ 1,

where �K is the equational consequence relation of the class K. Although

this consequence relation need not, in general, be finitary [8], it can be

forced to be such by changing its definition into

Γ �K α iff there is a finite Γ′ ⊆ Γ s.t.
{
γ ≈ 1 : γ ∈ Γ′} �K α ≈ 1.

Hereafter, we will adopt the latter definition of 1-assertional logic. Since

we will deal with logics on the same language, we will also identify logics

with their associated consequence relation, with a slight linguistic abuse.

Among the several abstract logics related to
√′qMV that were intro-

duced and motivated in [21], there were the 1-assertional logics �√′qW of

the variety
√′qW (a term equivalent variant of

√′qMV in the language{
→,

√′, 0, 1
}
, where x → y = x′ ⊕ y) and �CW of the quasivariety CW of

Cartesian algebras (also formulated in the same language; W stands for Wa-

jsberg algebras). Such logics differ profoundly from each other as regards

their abstract algebraic logical properties. For example, while the latter is

a regularly algebraisable logic whose equivalent algebraic semantics is CW,

the former is not even protoalgebraic. The above-referenced paper provides

an axiomatisation of �CW that streamlines the algorithmic axiomatisation

obtained from the standard axiomatic presentation of the relatively point

regular quasivariety CW by the Blok-Pigozzi method [2], as well as a char-

acterisation of its deductive filters. For the non-protoalgebraic logic �√′qW,

the axiomatisation problem is not trivial and cannot be tackled by standard

methods, since we cannot construct anything like the Lindenbaum algebra

of the logic. The aim of the present section is giving an answer to this

problem.

For a start, since CW is a subquasivariety of
√′qW, we observe that:

Lemma 36. If α1, ..., αn �√′qW α, then α1, ..., αn �CW α.
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We also recall the following lemma, first proved in [21, Lemma 19].

Here and in the sequel,
√′(n)α is inductively defined by

√′(0)α = α and√′(m+1)
α =

√′
(√′(m)

α
)
.

Lemma 37. α1, ..., αn �√′qW

√′(m)
p iff at least one of the following

conditions hold:

1. For some integer k ≡ m (mod4)
√′(k)p ∈ {α1, ..., αn};

2. For some integer k 
≡ m (mod4)
√′(k)p ∈ {α1, ..., αn} and α1, ..., αn �CW

0.

The next result shows that although the converse of Lemma 36 need

not be true in general, we can nonetheless infer some information from its

premiss.

Lemma 38. α1, ..., αn �CW α iff α1, ..., αn �√′qW α ↔ 1, where

α ↔ β = (α → β)⊗ (β → α)⊗
(√′α →

√′β
)
⊗

(√′β →
√′α

)
.

Proof. Left to right. Suppose α1, ..., αn �CW α, and let A be a
√′

qW algebra. Suppose further that −→a ∈ Ai, where i is the number of

variables in the indicated formulas, and that αA
1 (−→a ) = ... = αA

n (−→a ) = 1.

Now, the quotient A/λ is a Cartesian algebra, whence our hypothesis that

α1, ..., αn �CW α implies αA/λ (−→a /λ) = 1A/λ, i.e. αA (−→a )λ1. Unwinding

this statement, we get that

αA (−→a ) → 1 = 1 → αA (−→a ) =
√′αA (−→a ) →

√′1 =
√′1 →

√′αA (−→a ) = 1,

and so αA (−→a ) ↔ 1 = 1.

Right to left. Suppose α1, ..., αn �√′qW α ↔ 1, and let A be a Cartesian

algebra. Suppose further that −→a ∈ Ai, and that αA
1 (−→a ) = ... = αA

n (−→a ) =

1. Since A is in particular a
√′ qW algebra, αA (−→a ) ↔ 1 = 1 and, since

the immediate subformulas of α ↔ 1 are all regular,

αA (−→a ) → 1 = 1 → αA (−→a ) =
√′αA (−→a ) →

√′1 =
√′1 →

√′αA (−→a ) = 1.

This means 1 → αA (−→a ) = 1 and 1 → √′αA (−→a ) = 1 → √′1; since A

is Cartesian, αA (−→a ) = 1. �
An immediate consequence of the above lemma is:
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Corollary 39. α1, ..., αn �CW 0 iff α1, ..., αn �√′qW 0.

Lemma 40. For m ≥ 0,

α1, ..., αn �√′qW

√′(m)
(α → β) iff α1, ..., αn �CW

√′(m)
(α → β) .

Proof. The left-to-right direction follows from Lemma 36. For the

converse direction, suppose α1, ..., αn �CW

√′(m)
(α → β) and let A be a√′ qW algebra. Suppose further that −→a ∈ Ai, and that αA

1 (−→a ) = ... =

αA
n (−→a ) = 1. By Lemma 38,

√′(m)
(α → β) (−→a ) ↔ 1 = 1; in full,(

1 →
√′(m)

(α → β) (−→a )
)
⊗

(√′(m)
(α → β) (−→a ) → 1

)
⊗(√′1 →

√′(m+1)
(α → β) (−→a )

)
⊗

(√′(m+1)
(α → β) (−→a ) →

√′1
)
= 1,

and so the immediate subformulas of the preceding formula, being reg-

ular, all evaluate to 1. Now, if m is odd, from 1 → √′(m)
(α → β) (−→a ) = 1

we get 1 = k. In other words A is flat, whence
√′(m)

(α → β) (−→a ) = 1.

If m is even, then either 1 → (α → β) (−→a ) = 1 or 1 → (α → β)′ (−→a ) = 1,

which respectively imply either (α → β) (−→a ) = 1 or (α → β)′ (−→a ) = 1. �

Corollary 41. �√′qW and �CW have the same theorems.

Proof. From Lemma 40, since all the theorems of �CW have the form√′(m)
(α → β), for some m ≥ 0. It is also a consequence of the fact that

CW and
√′qW satisfy the same equations [9]. �

The next Theorem gives a complete characterisation of the valid entail-

ments of �√′qW.

Theorem 42. α1, ..., αn �√′qW α iff at least one of the following con-

ditions hold:

1. α =
√′(m)

(β → γ) (for some formulas β, γ and some m ≥ 0) or α = 0

or α = 1, and α1, ..., αn �CW α;

2. α =
√′(m)

p (for some m ≥ 0) and for some integer k ≡ m (mod 4)√′(k)p ∈ {α1, ..., αn};

3. α =
√′(m)

p (for some m ≥ 0) and for some integer k 
≡ m (mod 4)√′(k)p ∈ {α1, ..., αn} and α1, ..., αn �CW 0.
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Proof. From Lemmas 37 and 40. For the cases α = 0 or α = 1, use

Corollaries 41 and 39. �

We are now going to define a Hilbert system whose syntactic derivability

relation will prove to be equivalent to �√′qW. This system is both an

expansion and a rule extension of the Hilbert system q�L for the logic of

quasi-Wajsberg algebras introduced in [5], and the techniques used to prove

completeness are heavily indebted to the tools adopted in the mentioned

paper.

Definition 43. The deductive system �√′q�L, formulated in the signa-

ture
〈
→,

√′, 1, 0
〉
, has the following postulates:

A1. α → (β → α)

A2. (α → β) → ((β → γ) → (α → γ))

A3. ((α → β) → β) → ((β → α) → α)

A4. (α′ → β′) → (β → α)

A5. 1

A6.
√′α → √′β, for α, β regular form.

A7.
(
1 → √′ (α → β)

)
↔ √′

(
1 → √′ (α → β)

)
qMP. 1 → α, 1 → (α → β) � 1 → β

Areg1. 1 → √′(m)
(α → β) � √′(m)

(α → β) (0 ≤ m ≤ 3)

Areg2. 1 → 0 � 0

Reg. α � 1 → α

Inv. α �� α′′

Flat. α, 0 � √′α
GR. α, β � √′α → √′β

Lemma 44. The Cartesian logic �CW, as axiomatised in [21, Definition

20], is the rule extension of �√′q �Lby the rule

MP∗. α, α → β,
√′α →

√′β,
√′β →

√′α � β.

Proof. For the sole missing axiom, observe that by (Flat)
√′α, 0 � α′

and α, 0 � √′α, whence by (Cut) we have our conclusion. �

The next lemma will prove very useful in the sequel and will be mostly

employed without special mention.

Lemma 45. If α1, ..., αn �W α and α1, ..., αn, α are regular formulas,

then α1, ..., αn �√′q �L α.
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Proof. From the assumptions α1, ..., αn, by (Reg) we conclude 1 →
α1, ..., 1 → αn, whence there is a proof in �√′q�L of 1 → α using (qMP). Our

claim follows then by (Areg1-2). �

We now need a syntactic analogue of one direction in Lemma 38.

Lemma 46. If α1, ..., αn �CW α then α1, ..., αn �√′q �L α ↔ 1.

Proof. In consideration of Lemma 44, we proceed by induction on the

derivation of α from α1, ..., αn, in the Hilbert system given in the same

lemma.

If α is an axiom, then it is both a �√′q�L axiom and a regular formula,

whence
√′α → √′1 and

√′1 → √′α are both �√′q�L-provable by (GR), while

1 → α is �√′q�L-provable by (Reg). Since α → 1 is �√′q�L-provable by the

completeness theorem for the subsystem q�L [5, Theorem 21], we conclude

that the conjunction of regular formulas α ↔ 1 is also such.

Now, let α = 1 → β be obtained from α1, ..., αn−1, β by the rule (Reg).

We have to prove that α1, ..., αn−1, β �√′q�L (1 → β) ↔ 1. However, as

already noticed (1 → β) → 1 is �√′q�L-provable, while 1 → (1 → β) is ob-

tained from β by two applications of (Reg).
√′ (1 → β) → √′1 and its

converse are �√′q�L-provable by (A6), whence we obtain our conclusion.

The rules (Areg1-2), (qMP) and (GR) are dispatched similarly.

Let α =
√′β be obtained from α1, ..., αn−1, β, 0 by the rule (Flat). We

have to prove that α1, ..., αn−1, β, 0 �√′q�L

√′β ↔ 1, where, in full,

√′β ↔ 1 =
(√′β → 1

)
⊗

(
1 →

√′β
)
⊗

(
β′ →

√′1
)
⊗

(√′1 → β′
)
.

However, (i)
√′β → 1 is �√′q�L-provable by the completeness theorem

for the subsystem q�L; (ii) 1 → √′β can be derived from β, 0 by (Flat) and

(Reg); (iii) from β, 0 we get
√′β by (Flat) and then β′ → √′1 and

√′1 → β′

by (A5) and (GR). The rule (Inv) is dispatched similarly.

Finally, let α = β be obtained from α1, ..., αn−4, γ, γ → β,
√′γ →√′β,

√′β → √′γ by the rule (MP*). By induction hypothesis,

α1, ..., αn−4 �√′q�L γ ↔ 1, (γ → β) ↔ 1,

(√′γ →
√′β

)
↔ 1,

(√′β →
√′γ

)
↔ 1.



ON SOME PROPERTIES OF QUASI-MV ALGEBRAS 31

We must show that α1, ..., αn−4, γ, γ → β,
√′γ → √′β,

√′β → √′γ �′√′q�L
β ↔ 1, where, in full,

β ↔ 1 = (β → 1)⊗ (1 → β)⊗
(√′β →

√′1
)
⊗

(√′1 →
√′β

)
.

However, (i) β → 1 is �√′q�L-provable by the completeness theorem for

the subsystem q�L; (ii) applying (Reg) to the premisses γ, γ → β we obtain

1 → γ, 1 → (γ → β), whence 1 → β follows by (qMP); (iii) our induction

hypothesis3 yields 1 →
(√′β → √′γ

)
, whence

√′β → √′γ follows from

(Areg1). By ind. hyp. again, we obtain
√′γ → √′1, whence by transitivity

(legitimate by Lemma 45) we conclude
√′β → √′1. For

√′1 → √′β we

argue similarly. �

Lemma 47.
√′(m)

(α → β) ↔ 1 �√′q �L

√′(m)
(α → β) for all m ≥ 0.

Proof. From our hypothesis we deduce 1 → √′(m)
(α → β), whence

our conclusion follows by (Areg1). �

Lemma 48. If α1, ..., αn �CW 0 then α1, ..., αn �√′q �L 0.

Proof. By Lemma 46, if α1, ..., αn �CW 0 then α1, ..., αn �√′q�L 0 ↔ 1,

whence we deduce 1 → 0 and then 0 by (Areg2). �

We are now ready to establish the main result of this section.

Theorem 49. α1, ..., αn �√′q �L α iff α1, ..., αn �√′qW α.

Proof. From left to right, we proceed through a customary inductive

argument. Conversely, suppose that α1, ..., αn �√′qW α. Then, at least one

of the conditions (1)-(3) in Theorem 42 obtains.

If (1) holds, then either α =
√′(m)

(β → γ) for some formulas β, γ and

some m ≥ 0, or α = 0 or α = 1; moreover, α1, ..., αn �CW α. If α =√′(m)
(β → γ), by Lemma 46 α1, ..., αn �√′q�L

√′(m)
(β → γ) ↔ 1, whence

our conclusion follows applying Lemma 47. If α = 0 we reach the same

conclusion by Lemma 48, while if α = 1 (A5) suffices.

3Observe that the (MP*) step is the only locus in our proof where the inductive

hypothesis is actually used.



32 PETER JIPSEN, ANTONIO LEDDA, AND FRANCESCO PAOLI

If (2) holds, we must show that α1, ..., αn−1,

√′(k)p �√′q�L

√′(m)
p. Since

k ≡ m (mod 4), either k = m (and so there is nothing to prove) or our

conclusion can be attained by (Inv).

Finally, if (3) holds, we can assume that α1, ..., αn−1,

√′(k)p �CW 0. To

show that α1, ..., αn−1,

√′(k)p �√′q�L

√′(m)
p, we apply Lemma 48 to get

α1, ..., αn−1,

√′(k)p �√′q�L 0,

whence by (Flat) α1, ..., αn−1,

√′(k)p �√′q�L

√′(k+1)
p. From here, we proceed

to our conclusion by as many applications of (Flat) and (Inv) as needed. �

.7 Cartesian
√′qMV algebras and Abelian PR-groups

Abelian PR-groups were defined in [10] as an expansion of Abelian �-groups

by two operations P,R that for C behave like a projection onto the first

coordinate and a clockwise rotation by π/2 radians. It was proved that: a)

every Cartesian
√′ quasi-MV algebra is embeddable into an interval in a

particular Abelian PR-group; b) the category of pair algebras is equivalent

both to the category of such �-groups (with strong order unit), and to

the category of MV algebras. As a byproduct of these results a purely

group-theoretical equivalence was obtained, namely between the mentioned

category of Abelian PR-groups and the category of Abelian �-groups (both

with strong order unit).

Although these results shed some light on the geometrical structure of

Cartesian
√′qMV algebras, as well as on their relationships with better

known classes of algebras, they suffer from a shortcoming. In fact, the

classes of objects in the above-mentioned categories do not form varieties,

whence the connection between these theorems and the general theory of

categorical equivalence for varieties [18] remains to some extent unclear.

In particular, the fact that pair algebras are generated by Sr does not

translate automatically into the fact that the variety of Abelian PR-groups

is generated by the standard PR-group over the complex numbers. Here we

prove a categorical equivalence for a larger variety of negation groupoids

with operators, which includes Abelian groups and Abelian �-groups. This
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result restricts to an equivalence between Abelian �-groups and Abelian PR-

groups, whence we can derive that the complex numbers actually generate

the latter variety.

Definition 50. An operator with respect to the signature 〈+, 0〉 is an
n-ary operation f that satisfies the identities

f(x1, . . . , xi + yi, . . . , xn) ≈ f(x1, . . . , xi, . . . , xn) + f(x1, . . . , yi, . . . , xn)

and f(0, 0, . . . , 0) ≈ 0.

Definition 51. A negation groupoid with operators is an algebra A =

〈A,+, 0,−, f1, f2, . . . 〉 such that the identities x+0 ≈ 0+x ≈ x, −(−x) ≈ x

are satisfied and −, f1, f2, . . . are operators. A projection-rotation groupoid

with operators, or PR-groupoid for short, is a negation groupoid with oper-

ators 〈A,+, 0,−, f1, f2, . . . , P,R〉 (so P,R are also operators) such that the

following identities hold for all x, x1, . . . , xn ∈ A and i = 1, 2, . . . :

1. P (−x) = −P (x)

2. Pfi(x1, . . . , xn) = fi(P (x1), . . . , P (xn))

3. PP (x) = P (x)

4. RR(x) = −x

5. PR(fi(x1, . . . , xn)) = fi(PR(x1), . . . , PR(xn))

6. PRP (x) = 0

7. P (x) +−RPR(x) = x

Every negation groupoid A with operators gives rise to a PR-groupoid

F (A) = 〈A×A,+, 〈0, 0〉,−, f1, f2, . . . , P,R〉 where +,−, fi are defined point-

wise, P (〈a, b〉) = 〈a, 0〉 and R(〈a, b〉) = 〈b,−a〉. The operator identities and
(1)-(5) are clearly satisfied, and checking (6), (7) is simple: PRP (〈a, b〉) =
P (〈0,−a〉) = 〈0, 0〉, while

P (〈a, b〉) +−RPR(〈a, b〉) = 〈a, 0〉+−R(〈b, 0〉) = 〈a, 0〉+ 〈0, b〉 = 〈a, b〉.
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Theorem 52. Given a PR-groupoid A = 〈A,+, 0,−, f1, f2, . . . , P,R〉,
define G(A) = 〈P (A),+, 0,−, f1, f2, . . . 〉. Then G(A) is a negation groupoid

with operators, and the maps e : A → FG(A) given by e(x) = 〈P (x), PR(x)〉
and d : B → FG(B) given by d(x) = 〈x, 0〉 are isomorphisms. Moreover

F , G are functors that give a categorical equivalence between the algebraic

categories of negation groupoids with operators and PR-groupoids.

Proof. e(x+y) = 〈P (x+y), PR(x+y)〉 = e(x)+e(y) and e(0) = 〈0, 0〉
since P,R are operators. Similarly e(−x) = −e(x) and e(fi(x1, . . . , xn)) =

fi(e(x1), . . . , e(xn)) follow from (1), (2), (5). The homomorphism property

for P , R is computed by

e(P (x)) = 〈PP (x), PRP (x)〉 = 〈P (x), 0〉 = P (〈P (x), PR(x)〉) = P (e(x))

e(R(x)) = 〈PR(x), PRR(x)〉 = 〈PR(x),−P (x)〉 = R(〈P (x), PR(x)〉)
= R(e(x)).

If e(x) = e(y) then P (x) = P (y) and PR(x) = PR(y), so (7) implies

x = y, whence e is injective. Given 〈P (x), P (y)〉 ∈ FG(A), let z = P (x) +

R(−P (y)). Then

e(z) = 〈PP (x) + PR(−P (y)), PRP (x) + PRR(−P (y))〉
= 〈P (x) +−PRP (y), PP (y)〉
= 〈P (x), P (y)〉

hence e is surjective. Similarly, checking that d is an isomorphism of nega-

tion groupoids with operators is straightforward.

For a homomorphism h between negation groupoids with operators,

we define a homomorphism between the corresponding PR-groupoids by

F (h)(〈a, b〉) = 〈h(a), h(b)〉. Likewise for a homomorphism h between PR-

groupoids, let G(h) be the restriction of h to the image of P , then G(h)

is a homomorphism of negation groupoids with operators. Moreover, it is

easy to check that F,G are functors. �

Corollary 53. The varieties of negation groupoids with operators and

PR-groupoids are categorically equivalent. The equivalence restricts to Abe-

lian �-groups and Abelian PR-groups, whence the variety of Abelian PR-

groups is generated by 〈C,∧,∨,+,−, 0, P,R〉, where 〈C,∧,∨,+,−, 0〉 is the
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�-group of the complex numbers (considered as R2), and P , R are defined

by:

P (〈a, b〉) = 〈a, 0〉 ;
R (〈a, b〉) = 〈b,−a〉 .

We note that this result does not apply (in the current form) to non-

Abelian (�-)groups since the assumption that − is an operator in a group

implies that + is commutative4.
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