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81 X est localement compact, on o alors les égalités:

C(TX X) = C(T, C(X)) = &F((T; #), aCy(X)) = &F((T; ), Hom (X; %)
=T X X; AR K)

d’aprés 4.5 et 3.4.
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Atomic compactness in w-categorical Horn theories
by
John T. Baldwin (East Lansing, Mich.)

Abstract. Theorem, If T' is an almost strongly minimal VI Horn theory then every
model of T 48 atomic compuact, .

Myecielski [7] introduced the notion of an atomic compact algebra.
A gtrueture s is atomic compact if each class X of atomic formulas (pos-
sibly with constants naming clements of ) which is finitely satisfiable
in # is satisfiable in /. Atomic compact structures have been intensively
investigated e.g. [8, L1]. Taylor’s recent paper [10] contains an extensive
bibliography on atomic compact structures.

Wo were struck by the remark in [7] that all divisible Abelian groups
were atomic compact, This meant in particular that every model of the
complete &;-categorical theory of infinite, torsion-free divisible Abelian
groups was atomic compact. We sought sufficient conditions on a com-
plete first order theory ' for all its.models to be atomic compact.

We found a narrow class of &, -categorical first order theories which
satisfy this condition. These are the almogt strongly minimal, model
complete, Horn theories. Various properties of almost strongly minimal
theories are investigatied in [1, 2]. A theory T is model complete if every
submodel of a model of 7 is an elementary submodel. A Horn theory
is one axiomatized by Horn sentences. We rely on the fact [9] that the
class of models of a Horn theory is closed under direct power. Various
examplos of theoriey of the type we are considering are given in [5]. This
paper agsumes familiarity with [11], sections 1 and 2 of [4] and the first
section of [1].

We deal with structires 4 which may have both relations and function
for & first order lnnguage L. The logical connectives of L are —», A, V,
~, V and . A formula A is existential (L-formula) if it is equivalent
t0 a formula in pronex normal form all of whose quantifiers are existential.
A i3 an V@ formula if it is equivalent to a formula in prenex normal
form whoge profix consists of a string of universal quantifiers i?ollow‘fed
by a string of existential quantifiers. A McKinsey formula is a eonjunetion
of atomic and negation of atomic formulag (neg-atomic) at most one of
which is atomie. A Horn. formula is a formula in prenex norraal form.
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whose matrix is a conjunction of McKingey formulas. A primitive formuls,
is & H-formula whose matrix is a conjunction of atomic and neg-atomic
formulas. A formula is positive if it contains no implication or negation
symbols. A formula is negative if it is the negation of a positive formula,

Let # be an L-structure we say « set X s definable in £ if there is
a formula 4 ¢ 8,,,(L) and elements a, ..., ay € || such that

X={ac|t] AFA(a,a,, .., a0} = A(vg, by, ..., an) () ,

If we have chosen 4 e 8,(L(+)) we may write .4 () for the set of members
of |#| satisfying £. We can mnaturally embed 4 in the countable direet
power of 4 by the diagonal map. For each @ e |4 wo let @ be the image
of ain £°. If A e8(L()), 4 is that memher of 8,(L(4%)} obtained by
substituting @ for . In the following lemma we colleet some relationships
between the cardinality of A (%) and X (4).
_ Lmawa 1.1) If A e 8(L()) is @ Horn formula and |A(#) >1 then
A(A°) is infinite.

ii) Let BeS8yL(#) be a formula of the form Wy, ..., Ho,BAB,
where B, is neg-atomic and B, is o Horn formula. If

£FHu, ..., Ho, Ty, ﬂ"’n+z(’”n+1 #* 'Un+z/\Bl('Un+1)/\Bz('”n+1)/\Bz("’n+2))
then B(4%) is infinite '

iii) Let B e 8)(L(4)) be a formula of the form B,AB, where B, is the
negation of a positive primitive Jormula and B, is a Horn formula. If
B(#) # O and |By#)| > 1 then B(4°) is infinite.

Proof. i) Let b, # b, e |#4| such that EAD)AA(D,). Let fres”
be defined by

. b, for j<i
i) ={" =
by for j=i.
Then for each ¢ 42 k Z(f,).
ii) Let b, # b, ¢ |4 such that

& FTo, ..., WonBy(B,) A By(by) ABy(by) -

Defil?f Ji as in i). Once again 4° k B(fi) for each i.
1if) Ohoose b s b, e |#| such that

AEB(by,a, ..., ) ABy(by, @y, ..., )
and proceed as in i) and i)

For the rest of the Daper we deal with an almost gtrongly minimal
theory T'. Applying the definition (1] we fiz a principal emtension T' of T
and a sirongly minimal formula D in L(T') such that if £F T, |#|
= cl{D(4)). We assume l(@) ~ D(#) is infinite for each model 4 of 1",
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If T is model complete so is 1. Moreover, if T is 8 model complete Horn
theory the class of models of 1" is closed under direct power. If T' is model
complete we may further assume that D iy a primitive formula, For,
since T is model complete D iy equivalent to an existential formula,
Thus D is equivalent to a disjunction of primitive formulas. One of the
disjuncts say A defines an infinite set such that DA ~A(4) is finite
since D is minimal. We take 4; ag our strongly minimal formula.

We say that the set X is a sirong basis for the model # if for each
a ¢ || there is a primitive formula A, €8,,,(L) and elements Lyy eey @
of X guch that

Ao E Aa(ay @y, ey 0 AT 20 A o(vg, @y, oy )

Tor the rest of the paper we assume T is an almost strongly minimal
Horn theory dnd I" is chosen as specified above. Note that by Lind-
strom’s Theorem [6], T' is model complete.

THEOREM 1. If 4 is a model of 1" and X is a basis of D(4) then X is
a strong basis for . ,

Proot. By [4, Lemma 8]  is prime over X. For each a « || let Ag
be the element of 8,,,(L) such that there exist @, ..,%,¢X and
Ao(Vyy @y ooy @y) generates the prineipal type in Th(#, X) realized by a.
Then ag 7" is model complete and A, generates a principal type Aq can
be chosen to be a primitive formula. Since .4, generates the prinecipal
type realized by @ in Th(#, #) and since |#|= cl(D(A)) there exists an -
integer &k such that

A E Ay @yy ery 0n) NE V0 A (D, By eny Tn) ©

If | da(vy, @y oonp @n)(4)] >1 or some conjunct of 4, is negative then
Au(Vyy By oy Ty) (4°) 15 infinite. This result-follows from Lemma 2 noticing
in the first ingtance that A, is a Horn formula and in the second that
taking the neg-atomic conjunct for B, and the remainder of Aq _fo’r' B,
that the hypothesis of Lemma 1 (i) holds (as A, generates a principal
type). Thus X is a strong basis for .

Note that the choice of 44 is unigue up to equivalence. o

CororxaRY 1. Every non-saturated model of an almost stvongly mini-
mal V& Horn theory has at most %, automorphisms.

Proof. T ig s,-categorical so by Lindstrom’s theorem [6] T is modgl
complete. Hence by Theorem 1 if 4 F I’ and X is a basis .for D(#) X is
a gtrong basis for £ By [4], if 4 is unsaturated X is finite. Hence by
[8, Theorem 2] + has at most 8, automorphisms. By [3, Lemma 1] the
reduct of # to a model of T also has at mogt &, antomorphisms. Sllzlfze
each model of T ig saturated if and only if its expansion to a model of " is,
the result is now immediate.
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Following [11] we say a substructure £ of a structure $ is a retract
of B if there is a homomorphism f from B onto # such that fls=1,.
. TuEOREM 2. If & and B are models of T and &< B then + is re-
tract of B.

Proof. We first show thab if £, % are models of 7' and 4 < % such
that X is a basis for D(£) and X w {y} is a basis for D($) then 4 is a re-
tract of B. Fix any # € cL(@) n D(4). Leb f(2) = » if # ¢ X and let f(y) = ».
We will show f has a unique exftension to a retraction of $ onto £. To
extend the domain of f to all of [B| note that by Theorem 1 and the
remark thereafter for each b ¢ |%| there is a unique formula Ay, o unique
integer », and o unique seb of n elements @, ..., #, from X U {y} such that

BEAy(by vy ooy 0a) N M0y A (0, By oy )

Moreover y is among @, ..., o, if and only if be [B|—|#|. If be || let
f(B)=0b. It b ¢ |#| choose f(b) such that

£k Ab{f(b); Bry veey By, z)

where without loss of generality we assume y = @,. In order to show f
is well defined it suffices to show

A b W0 Ap(vgy 1y ey Byy_yg,y #) .

Let  B(v) = o do(vy, @1, oo.y Bn, ) AD(vy). Simee y ¢cl(X) B(B) and
hence B(«#) is infinite. Let Oy(ny) = v, As(v;, @y, .., @a, v,) AD(1,). Sinee
4y is a positive primitive formula and D(#) is infinite if Oy(#) £ @ by
Lemma 1 iii) Cy(%*) is infinite. But this contradiets the minimality of
D(%°) as B < B implies B(B”) is intinite. So Cy(4) = &. The formula
B>Y0, Ap(v1y @y, oeey By_y, 9) AD(9,) abbreviatoes .

C () = Ho, Toslwy # 0,A Ao(vy, @y, ..y ‘-757»—-17 Do) A (e, @1y ey ) AD (1g)] .

Since |D(#4)| >1 we can apply Lemma 1 ii) to CO(wy) anil conclude
by a similar argument to that for C, that 0(#£)=@. Thuy

7 & Vo[ D(v)— Ty (vy, @, ... 5 @1y Vo))

and in particular # F B, 4 (v,, 2y, ..., Bp_yy#). Thus f is & map from |3B)
onto |A| = 1.

- It remains to show that f is a homomorphism, That is if by, ..., by € ||
and'R is an n-ary atomic formula such that % F B(by; ..., by) we must
show Bk R(f(b,), vy f(bn)). Lt Ay, .., 4, be the positive primitive
formulas generating the prineipal types of by, ..., b, e Th(B, X u {y}). We
may assume that A4, and A4, contain distinet bound varigbles if i #]
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and that the same set {z,, ..., Zm} Oceur in each 4. I ¥ is in this set let
it be @p,.

n
BEVo, ..., Vv,.[/\ Aive, By, oney T)>R (0, ..., vn)] .
=1

It y¢{oe, .., an}, £FR(f(b), wor f(0n)). I y € {@y, .., 7m} we want to
show # k C(2) where

n
C(vo) = Vuy, ..., Vou[ A Ai(vr, 2y, ooy By 3 V) >R (Vyy ooy )] .
n=1

If

n
B(v) = oy, ..., Mol A dilvs, @, ..., 7,,_,, V) AR (g, vy Um) A D ()]
=1

n
and B(+4) # & then by Lemma, 1 ii) (noticing that A Avi,z,, ... s Bpnyy Vo) A
i=1

AD(vy) is equivalent to a Horn formmla) B(A%) is infinite. That is, if
4kt ~C(2) then ~C(v)AD(v,)(4%) is infinite. On the other hand
BEC(y) and y¢cl(X) so ¢ (vo) AD(v,) (B) is infinite. Taking a common
elementary extension of % and +, this contradicts the strong minimality
of D. Thus f is a homomorphism.

It is now easy to establish by induction that if A, B are models of 7"

A& < B, and B has finite dimension over #, i.e. X is a basis for D(#), ¥ is

a basis for D (%) extending X, and |Y—X] is finite, then + is a retract
of B. Moreover the retraction is determined by taking each member of
Y—X into a fixed member 2 of .

Now let B be an arbitrary elementary extension of 4. Let X be
& bagis for D(#) and X U {y,),-, be a basis for D(%). Then the mdp f de-
fined by fixing each member of £ and taking each <¥,Y,.; to a fixed 2 e ||
is the required retraction. To verify this notice that each finite subset
of $ is contained in an elementary extension of 4 which has finite di-
mension over .

Trmorem 3. If T is an almost strongly minimal model complete Horn
theory then every model of T is atomic compact.

Proof. It is immediate from Theorem 2 and Theorem 2.3 of [11]
which agsserts that a structure #£ is atomic compact if it is a retract of
its every elementary extension, that each model % of 7 is atomic compaet.
But then so iy the reduct of $ to a model of 7.

COROLLARY 1. If T is an almost strongly minimal VE Horn theory
then every model of T is atomie compact.

Proof. By Lindstrom’s Theorem [6] T is model complete and the
tesult follows from Theorem 3.
18 — Fundamenta Mathematicae LXXXIII.
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CoROIIARY 2. If T is a universal Horn theory and T, th? theory of
the infinite models of T is complete then every model of T is m:‘om'i,G c({mpaot.

Proof. All finite structures are atomic compact so it guffices to
consider the models of 7’. By the main theorem of [B] 1" is sl-catego?iqal.
By the corollary to Theorem 1 of [B], 1" is almost strongly minimal.
7 iy model complete by Lindstrom’s theorem and the result follows.

The situation regarding possible strengthenings of the last three
results is clarified by noticing that the last example in [4] has the following
properties. T is a VE %, -categorical Horn theory which is not almost
strongly minimal but each model of T is atomic compact.
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On limit numbers of real functions
by

Jacek Marek Jedrzejewski (£.6d7)

Abstract. In this work is given a general way of introducing of limit numbers
for real function of real variable. With every real number is comnected some family of
sets fulfilling two natural eonditions. They assure that for arbitrary funection at every
point » there exists at least one limit number and the set of all limit numbers at a point
% is closed. By adequate adjustment of the family 8 one can get usual limit numbers
or approximate limit numbers. The main results of the work are concerned with the
questions of: the set of points of B-asymmetry, connections between the ordinary
continuity and %B-continuity and 8 semicontinuity of wpper and lower B-functions
of Baire. ‘

Introduction. The aim -of this work is to generalize the notion of
limit numbers and approximate limit numbers and to find some pro-
perties of these generalized limit numbers. To obtain this it will be con-
venient to use the following definition: )

If f: R—>R and @, ¢ R, where R denotes the set of all real numbers,
then ¢ is called the limit number of f at , if and only if, for every ¢ >0,
@, is a point of accumulation of the set {w: |f(z)—gl< e}.

The starting point of my considerations is the following remark:
the family B of all sets having z, as a point of accumulation have the
following properties:

(1) every set including the set from B also belongs to B,
(2)y it ByuB,e®B, then B, ¢B or F, B,
(8) it B, B, then for every t>0 also By (w,—1t, #,+1) ¢ B.

There is a very similar situation in the case of approximate limit numbers.
Now B is the family of all sets for which =z, is not a point of dis-
persion.

The foregoing generalization will depend on making use of rather
arbitrary families of sets fulfilling only conditions (1)-(3). These con-
ditions seem to be natural, because the set of limit numbers of an arbitrary
functions at every point obtained by means of them is non empty and
closed. .
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