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Nonsymmetric weakly complete G-spaces
by
B. B.Phadke (%) (Toronto)

Abstract. The theory of G-spaces which include complete Finsler, and hence
Riemannian, spaces was developed by H. Busemann. Busemann and, later, Zautinsky
investigated nonsymmetric distance in finitely compact G-spaces. The present paper
develops the basic theory of spaces with only a weaker compactness condition (which
implies weaker geodesic completeness). A class of examples of these spaces is also
constructed. The last section extends the topological property of noncontractibility
of small spheres to weakly complete G-spaces of finite topological dimension. Many
of the methods apply to the study of locally compact spaces also.

1. Introduction. A geometric axiomatie theory of complete Finsler
spaces with a symmetric distance was developed by H. Busemann in
"he Geometry of Geodesics and was brought up to date by him in Recent
‘Synthetic Differential Geomelry, see [3] and [5]. When the distance oy is
not symmetric, completeness can be given a strong or weak form: both
the balls pz < ¢ and ap < ¢ are compact or only the balls pz < g, say,
are compact. The theory for the case of strong completeness was studied
by H. Busemann [2] and developed principally by Zautinsky [10]. Here
most arguments earry over without serious difficulties from the sym-
metric spaces. Section 6 of the present paper where we prove the non-
eontractibility of small spheres p» = o in finite dimensional spaces provides
an example: here considerable complications stem from the lack of Sym-
metry rather than completeness.

Entirely new phenomena appear in weakly complete spaces when
questions in the large are considered. Precise formulation would make
this introduetion too long so we mention merely the following: A com-
plete geodesic has the form #(f), a < £ << oo, if ¢ is arclength, where a may
be finite or —oco. I &,(f) (v=10,1,2,..; a,< < o0) are geodesics and
2,(f) > @y(t) for ¢ > 0, it does not follow that a,->ay, only limsupae, < a,.
‘We discuss in detail, therefore, prolongation of segments and the con-
vergence of extremals which are the topies of sections 3 and 4. In section 5
we counstruct a class of examples of weakly complete spaces and illustrate
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100 B. B. Phadke
the above phenomenon by means of these examples. In the last section
we discuss the topology of finite dimensional weakly complete G -spaces.

2. The axioms and examples. A set B with distance sy defined on
R X R is a general metric space (or 2 metric space v.vith a not necessarily
symmetric distance) if ay >0, oy =10 if and only if =1y, sy-+yz = x2
and w0 if and only if x>0 for any sequence {#,} in R. The last
eonditi(y)n allows us to use the topology induced by the symmetric metric
8(x, y) = max{xy, yr). When ay+yz= 25, we say that.y lvi?s betfween‘ b7
and 2 and denote this by writing (yz). The metrie xy is said to be in-
irinsic it the distance from p to ¢ is equal to the infimum of the lengths
of the curves joining p to g, see [5, page 3]; for spheres and balls we use
the following notation:

8*(p, o) = {ul po< g}, 87(p, o) = {ol ap < o},
E*(p, 0)={#| pv=o}, K™(p, o) = {a| @p= o},
8™p, 0)= S.”"(P: e) n87(p, @)

8¥(p, 0)= 8*(p,0) v 87(p, 0) .

For a set 4, 4 denotes its topological closure. In an intrinsic metric space
we always have St=§8*uUE* and S~ =8 v K™, see [5, page 3]

A general metric space R with an intrinsic metric is said to be a non-
symmetric weakly complete G-space if all the closed balls pz < ¢ are com-
pact and if the following two conditions hold:

(i) Loeal prolongability: Every point p has a neighbourhood
U(p) such that for =,y e U(p) there exist points w,v such that (uxy)
and (syv). :

(i) Uniqueness of prolongation: (wyw) and (wyv) witl} Yyu = Yo
implies % = v and (way) and (swy) with wz = 22 and @ # y implies w = 2.

Featherstone [7] calls these spaces spaces with nonsymmetric distance
and compactniess because only the positive balls are assumed to be com-
pact. This is also called semi-finite compactness. Since this weaker con-
dition of compactness implies a weaker geodesic completeness we call
these spaces weakly complete spaces.

Because of the compactness of all closed positive balls, for any two
points p, g a curve T(p, q) joining p to g and of length pg exists, see
[8, page 31. We say that T(p, q) is a segment joining p to ¢ and represent
it always as #(¢) with ¢ as the arclength so that »(t)a(s) = s—1%, s >1
When U(p)= R for all p ¢ R the space is said to be a straight space.

‘We note that we could also define locally compact G- spaces to be locally
compact general metric spaces with an intringic metric satisfying con-
ditions (i) and (ii) above. In fact the results of sections 3, 4 and 6 below
remain valid in such space with little change. However we stick to the
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case with all pz < o compaet because interesting examples have so far
been found only in this case.

Since our definition of nonsymmetric weakly complete G- spaces
does not exelude the case of symmetric distance or finite compactness
(ie. both ps< o and zp < p are compact), our spaces include all the
G-spaces and hence complete Finsler spaces with symmetrie distance,
Riemannian spaces, see [1] and [3], Minkowskian spaces with symmetric
and nonsymmetric distance [2] and [10], projective metric spaces [6]
and the quasihyperbolic spaces [4] and [10].

The Funk space (Geomeirie der spezifischen Massbestimmung dis-
covered by Funk [8]) is an example where only the balls pr < p are
compact. It is a metrization of the interior of a closed strictly convex
curve C in the euclidean plane with the metric xy = log[e(x, u)/e(y, u)]
where e(p, ¢) denotes the euclidean distance between p and ¢ and wu is
the point in which the oriented ray joining x to y meets the curve €. For
an account of some of the interesting properties of the Funk space, see
Zautinsky [10, Appendix I]. In section 5 we construct a class of other
examples of weakly complete spaces.

3. The radins of prolongation y(p). Because of the axiom of local
prolongability, we can assign to every point p a number g(p) > 0 defined
as follows:

o(p) = Sup{e] =,y e Sp, ¢) implies that there exist
u, v with (uzy) and (wyv)}.

From a general principle given in [3, page 33], it follows that o{(p) is
Lipschitzian in the sense that it satisfies |o(p)— o(g)] < max(pq, ¢p) for
all p and g, see also [10, page 11]. In finitely compact spaces, o(p) measures
the amount of prolongation from the left as well as to the right. In a weakly
complete space g(p) can no longer measure the amount of prolongation
of a segment from the left, we need a function y(p) different from p(p)
and also different from a function defined by Zautinsky [10, p. 13].
However, unlike p(p), our function y(p) will not turn out to be Lip-
schitzian in general, we can only prove that it is continuous.
To define y(p) we put -

y~(p) = Sup{e| $7(p, &) C 8p, o(p))} ,

7¥(p) = Sup{e| 8*(p, ) C 8"(p, o(»)},
and

7(p) = min{y~(p), y*(p)} -
We prove that y~(p) is continuous. Since the proof that y*(p) is continu-
ous is similar, this proof will imply the continuity of y(p).

7"
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3.1. Consider first the case when y~(p) = co for some point p. Then
for any %, p2, 2P < o(p). This means that for any two # and ¥ there exist
points % and v with (wyw) and (vey). Thus g(g) = oo for all g. Then y~(g)
— oo algo. Thus we have proved that y~(p)= oo for one point implies
y~(g) = oo for all points ¢. _

3.2. In view of the above, to prove y7(p) is continuous we may
assume that y~(p) < oo for all points p. First we show that for all ¢ >0,
there exists 8(p) >0 such that pg, ¢p < 8(p) implies y~(¢) < Yy (p)+e.

Since y~(p) < oo we can find a point 2 such that y~(p)+e >y~ (p)+
+&/2 > mp >y~ (p) and such that max(zp, px) > o{p). Therefore we can
find an # >0 with max(ap, p®) > 1+ (D). Take 0<< §<< 17, te. Since
lo(p)—o(q)] < méx(pg, gp) We have pg, ¢p<d implies max(wq,q)
> max(zp—qp, pa—pg) > ¢(D)+ I > e(@)— in+dn = o(g)+in. Alsowe
have 1g < @p+pq < y~(p)+ e+t < y7(p)--e. Thus pg, gp < & implies
@g < y~(p)~+ e Bubt max (g, ¢x) > elg), 80 that pq, ¢p < 6 implies y7(q)
< p7(p)-+e. This is half of the proof of the continuity of y7(p).

3.3. 'We must now show that for all & > 0 there exists § = 6(p) >0
such that pg, gp < 8, implies y~(g) >y~ (p)—e. We use the following
notations:

a =y7{p),

B = (1—2[k)yo(p) ,

Br= (1—1/k)e(p),

ax = Sup{e| 87(p, &) C 8*(p, fu)} -

Then clearly ax—>a as k—>co. . )

Now given ¢ >0, choose %k so large that a—e<< ap—1/k and take
0< 8< o(p)k. Then pg, gp <6 implies o(q) > px because le(p)—
—o(g)| < max(pgq, gp). Also xq<< oz—1/k implies xp <@g+ 9P < ar—
—1/k+1/k = ax. Therefore zp, pw < f; so that

g < gp+po< o(0)h+ = Br < 2(9)
and
wg < ap+pg< Prte@ik=fr<<o(g) .

Thus y~(g) > ax—1/k. Hence pg, gp << é implies y~(q) = ar—1/k >oa—sg,
ie. y7(g) >y (p)—e This proves the other part of the continuity
of y7(p).

That y(p) is continuous now follows as observed above because the
continuity of y*(p) can be proved similarly.

With the help of the function y(p) we can now state the following
results, we omit ‘the proofs which are obtained by methods similar to
those of [3, sections 6, 7] and [53, sections 1, 2].
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3.4. If 0 < gp < y(p) and a< y(p) then there exisis an r with pr =a
and (gpr). If 0 < pg<< p(p) and a < y(p) then there ewists an s with sp = a
and (spg).

3.5. If ©, 9« 8¥p, y(p)), then T(m,y) and Ty, x) are unigque.

3.6. If (pay), (2yq), = # 4, 0<py<y(y), 0<yg<y(y) then (pyq)
and (pxq).

We note also the following facts which will be used in section 6.

3.7. Given any compact set C and & >0 there ewists 6 >0 such ihat
z,yeC and zy < § implies yo < e.
3.8. If O is a compact set then inf{y(w)] e C}>0.

4. Extremals and their convergence.

4.1. DEFINTTIONS. A partial geodesic is a map x(f) of a connected
set 3 (containing more than one point) on the real line into the space B
such that for every point ¢ in the interior of A there is a 8(f) >0 such
that x(s)x(f) = s—% for s in A and 7+6(f) >s > 1. A partial geodesic
#(t): (a, B)—~R is said to be a mawimal partial geodesic or an extremal if
no partial geodesic y(f): (y,6)—>R exists such that (a,p) is properly
contained in (y, 8) and y(¢) agrees with #(f) on (a, f). An extremal (f) is
a straight line if x(¢)z(s) = s—1 for s > 1. Hence if p(p) = oo, all extremals
are straight lines and we say that the space is siraight.

4.2, Every partial geodesic can be estended to an ewiremal and this
extension 18 unigue.

Proof. The existence of the extension follows from the Zorn’s lemma
and the uniqueness can be proved as in 8.4 of Chapter 1 of [3].

4.3. Let x(t) and w,(1) represent extremals which are all defined in
a neighbourkood of a point t,. If t,—~1t, and x,(t,)—>a(t,) for every v then
x,(t) >z () and we have z,(1,) -z (i,).

The proof of this is ebtained along the same lines as in 8.11, Chapter 1
of [3].

4.4, Let x(t) and x,(t) be extremals defined in (ay, fy) and (a,, B,)
respectively. Suppose that (a, ) C (a5, fo) and (a, B) C(a,, B,) for each ».
FPurther suppose that z,—>z on some (a', ') C (a, ). Then z,~z on (a, §),
uniformly on compact subsets of (a, B).

Proof. Suppose, without loss of generality, that oe (o', §), and
consider the set V = {t| zn—2 on (0,1)}. We show that Sup¥V =17 > 8.
Pub za(t) = pu, (1) =9, p(p) =y, Lz B.

Since yp(z()—>y(x(r)) as {—v we can choose v < 7T such that
y(o(n) >3y and v—7, < 1y. Put (z;) = ¢ and @n(w) = ¢a- Since z,>2
on (0,7) and =, <<, ga—>g. Therefore y(gs)-—>y(g), so that there exists
an N such that n >N implies y(gs) > 3y (9) > % v > v
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Using a basic result (Sec. 3.4), we can find points ¢, ¢, such that
(909", (¢,2.9,) With p¢’ = %y, 9,4, = 3y. Let 7, be the parametric value
corresponding to ¢, g, i.e., 7p= 7+ 1y > 7. We prove ¢,—¢’. This is so
becatise 4, < §dn+ gud = @+ 3y (v— ), and since gg, 0, this shows
that the values gg, are bounded. By compactness of St(p, o) the se-
quence {g,} has at least one accumulation point while every accumulation
point must coincide with ¢’ because of the uniqueness of prolongation
on »(t). But ¢,—~¢ implies that m->2 on (0,7,) and since 7, > 7 thig
is a contradiction to assuming that SupV = 7< B. This proves that
2~ on (a, f) because we can apply a similar argument to the inter-
val (a, 0).

To show uniform convergence on compact subsets of (a, f) we usé 4.3.
For if convergence were not uniform on a compact subset W of (a, §)
we could find points 7, in W such that ,(z,)2(z,) = 7> 0. If 7,7 we
get a contradiction to 4.3 because x(v)#(v,) < |r—=,|. This completes
the proof of 4.4.

4.5. Under the same assumptions as in 4.4 if additionally oll B, =0
then § < liminfB,. A similar statement holds about the left hand end poinits.

Proof. If possible let a subsequence {8} exist such that g,z < B.
Let #(7) = p, and choose 7, << 7, < 7 With r = #(7,), ¢ = @ (z;) such that
y(9) > ¢y(p) = %y and such that v—7; < y. Then since @,—x for i<
by 4.4, we have g,—>q where g, = x,(7;), s0 that there exists an N such
that n > ¥ implies y(¢n) > $y(g) > F57(p) > 1y. Then for each n >N
there exists pn on w, such that (74¢npa) with 7, = Tn(Ty) and gnPrn = 3y,
Thus o, extends at least up to v,-+3y >7+1y implying #, > v+ 1y for
each # > N. This however is a contradiction to P71 < T+ 1y.

4.6. If x,(1) represents an extremal, vy =1,2, ..., and if for a sub-
sequence {m,(t,)}, ©,(t)—~>q as g->oo, then {&,} contains a subsequence which
converges to an exiremal . If x is defined on (a, ) then the convergence is
uniform on compact subsets of (a, f).

; Proof. By local compactness there exists a t, >1, and a sub-
sequence {#} of {u} such that z,(4)>¢q say. Let z(t) be that extremal
which joins ¢ to ¢. Then #,(¢) > (f) on (ty, t,). The rest follows as in 4.4
and 4.5 above.

4.7. By the Hopf Rinow theorem [5, page 4], when S8%p, o) is com-
pact for all o >0 we have a = — o and B = oo, for each extremal and
the space is geodesically complete. When only the spheres paw < o are
compact we still have = co go that only the part about the left hand
end points in 4.5 remaing significant. However we proved 4.5 for both
the end points a and # so that our results remain valid in the locally
compaet case also. The example of an open disc punctured at a point
in the euclidean plane shows that the statement f <liminfg, cannot
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be improved to g = lim3,, in the locally compact case. The corresponding
inequality limsupe, < @ regarding the left hand end points can also not
be improved in the weakly complete case, this is shown by examples in
section 5.

In view of the above, we formulate the following property of geodesic
continuity for a space B. We say that the space is geodesically continuous
if lima, = o and limj, = g for all sequences {z,(f)} of extremals such
that », is defined on (q,, 8,) and z,(f)—=(f) on an interval (—e, &) where
x(t) is also an extremal defined on (e, 8). In section 5 we give an example
of a space which is not geodesically continuous. :

5. A class of examples. In this section we construct a class of examples
of nonsymmetric weakly complete straight G-spaces. We prove that
given a family of curves satisfying certain conditions in the euclidean
plane we can metrize the plane as a weakly complete space with the
given curves as extremals. This metrization is obtained by suitably
modifying a method of H. Busemann, see [3, section 11]. We state the
theorem:

THEOREM. In the plane P with an associated euclidean metric e{x,y),
let a system X of curves be given with the following two properties:

I. BEach curve in X is representable in the form p(t), —oo < i< o0,
such that p(ly) % p(ts) for &, # 1, and e{p(0), p(f))—>o0 as |t]—oo.

II. There is exacily one curve in X throught two given distinet points of P.
Then P may be metrized as a nonsymmeiric straight space such thai the
curves in X are the extremals and such that all §H(p, o) are compact while
not all S~(p, o) are compact.

Proof. We only outline the modifications necessary. Since the family
of curves X is the same as in [3, Theorem 11.2], all the topological pro-
perties of X carry over. We therefore obtain a countable collection of
simple families @, , ¢y, ... such that the unjon of the curves in these families
is dense in X. Let each family be parametrized by means of a monotone
continuous parameter and denote by ti the parametric value of the curve
through @ in the ith family. We may assume that |ti|->oco when e(z, 2)
and 4 simultaneously tend to infinity where z is a fixed point and also
that |tf] < m(2) < oo for all i. (The specific parametrization used in [3],
for example, satisfies these two conditions).

Let f be a strictly monotonie, bounded real valued. continuous
function defined on the entire real line and pub

. 1
@, 9) = [FE~FE), w9 = D Znda, 1) -

Tt can be shown, as in [3], that 8 is a metric in terms of which é(z, y)+4-
+6(y,2) = d(z,2) if and only if #,y,2 lie on & member of X in that
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order. However 6(2, y) < 2m if |f(u)| < m for all u, so that § is neither
finitely compact nor semifinitely compact. We therefore add another
compatible metric to d(z, y).

For this metrie, choose two positive real valued continuous functions
h(t) and g(t) defined on the real line such that h(z) strictly increases and
tends to co as t—co and g(f) strictly decreases and tends to oo as t—>— oo,
Define, for every integer 1,

0@, 9) = h(t)—h(th) it >4
and

@, y) = g(t)—g(th) it
‘We show that d; is a general (nonsymmetric) indefinite metric by showing
that 0; satisfies the triangle inequality.
'Let @y, W, B3 be any three points and 4,4, 4, be the numbers
15, %, 1% respectively. Put hy = h(A)—h(i;) and g1s = ¢(A)— g (). There
are in all six different cases for the relative magnitudes of 4, s Aoy A3 We
can prove that 8i(a, @)+ Sul(2s, 45) = 6u(w,, @) in each of these six cases.
We omit the details of this verification.
‘We malke use of these metrics d; to obtain nonsymmetric compactness
in the following manner. Let 2 be a fixed point in the space and let NV, de-
note the dise{w| e(ex) <'»}. For every positive integer » we can construct,

as in [3], using the topological properties of 2, a X-convex polygon
B

Q.=1U1 T{@s; #141) With @, , = @, containing ¥, in its interior. Let

Bt

Jr,1),5(»,2), .., (v, B(») be the indices of simple families contain-
ing g, where g, is the extremal eontaining T(®,, #141). Let {i} be a single
subscript indexing of the collection of indices of families used to con-
struet {J@,. Put

b(v) = Min{ai(z7 o)l we@,, i=j, 1),5(»,2), --':.7.("'1 /3('”))}
and .
V) = Max {3, a)] @ e, , i (v, 1), (0, 2), ., ils, £5)) -

Then, in view of the condition [#|-> oo as (2, ) > oo and i—00, b*(v) > o0
38 00, 50 that b(»)> oo also because b(») = b*(»). Let ¢(») be any func-
tion defined on {0, o) which increases to co as y—» co. We define

[ =
i, B2’

l b(v —b(y Mh_—_l_h—
l¢( )+ ”)[ b [, B2’

sﬁ(w’ y) =

H0<t<$b(w),
p(7) =
] otherwise.

F(#Blr))
vibi@,y)  and oy =s(0,9)+ Y 60, 9) .

A=(y,1)
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Since y, are convex functions, oy is a general metric. We show that zy has
the required properties.

First, given two points «,y there exists m(w, y) such that iz, y)
< m(z,y) for all 4. Since b(v)—>oco, there exists » such that m(z,y)
<< $b(») for all » >», and », such that #, y €@, for all » > »,. Then z,(z, y)
< m(2, 9)/2” for all but a finite namber of » and therefore zy is a finite
number.

Since p, is a monotone function of v the same argument as in [3]
shows that with respeet to the distance zy, the members of X are the
extremals. We show that with this distance zy all S*(p, ) are compact
while not all S~(p, ¢) are compact.

Let e(z,on)>o0 as m—>oo and let G >0 Dbe given. Then since
o(b(»))>o0 as oo, there exists »* such that o(b(») > G if v < ». Let
v =41, Since ¢(z, @)oo there exists an n, such that @, ¢ Q5 if n > n,.
Hence &z, ) =b() if n>ng, for A=j@,1), j,2),..,iF k).
Therefore &5(z, 22) >¢(b(»)) > @&, for all n>n,. Thus 2z, >G for all
n >mny. Hence e(z, #n)—+oco implies z#,~>coc. Therefore all S¥(p, g) are
compact.

On the other hand, if [ifj < m(z) < oo then for any x and any 1,
0i(@, 2) < max[kh(m(z)), g(m(2)}]. Thus there exists a »=3(z) such that
di(x, z) < 3b(v) for all » >». Consequently xz < %(z) < oo for all z. Hence
S=(p, o) are not 2ll compact.

This completes the proof of the theorem.

We note that the above method also gives us examples which do
not have the property of geodesic continuity. For example consider the
ordinary plane with ordinary straight lines forming the family X and
consider a line L passing through a fixed point z. Let the family ¢, consist
of lines parallel to L. Let {L,} be a sequence of lines through z converging
to L. Since none of I, is in ¢, , while I, intersects each line of the family ¢,
(consisting of lines parallel to L), we see that the contribution to the
metric length of each I, from 7, is positive and bounded below away
from zero while 7, makes zero contribution to the length of L. Thus the
corresponding metric is not geodesically continuous.

In the above metrizations the curves are extremals traversed in
both the orientations. A space with this property is said to be a space
with reversible extremals. Given a family of curves X in the euclidean
plane such that there is exactly one oriented curve through every ordered
pair of points can we metrize the plane as a weakly complete G-space
such that the two curves through a pair of points are extremals one in
each direction? This problem is so far unsolved.

6. The topology of finite dimensional spaces. In this seetion we show
that the finite dimensional weakly complete spaces share with the finite
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dimensional G-spaces the property of mnoncontractible small spheres.
Our arguments based on an idea in [5, page 16] become quite complicated
but they remain valid for the locally compact case also with very little
change. The spaces in this section are assumed to be of constant topo-
logical dimension. We first prove the following:

6.1. THROREM. Let o > 0 and S*(p, ¢) C 8"(p, o(p)). Let q be a point
of 8¥(p, o). Then K*(p, o) is a strong deformation vetract of 8*(p, o)—{g}.

Proof. The proof is quite long. We first note that if g= p then the
required deformation retract iy obtained by means of segments T'(p, ).
with @ e K*(p, o). To consider the case when ¢ # p we use the following
notation:

e, =inf{y(@)| z <8 (p, o)} }0, because of 3.8 above since S*(p, o)
' is compact.

s = L&, and points py= P, Py, Psy -y Pn=¢ on T{p,q) are chosen
in such a way that p;p; .+ P;..0: < &. This can be done by
using 3.7 above.

& = MAX(P;Piyyy Piy1Pe)y ¢ =0 to n—1.
g = min(¥ey, o—pg)-

By = {#| Pra2+ 0% < Pr1Put+ests

Fr = (@] ppa@+app=pya0stes,

Gr = g+(p, o)—Ey .

o

Before we take up the proof of the theorem we need the following facts:
(1) B:C 8*(p, o)
Proof. » e E; implies p2 < ppit+piz <
+P:Piat+ e < Pgtea < o Hence z <« 8%(p, o).
(i) 8"(p1, $e) C By
Proof. ITf = e 8™(p:, $e)
S PiaPit e )
(i) 8™pe, bea) C By
PI‘OOf H T e S(pw leé) T’hen P1W+a’ip¢+1 <?1m+wpt+p1p1+1 < 34+
+D:iDisa-
(iv) 8% (Digry $61) D By
Proof. If p,, v > §e then piw >
=der >te 6 > P00+ 6.
(v) 87(piy1, 261)D Bips
Proof. Let #p,,; > §e; then piat+ap,,, =
(vi) Eﬁ'-l =B, vy,

PP+ Pid+ 0Py < PDi+
then p; &+ ps < poaPit+pi@+ op;
:p1—‘-1$ p’L-{ lpm = %3 "“82 I %81

fe1 > +he > pipi+ e
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Proof. If 7e K~ (pyys, $o1), "iss = 361 < ¥(Psy,) then the segment
T(r, psy) is unigue. Therefore beeauae of (v) above it suffices to prove
that T'(r, p;y,) meets F,;,; in a unigue point.

Now if u,ve I(r, p;zq) With (uvp,,,) then pot-vp,,, < p;u-t+ uv+
+ D5 = P2+ up;,. Thus as o traverses T'(r, p;.,)ps+ap;., de-
creases from p;r+rp,,, which 18 29,9, +& to p;p,;, which is<p;p;,, -
+&;. Hence there exists rp e T'(r, pyy,) such that pire+rpp, = pypyp, +
.

The point 75 is unique because if 7 is another point and if (rpFpp;,.,)
then p;fp+7rPisy < Pitpt+1efet+TrPiy = Pip + 5Py, Shows that the
equality holds only when (p;rpFp). But then (p;rp¥y) and (rpFppy.y)
imply (pippm) and (p7pPy), from 3.6, because P;FptFppys
= PP T a< stg=fat+ian=is < y(Ff). Since 7 ¢T(p;p;.,) the
above argument shows the uniqueness of 7. This proves (vi).

(vil) F;,, is a strong deformation retract of E’H1 {Pirst

Proof. A retract f: E;,,— {p;;,} is obtained, in view of (vi) above,
by sliding down points of T(r,p,.;) n B ;—{p;.} to 7. A similar
retract f, can be obtained for every 0, 0 <0< 1, from {#| p,or+ap..,
S PiPi+ bej—{Psya} to {x! pir+ap;,=p;p;i. e} Keeping all
other points of E, ,— {p,,;} fixed this can be extended to B, ,—{p;..}-
Since f, = identity on ¥, ,—{p;.,} and f, = the retract { as above, we
bave proved that F,., is a strong deformation retract of E, ,—{p,,.}.

We now return to the proof of the theorem. As noted in the beginning
S*(p, 0)—{p} is strongly deformable over itself into K*(p, o). Denote,
without using a double subscript, this deformation homotopy by f,-
Similarly, denote by f;,, the deformation homotopy obtained in (vii)
above of B, ,—{p,,,} into F,,,. Then f;,, can be extended to S*(p, o—

—{pi31} by keeping points of G, = S¥(p, o)—E,;.,; pointwise fixed
throughout the deformation. Without changing names let f,,, itself
denote this deformation homotopy of S™(p, o)— {p;,,} into G, ,.

Now define g, = restrietion of f;, to &, and put h; = g, « f; so that h,
gives a deformation homotopy of S¥(p, ¢)—{p,} into E*(p, ). Next
put g, = restriction of I; to G, and put h,= g, o fo. Thus k, gives a de-
formation homotopy of §%(p, g)— {p.} into E*(p, o). Continuing in this
manner, having defined %;_,, put g; = restriction of &;_, to G; and Iy
= giofi. Thus h; gives a deformation homotopy of S*(p, o)— {p:} into
K*(p, o). Since pn = ¢, hyn gives the required deformation homotopy of

P, 0)—{g} into E*(p, g). _

Thus K*(p, g) is a strong deformation retract of S*(p, o)— {q}. This

completes the proof of the theorem.

6.2, A finite dimensional generalized G'-space is an r-space. We say
that an open set ¥ is canonical if 7 is eompact and if for p € ¥, the boundary
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¥ of V is a strong deformation retract of ¥—{p}. Although our spaces
have nonsymmetric distance we define, following [5] and [9], an #-space
as a locally compact general metric space of eonstant topological dimension
where each point possesses arbitrarily small canonical neighborhoods.
Since the above theorem says that arbitrarily small positive balls are
canonical neighborhoods, we see that our spaces are also r-spaces.

6.3. Therefore all the results contained in the theory of r-spaces
(see [5], § 3), carry over. For example, the spheres K*(p,0), 0<< 0 < y(p),
are not contractible and the property of domain invariance holds in
our spaces. Many important results on conjugate points proved by Buse-
mann [see [5], pp. 14-20) depend only on these two properties and hence
they ¢ Iry over to our spaces. Since his methods generalize, we omit
the details.

This paper constituted a part of my Ph. D. thesis written at the
University of Southern California. I am grateful to Professor H. Busemann
for his guidance, encouragement and suggestions throughout the prepa-
ration of the thesis. The work was partially supported by the National
Science Foundation of the United States. I thank also Professor H. 8.
M. Coxeter and the National Research Council of Canada for support at
the University of Toronto. '
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Weakly smooth dendroids
by
Lewis Lum (Eugene, Oregon)

Abstract. Let X be a dendroid. For each point in X let 7, denote the function
from X into 2% given by n,(x) = [p, ], where 2% is the space of all nonempty closed
subsets of X with the Vietoris topology and [p, x] is the unique irreducible continuum
from p to z. Observe that X is smooth if for somep, 5, is & homeomorphism of X onto
its image D(X, p). The converse is also true. The space D(X, p) is studied for non-
smooth dendroids. Define X to be weakly smooth if there exists a point p such that
D(X, p) is a compact subset of 2%, Order-theoretic characterizations of weakly smooth
dendroids are obtained.

1. Introduction. Throughout this paper coniinuum will mean a eom-
pact connected metric space containing more than one point. A continuum
is hereditarily unicoherent if the intersection of any two of its subcontinua
is connected. The weak cut point order on a hereditarily unicoherent
continnum X with respect to p, <p, i8 defined by # <,y if and only
if z € [p, y], where [p, 5] denotes the intersection of all subcontinna of X
containing p» and y. A dendroid is an arcwise connected hereditarily
unicoherent continuum. If X is a dendroid, then <, is a partial order
and [p, y] is an are for all y e X. For any point p in a dendroid X denote
by D(X, p) the set of all ares in X of the form [p, 2]. We view D(X, p)
as a subspace of 2%, where 2% denotes the space of nmonempty closed
subsets of X with the Vietoris topology [6].

Charatonik and Eberhart [1] investigate smooth dendroids (Defi-
nition 1). Here the more general notion of weakly smooth dendroids is
introduced: A dendroid X is said to be weakly smooth if D(X, p) is a com-
pact subset of 2% for some p ¢ X.

The work is divided into three sections. The first section deals with
the structure of D(X,p) and with two partial order characterizations
of weakly smooth dendroids similar to those of smooth dendroids {Theo-
rem 2). In the second section these results are applied to obtain necessary
and sufficient conditions for a dendroid to be smooth and for a dendroid
to be a dendrite (= locally connected dendroid). We discuss necessary
and sufficient conditions for hereditarily unicoherent continua to be
arcwise connected in the final section.
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