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Periodic actions on (I-D) normed linear spaces
by
Raymond Y. T. Wong (*) (Santa Barbara, Cal.)

Abstract. We study various properties of periodic actions on infinite dimensional
normed linear spaces. Typically we investigate the category & whose objects are spaces
each equipped with a certain periodic map a, and whose morphisms are maps m: X > X,
for which m commutes with the «’s. Homotopy classification of type (Z,, n) spaces
and results in infinite dimensional topology are employed. We then prove severa.l results
in the category & such as conjugation, embedding, extension of homeomorphisms, etc.

1. Introduction. The purpose of this paper is to employ a homotopy
classification theorem (Proposition 1) for ANR and to apply it to periodic
actions for infinite-dimensional spaces. Let Z, denote the integers modulo
¢, ¢ > 0. A connected, locally path connected metric space X is said to
be an Eilenberg-Maclane space of type (Zg,n), or simply, of type (Z,, n),
provided the fundamental group =,(X) is isomorphic to Z; and 7,(X) = {0}
for all i # n. Let ¥ denote a fixed (but arbitrary) infinite-dimensional
(I-D) space which is homeomorphic (=) to #F* or F7 for some normed
linear space (NLS) ¥, where F* denotes the count'lble infinite product
of F by itself and F7 CF” denotes the subset consisting of all points
having at most finitely many non-zero coordinates. The following propo-
sition classifies, up to homotopy type, all metric absolute neighborhood
retracts (ANR) of type (Zg, n). '

PrOPOSITION 1. Let X, X' be metrizable connected ANR of type (Zq, n)
and let é em(Y), ¢ em(Y') be generators. Then there s & homolopy equi-
valence h: ¥ =X’ such that hy(e)=¢'.
™ Proof. The case for g = n=11is contained in the corollary following
Theorem 15 of Palais ([14]). In fact, Proposition 1 is a special case of
a more generally known theorem (see [10, p. 127] and [12, p. 4]).
Namely, let G be any abelian group. Then the homotopy type of type
(G, n) spaces is determined by & and n. Moreover, if X, X’ are respectively
type (G, n) and type (G',n) spaces, then any isomorphism & & G may
be realized by a homotopy equivalence X L X for which fa=9
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It is now well known that E-manifolds can be classified by their
homotopy types ([7], [8]) and the same is true in the _O’°°- category for
separable (%-Hilbert manifolds ([6], [11]). We summarize these results
in the following proposition.

PROPOSITION 2. (A) Hach homotopy equivalence between K -manifolds
is homotopic to & homeomorphism. : . .

(B) Each homotopy equivalence between separable (- Hilbert manifolds
is homotopic to a O%-diffeomorphism.

Since all E-manifolds are ANR, applying Proposition 1 and 2 we
obtain the following proposition which classifies all metrizable connected
E-manifolds (or ¢*-Hilbert manifolds) of type (Z,, n).

ProrosITION 3. (Classification) Let M- and M, be metrizable E-mani-
folds of type (Zg, n) and let ¢« m(M), e, € (M) be generators. Then there
s a homeomorphism h: M —M,; such that h,(e) = €.

Let I, denote the separable Hilbert space of all square summable
complex sequences and let § denote its unit sphere. For any g > 1, define
a fixed point free periodic homeomorphism «: §—8 of period g by

a(zg, 2y, ) = (6%, &g, ).
Then a induces (by restrictions) periodic homeomorphisms a,: St
— 821 of period ¢, where 8*~* is the unit sphere of the 2z -dimensional
complex space C*. The inductive limit of {8** Yan},s; (82" an the orbit
spaces), denoted by im 8% Yay,, is a CW-complex of type (Zg, 1). Hence,

by means of Proposition 3, we obtain

PROPOSITION 4. Let M be a metrizable connected E-manifold of
type (Zy, 1), then M has the same homotopy as limS™/a,.

Let M be as above with ¢ > 1 a prime number. The universal cover-
ing space 8 of M is a homotopically trivial EF-manifold such that the
projection p: MM is a g-fold covering map. By Proposition 2(A),
M= E. Let B: M-I e any fixed point free period ¢ homeomorphism
(B always exists, see [16]). Then the orbit space Jl?/ﬁ is an FH-manifold
of type (Z, 1). By Proposition 3 there is a homeomorphism h: M/8—M
which then induces a fibre homeomorphism h,: 1. Let = h, o Bo R h
‘We obtain the following

PROPOSITION 5. (Representation). Let M be a metrizable connected
EB-manifold of type (Zg, 1), ¢ >1, a prime number. Then there is a gq-fold
covering projection p: B->M and a fized point free periodic homeomorphism
B.: B—~E of period q such that B, induces a homeomorphism By: BJf,—~M
for which b oPy=7pP o ﬁ*_
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Non-trivial examples of involutions on s, H or Hilbert cube
@ = [—1,1]" are provided by the well-known facts s o~ § x O, H=Hx@
and the following theorem of West [17, Corollary 511 ‘

The product of a countable in finite collection of {(non-degenerate) compact,
contractible polyhedra is homeomorphic with the Hilbert cube, Q.

Let H be a Hilbert space and 8 the unit sphere of H. Let: mhy: HN{0} - §
be any homeomorphism such that m,(8) is a equator of § (in an obvious
sense). Let v, = m,pm*, where y(x) = —a is the reflection on H. By
Theorem 1 of section 2 there is a homeomorphism m: (8, y,)~>(8, ).
Then let mmy(8) = 8y, 4 = mm,(4,) and B = mm, (B,), where 4,, B, are
respectively the bounded and unbounded components of H\S. We then
obtain the following non-trivial example in §. (Note that such an example
trivially exists in H.) "

Exampie 1. There is a bi-collared sub-Hilbert sphere S,C 8 such
that S\Sg= A v B, A o H ~ Band 8y, A, B are all symmetric subsets of S.

2. Application to periodic homeomorphisms and other results. Throughout
this section let ¢ >1 denote a prime number. For any space X, let G(X)
denote the set of homeomorphisms of X.

TrEOREM 1. (Conjugation). Let B, B,: B~ E be fized point free periodic
homeomorphisms of period q. Then there is a homeomorphism hy: BE— B such
that koo B == p; o hy. ’

Moreover, if BE=1, and B, §;, are C*-smooth, we may choose hy to be
a C*-diffeomorphism.

Proof. The (° case. Let b ¢ E and suppose 4, i: {0, 1], 0)~ (&, b)
are maps (preserving base points) such that A(1) = 2(b) and (1) = Bi(b).
Let p: E—E/f, p,: BE->B|B, denote the projections. Then ¢ = [p o] em(E[B)
and e = [p, o 4,] e 7, (E[B,) are generators. It follows from Proposition. 3
that there is a homeomorphism k: (E/B, p(b))—~(E/8,, P4(b)) such that
hy(e) = ;. The function % then induces a (fibre) homeomorphism %,: (&, b)
—(B, b) such that p; o hy= % o p and hy » f(b) = B, © k(). For each & ¢ B,
since {ho(@), ko » f()} C p7'(h o p()), there is an 1 < i< g for which
hos B(@) = fi o ho(x). Let A;={weB: hyop(a)= pio hy(z)}. We easily
verify that each 4; is closed and {4} are pairwise disjoint. Since F is
connected and 4, # @, hence 4, = . The 0% case follows exactly the
same considerations using Proposition 1 and Proposition 2 (B).

As a matter of convenience we introduce the category whose objects
are pairs (X, §), (Xy, £), ... where X, X, are spaces equipped with periodie
homeomorphisms g, B, ... of period g, and whose morphisms are maps
m: (X, §)—(X;, ;) of pairs such that m is a map of X into X, which
commutes with §, ;- that is, §; o m = m « §. We can speak of m as an
imbedding, homeomorphism, etc.
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Tor any map h: X ~X, denote by fp(h) the set of fixed points of A.
The reflection map »——= of any topological vector space will always

be denoted by y.

Homeomorphism extension. Iet X be a space homeomorphic to
XxF, FaTVS. We say a set YC X is F- deficient if there is a homeo-
morphism h: X-»X x F such that A(Y) C X x {0}. (See [1] and [5] for
the equivalence of F'-deficiency with the concept of Z-sets of Anderson.)

THEOREM 2
" space H. Then each period ¢ homeomorphwm B on A extends to a period q
homeomorphism ﬁ on H such that fp (ﬂ = fp(f).

Proof. First we remark that for any metric locally convex TVS
F 2 FxF, by a technique of Klee ([9]), any homeomorphism between
two closed F-deficient subsets of F' extends to one on F. Denote by 4,
the diagonal {(z,®, ..): @ H} of Hi= Hx HX .. XxH (¢ times).

Let 9: H-—Hx H be a homeomorphism such that @(4) C Hx {0}.

For any a ¢ A, denote p(a) = (a,, 0) and qa(ﬁ"(a)) = (O, 0), n=1,..,¢—1.
Define my: A—H?x HL by my(a) = (ag, ..., tg) X (0,0, ..., 0) and y,: H?
>HEDY y4(805 21y vy Zgm1) = (Fg—17 %0y #1y o q~z) Let Pl qu H?—H* be

the projection onto the first factor. Denote Py o
the following commutative dlagmm

A— (H”\K) X HY

8 Y4 Xy

m,(fp(p)) by K;. Consider

AT (HQ\K) x H?

where K = A\K, and y the reflection on H%

It is elementary to note that 4y is a H - deficient subset of H% Thus K is
a loeally closed (that is, a difference of two closed sets, 4, and K;) H-de-
ficient subset of H? = H. Hence by Cutler ([5]), H®™K =< H. So let
my: (HNK) X Hi->H be a homeomorphism. Using the remark above we
can extend myomy: A > H to a homeomorphism 1 on H. Let B
=mpo(yyXy)oms™ H->H. It is clear that B, is a period ¢ homeo-
morphism such that fp () = my(K;). Then f = y~* o B, o y ig the required
extension of g.

Closed imbeddings.

THEOREM 3. Let X be a space which can be imbedded as a closed subset
of a Hilbert space H. Then for any two fived point free period q homeo-
morphisms B, B, on X, H respectively, there is a closed imbedding m: (X, B)
—(H, ).

Proof. Let mi: X->H X H be a closed imbedding such that m(X)
C{0} < H. By Theorem 2 the indueed map m, s f s mi: my(X) —m(X)

. Let A be a closed H -deficient subset of a complew Hilbert
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extends to a fixed point free period ¢ homeomorphism § on H x H. By
Theorem 1 there is a homeomorphism m,: (H X H, F)»(H , f). Then let
m= My © My.

Let X = M be a metrizable connected H -manifold. By Henderson-
West [7, Theorem 6] M can be imbedded as a closed sub-manifold of H.
Hence the proof above also yields

COROLLARY 1. Let 8, f; be fized point free period q homeomorphisms
on M, H respectively. Then there is a closed imbedding m: (M, B)~>(H, B,)
such that m(M) is a sub-manifold of H.

Negligible subsets.

THEOREM 4. Let K,, K., ... be closed H -deficient subsets of H. Suppose
B, p: H—~H are fized point free periodic homeomorphisms of period q such
that p(K)= K, where K =|_ then there Iis a homeomorphism

'K,
i=1
m: (HNK, p)—~(H, f)-
Proof. By Cutler ([5, Theorem 1]), there is a homeomorphism
my: HNK->H. Let a; = my s Bjg~gx o mi*. By Theorem 1 let my: (H, ay)
—(H, ) be a homeomorphism. Then m = m, o m; is as required.

Homeomorphism spaces are conmtractible. For any space X, let G(X)
denote the subspace of G(X) consisting of all periodic homeomorphisms
and G(X) = {f ¢ G)(X): period (f) =n, n = 1}.

THEOREM 5. For k= 0, each Gy(E) is contractible and there is a con-
traction {p,}: G(E)—+G(H) such that {p,] gz} nduces a coniraction for Gi(H).

Proof. Renz in [15] shows that G(F) is contractible. If the construc-
tion of the contraction of [15] is replaced by

@k, 1) = ¢™(-,

we then get a contraction denoted by {p;} with the desired properties
of the theorem.

07 e B0 g+ 1),

Periodic stability of homeomorphisms. A subset K of a space X is
said to be deformable if for each open set U in X, there is a ¢ ¢ G(X) such
that g(K)C U. An open set UC X is said to contain a dilation system if
there is a sequence of pairwise disjoint open sets By, B, .. in U con-
verging to a point p e U and a homeomorphism r supported in U such
that r(B;,,) = Bi, ¢ = 0. We sometimes call (Bi, 7);5, a dilation system
in U. For any g e G(X), let supp(g) denote the support of g.

THEOREM 6. Suppose X is a metric space im which every open set
contains a dilation system. Let N C G(X) be the normal subgroup consisting
of all finite compositions of ge G(X) such that supp(g) 4 deformable
Then N is simple.
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Proof. The following proof is derived from a technique of Fisher
{On the group of all homeomorphisms of & manifold, Trans. A.M.S. 97
(1960), pp. 193-212). Suppose h( # id) ¢ G(X). Then for some open U C X,
YU)~NnU=0. Let (B, 7);s, be a dilation system in U. Denote
B= U B;. Suppose ¢ ¢ G(X) such that supp(g) C B,, then define p: X+ X

(supported in B) by o|g, = “logorlg fori =1 (1 =id) and p(z) =&
otherwise. Nore that ¢|z = g|p,. Consider

wW == (‘)‘_1 0 {p_l o ZL_I oo 7")(1"—1 oho 7‘) ° h_‘]‘ o ((p"l oo (p) .

The same proof as [Fisher, p. 197] shows that w=g¢. If g ¢ G(X) such

that supp(g) is deformable, then by definition there is a fe G(X) Such
that f(supp(g)) C B,. Thus fogof™ is supported in B, and ¢
=fto(fogo f“‘) o f. It follows that each g ¢ IV is a finite composition

of conjugations of {h, 7'}. Now suppose N, is any normal subgroup
of N containing an % other than the identity. By what we have just shown,
each g ¢ N is a member of N,. Thus N,= N and Theorem 6 is proved.

It is known that for any normed linear space homeomorphic to B¢,
G(X) is stable ([12], [18]), in’ the sense that every feG(X) can be Wntten
as a finite composition f, ... fof; of homeomorphisms of X such that each
fi is the identity on some non-void open subset of X. By well-known
properties of X, it is routine to wverify that:

(1) It fe G(X) is the identity on some non-void open subset of X,
then supp(f) is deformable. )

(2) Each open UC X contains a dilation system. Hence we have

COROLLARY 2. Let X be a space homeomorplic to Q, s or any normed
linear space E ~ E°. Then G(X) is simple.

For each fixed k >0, the collection of all finite compositions of
members in Gx(X) clearly forms a non-trivial normal subgroup of G(X).
Hence Gr(X) is entirely ¢(X), which proves

TarorEM 7. Let X be as above. Then for any h e G(X) and any k=0,
there are Ry, ..., hy e Gu(X) such that h=hyo... o by o hy.
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