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There is no universal totally disconnected space

by
R. Pol (Warszawa)

Abstract. From the results of this note it follows that there is no universal space .
in the class of all separable metrizable totally disconnected spaces.

1. In this note we shall prove the following

TrEorREM. Let m be an infinite cardinal and let X be a completely
reqular space of weight m and cardinality 2™. If a completely regular space M
of weight m contains topologically every completely regular space of weight <m
which admits a one-to-one mapping onto X, then M contains topologwally
all completely regular spaces of weight <m.

From the theorem we obtain the following.

CoRrOLLARY. There is mo universal space in the class of all totally dis-
connected, completely reqular spaces of weight <m = .

The proof of our theorem is based on a construction of Hilgers that
we recall in section 2. This construction gives also an interesting example
of a totally disconnected, metrizable, separable space that we describe
in section 5.

Our terminology and notations are as in [1] and [3] In pa.rtmular,
the symbol f: X>¥ and the word “mapping” always mean “continuous
function”. The symbol X C Y means that X is topologically contained

in ¥. Finally I"™ and D™ denote the Tychonoff Cube and the Cantor Cube
of weight m, respectively. By a totally disconnected space we mean a space
which is not connected between any pair of points, in other words such

that every quasi-component consists of a single point. '

2. The Hilgers construction (cf. [2]; [3], § 27, IX). Let 8 be a topo-
logical space, T C 8§, and let % be a family of subsets of the produet §x S.
Suppose that there exists a function ¢ which establishes a one-to-one
correspondence between the elements of 7' and . For every fe T let
us choose an element f(f) ¢ 8 such that (¢, f(t)) e {t} X S\g(s) if this ig
possible and an arbitrary f(t) e § in the opposite case. We denote the
graph {(t, f (t))| te T} by H and call it the Hilgers set for the family % and
the set T. Let us observe that
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(1) H is mapped by projection in a one-to-one way onto T
(2) if AeW and ADH then At';)p 8.

To prove (2) let us notice that for #< T such that 4 = ¢() we have
A elt,f(1)) and 4D {f}x 8.

3. Proof of the theorem. Let us denote by @, the family of all inter-
sections of < m open subsets of I™. We shall apply the following generali-
zation of the classical Lavrentieff theorem:

Lenmymi, Let ACI™ and let b be a homeomorphism of A onto B cIm.
There exist two sets A*, B* ¢ G, such that A*D A, B*D B and a homeo-
morphism ¥ of A* onto B* which is an ewtension of h.

To prove our lemma it suffices to replace the metric argument in 3],
§ 35, IT, analogus uniform argument.

Now let us suppose that X and M are as in the theorem. We can
assume that X CI™ and M C I, Let § be the family of all pairs (4, f)
such that 4 CI™x I, A € G,, and f: A—>1I™ Let A = {f (M| (4, ) eF}.
We have % = 2", because (I")% = 2", Thus, as in 2, we can construct,
for §=I", W and T = X the Hilgers set H. By (1) and our assumption
about M there exists a homeomorphism h: H->M. By the Lemma we
can extend % to & homeomorphism A*: H*—I", where H* D H and H € @,,.
We have (H*,1*)eF and thus 2" (M) eW. But »*"YM)Dh Y M)DH

and from (2) we obtain A* (M) tD I™; it follows that I™ tC M.
op 0p

4. Proof of the corollary. Let us take in our theorem X — D™ and let M
be any space of weight m which contains topologically all totally dis-
connected spaces of weight <<m. The assumptions are satisfied, because
if a space can be mapped in a one-to-one way onte D™, it is totally dis-
connected. Hence, by the Theorem, M contains the interval I and is not
totally disconnected. '

S. Example. There ewists a totally disconnected, metrizable, separable

space H such that every completion of H contains topologically the Hilbert
 Cube I,

Let us take in 2: § = N, X = DR C ¥, and 9 equal to the family
of all G;-sets in I¥ x I%, The Hilgers set H has in this case all the required
properties. Indeed, if Y is a complete metrizable space containing H,
then by the classical Lavrentieff theorem we can extend the identity
i: H~H t0 a homeomorphism *: H*->Y, where H* i3 a G,-set in I% x I,
As H*D H and H* « % we conclude by (2) that H* tD I® and this implies

op

IRe g Y. The total disconnectedness of H follows from (1).
D

I would like to express my gratitude to Professor R. Engelking for
suggesting the problem.

2]
Imn@) There is mo universal totally disconnected spuce 267

Added in proof. A. D. Taimanov has proved independently the lemma
without using uniform structuves (unpublished).
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