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A Lindel6f space X such that X* is normal
but not paracompact

by

T. Przymusinski (Warszawa)

Abstract. The purpose of the paper is to prove that under the assumption of
Martin’s Axiom and 2% = 2" there exists a hereditarily Lindelof first countable space X
such, that X2 is perfectly normal but not collectionwise normal, and hence not para-
compact. Moreover, it is shown that the existence of such a space is equivalent to the
existence of a normal, separable, non-metrizable Moore space, and consequently is
independent of the ZFC axioms of set theory. The above theorems partially solve the
problem (raised by M. Maurice, E. Michael and H. Tamano), whether or not the product
of two paracompact spaces, which is normal must be necessarily paracompact.

M. Maurice (cf. [4], Problem 7.2), and in a special case H. Tamano [6],
raised the problem whether or not the product of two paracompact spaces
which is normal must necessarily be paracompact (1). In this paper we
solve this problem in the negative under the assumption of Martin’s
Axiom and of the equality 2% = 2% Moreover, we show that a special
case of this problem is equivalent to the problem of the existence of
a separable, normal, non-metrizable Moore space and hence is independent
of the usual axioms of set theory.

Let us recall (cf. [5]) that the assumption of Martin’s Axiom plug
2% — 28 j5 independent of the ZFC axioms of set theory.

TaEorEM (cf. [5]). The following. hypotheses are equivalent and inde-
pendent of the Z¥FC axioms of set theory:

H. 1. There exists a separable, normal, non-metrizable Moore space;

H. 2. There ewists a separable, firsi-countable, normal space containing
am uncountable closed and discrete subset;

" H. 3. There exists an uncountable subset T of the real line every subset
of which is a relative F_.

Moreover, Martin’s Axiom plus 2% = 2% implies any of the above
hypotheses.

The purpose of this paper is to prove the following theorems:

(*) All undefined terms and symbols are as in [1]. The symbol [4]| denotes the
cardinality of the set A.
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TrroREM 1 (under the assumption of H. 3). There ewists a hereditarily
Linddof space X such that X* is perfectly normal but not paracompact.

Moreover, the space X is hereditarily separable and first-countable
and the space X? is not collectionwise normal.

TamoREM 2. The following hypothesis is equivalent to H.1, H.2
and H.3 and hence is independent of the awioms of set theory:

H. 4 There evists a separable, first-countable, paracompact space X
such that X2 is mormal but not collectionwise normal.

Levva 1 (under the assumption of H. 3). There exists an uncountable
.subset 8 of the interval (0,1) with the following properties:

(i) every subset of 8 is a relative F;
(i) #f we8, then 1—x e 8.
Proof of Lemma 1. We may assume that the set T in H.3 is
contained in the interval (0, }). It suffices to put
S=Tuv{l—a zeT}.
The following lemmas are well known.

LemwMa 2. If A, B are subsets of the real line R and f: A - B is a mono-
tone function of A onto B, then there exisls a countable subset B, of B such that
FIFUB\Bo): F{(B\Bo)->>B\B,

is a homeomorphism.
Lemuma 3. If K, L are disjoint closed subsets of a topological space Z
omd {U Y2, {Vahe, are two sequences of open sets satisfying
o0 (2]
(i) UU.D K, UVaDL,
f=1 n=1 _ _
UonL=@=V,~K,
then there exist two open sets U,V such that KC U, LCV and U~V = @.

Proof of Theorem 1. Consider the set X = ¥ = §, where § is
a8 in Lemma 1, with the topology of the subspace of the Sorgenfrey line
(see [1], Example 1.2.1). The space X is hereditarily Lindel6f, hereditarily
separable, first-countable and by the theorem of R. W. Heath and
E. A. Michael [2] the space Z = X2= X X Y is perfect. The set

D={=z9)eZ: y=1—a}={(w,1—a): v X}

(i) for every n=1,2, ...

is uncountable, closed and discrete in Z. As Z is separable, it follows
that Z is not collectionwise normal. To prove the theorem it remains
to show that Z = X* is normal. '
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For every z = (x,y) ¢ Z the sets

o= (i) oo

are open-and-closed in Z and form a neighbourhood base at the point z.
Let K and L be two disjoint and closed sets in Z. For every ce K v L
there exists a natural number n(z) such that

1 1
U(z’a(z))ﬁ-L (5] ‘01‘ U(z’ﬂz-j)szg'

Let us denote by E the set Z with the topology of the subspace
of the Buclidean plane and put

n=1,2,..

S U0 = Tnt(Z\L), V°= Inty(Z\K).

We can find sets US, V2 open in B, and hence in Z, such that:

—Jw, TCTPcrcar,
(1) " o
P r, TECTECYCAE.
n=1

1
(2) Put K, = E\U°® and I, = I\V°. We have IntEU( n(z)) K, =

1
for every z ¢ K, IntEU(z, 'n(z)) L, = @ for every z ¢ L.

For every rational number ¢ in the interval [0, 2] define:
T(q) = {e= (2,9) < Z: a+y < g},

1
K(q) = {z= (@, y) e Kyr at+y < q< w+y+m},

1
L(g) = {z= (@, y) e Ly w+y<g< w+y+m} .
The sets 7'(g) are open-and-closed in Z, K(¢) u’L(q) CT(q) and
U K(q), L, = U L(g). By Lemma 3 and (1) it suffices to prove that

(3) for every ¢ there exists a countable family of sets open in Z Whlc]l
covers I (g) (resp. L(q)) and is such that the closures of its elements
in Z are disjoint with L (resp. K).
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By the symmetry of assumptions it is enough- to prove-(3) for the
set K(q).

(4) Tz =(w, ) and z'.z'z’g_(‘{xz, ¥,) belong to K (_q) and @, < #,, then

P = Ys-
Indeed, supposing that ¥, > ¥y, by the definition of K(g) we would
1 .
have (2, ¥s) € IntEU(z1 s W), which is impossible by (2). Let p, and py
1

denote the projections of K (¢) onto the axes X and ¥ and let A’ = p,(K (g)).
By (4) if @, zmed’, < and y; epylp;’ (-"-'"1)) Y2 Epy( :;1(%'2))1 then
Y1 > Y. It follows that the set Ay = {z ¢ A’: |p,(p; (®))| > 1} is countable
and for every zed = A4, there exists exactly one f(x) e py(p;'(w)).
The function f: A- B=f(4) is by (4) non-increasing. By Lemma 2
we can find a countable set_B0 C B such that g = f[f™{(B\B,): f~{B\By)
->B\B, is a homeomorphism, where we consider the subsets C'= f~(B\B,)
and D = B\B, of the sets X and.Y with the topology of the subspaee of
the real line R. It can eamly be seen that

K(g) = pz*(4o) v p;"(By) v W,

where W, denotes the graph of'the homeomorphism g. As X and ¥ are
hereditarily Lindelof and |4, By| < & the set: M = p;(4,) v p;(B,) is

Lmdelof and henée the covering, {U(z, %)} -, of M, open-and-closed
M)V oem ' ‘

in Z, has a countable subcovering. = | \

Thus to prove {3) it suffices-to show that the set W, has a ‘count-
able open covermg in Z cons1st1ng of elements whose closures in Z are
disjoint with :L. - -

By (i) of Lemma 1 we can find a fa,mﬂy {Fn}n=l of subsets of O, closed
with respect to the topology of X induced by R and such that ¢ = U F,

n=1
Similarly, for every n=1,2,.. we can.choose a tamily {H nomtm—1 Of
sets closed with respect to the topology of ¥ induced by R and such

that \JHn,m =¢(Fu). As g is continuous, the sets F,,, = F, ~ g~'(H, )
are also closed in the real-line topology of X. Denoting by W.,m the graph

of the homeomorphlsm I =G| Byt Ty > Hn,'m, we obviously have
U
nm=1 . .
Lot us define T, = L U T(e,—)) ~ 7 (@), The family (7 )5,
’ Fam n(z) ‘ . smin,m
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forms a covering of W, open in Z and countable. To-prove our theordrit
it suffices to show that the sets U, ,, are open-and-closed in Z,i:e. that
no point z2= (#,%) ¢ Upm belongs to Unm Obvmuslv We can assume
that = € T(g). There are three cases to investigate:

1) wEFn,m7 2) ye nym 3) w¢Fﬂ,m and ?/?‘Hn,m'
In the first case we have g, .(x) >y. Indeed, otherwise we would

1
have z = U(zl,m), Whele @y == ('v, In, m(w)) belongs to W, ,, which is
1

impossible. By the continuity of ¢, ,, there exist a, b e B such that g, ,.(»)
>b>y,a>w and if gy ek, ,, <@ <a, then g, ,(z) >b. As g, is
non-increasing, for every #,e¢F, ,, » (—oo, a) we have g, () >b. It is
easy to check that the neighbourhood ([z,a)x[y,b)~Z of z in Z is
disjoint with U, ,,.

In the second case the proof is analoguous and uses the continuity
Of g'n m*

Finally, in the case (3) there exist a, b, ¢, d ¢ R such that ¢ < 2 < a,
d<y<band (¢c,a)F,,, =@, (db) ~H,, =@. The neighbourhood
([w a) X [y, b)) nZ of zin 7 is then disjoint with U, ,. This completes
the proof of Theorem 1.

Remark. The theorem of D. J. Lutzer [3] implies that the space X2
is subparacompact (*). By a modification of the proof of Theorem 1 one
can show that Ind X2 = dim X? = 0.

Proof of Theorem 2. Theorem 1 shows that H.3 implies H. 4.
On the other hand, if H. 4 holds, the space Z = X* must contfain an un-
countable closed and discrete subset, for otherwise it would be collection-
wise normal. As Z is separable and first-countable, H.2 holds, which
completes the proof.

ProBLEMS. Is the existence of a paracompact separable, first-count-
able space X such that X2 is normal but not paracompact independent
of the axioms of set theory? Iy the existence of a paracompact first-count-
able space X such that X2 is normal but not collectionwise normal equiva-
lent to the existence of the normal non-metrizable Moore space?
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