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DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGD W KRAKOWIE

An example of a ®-algebra whose uniform closure is a
ring of continuous functions

by
David Rudd (Norfolk, Virginia)

1. Introduction. In this note, X will denote an arbitrary completely
regular Hausdorff space and C(X) will denote the ring of all real-valued
continuous functions on X. A ring which is of the form ¢/(X), for some
space X as above, will be referred to as a ring of continuous functions.

In the notation of [3], an archimedean lattice-ordered f-algebra
with unity is called a @-algebra. In this note, an example is given of
a Qi-algebm which is not isomorphic to a ring of continuous functions
but whose uniform eclosure is. Furthermore, this &-algebra has the
property that its structure space is homeomorphic to the structure space
of a ring of continuous functions. This example is used to show that it
is possible for non-isomorphic ®-algebras to have isomorphic maximal
ideals, whereas this cannot happen if the @-algebras are both rings of
continuous functions. (See [4], 6.6.)

2. Preliminaries and notations. For a subset I of C(X), we denote
by mI the set of all functions f in ¢(X) such that fefI, and we denote
by I™ the closure of I in the m-topology. (See [2] for definition.) We
denote by I* the closure of I in the uniform topology. It is proved in [2]
that if I is any ring ideal of C(X), then (mI)™ = I" and mI = m(I™).
If P is a prime ideal in ¢(X) and M is a maximal ideal containing P,
then P2 mM.

For a function fe 0(X), we denote {zeX| f(z) = 0} by Z(f).

A maximal ideal M in C(X) is said to be real in C(X) it C(X)| M is
isomorphic to R, the ring of real numbers. I M is not real, we say that

- M i3 hyper-real.

Discussions of structure spaces can be found in many places such
as [1] page 105 and Section 2.3 in [4]. The structure space of C(X) is
homeomorphic to AX; the Stone-Cech compactification of X. )

For each f ¢ 0(X), there exists a continuous function f* from X into
the one-point compactification of the reals so that f* agrees with f on X.
(See [1], 7.5.)
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3. The example. Let J, be any maximal ideal in O(X) and let
8 = {f+c| fe M, and oeR}.

Tn the notation of [4], 8 = (M,). It is clear that § is a subring of O(X).
0Of course, § = C(X) if and only if M, is real in ((X), so we shall assume
for the remainder of this note that M, is hyper-real.

3.1, Tmwa. Let I be an ideal in § and lot I denote I™ ~ 8. Then I is
an ideal of 8, and I is proper if I is. i

Proof. The proof that I is an ideal of § is routine. Assume 1 ¢ ..
Then 1eI™ which implies that there exists feI so that [f—1]<}.
Now f is of the form m,+c¢ for some m, e M, and ceR, 80 we must

1 1 i
have ¢>3 et go—————cO(X). Since Z(mo)CZ(g) o< Mo
My+C €

11 o .
(see [1] 2.7), whence !Jo+'0-=37€5'- But this implies that 1 eI,

3.2. Remark. In the proof of 3.1 we have shown that if s e 8 with
s(z) = 0 for all & ¢ X then 1/s 8.

3.3. LuMMA. Let K be a mazimal ideal in 8. Then there ewists a maximal
ideal M in O(X) such that KD M ~ M,.

Proof. Since K is maximal in §, it is prime in 8 (see [4], 3.3). Let &
denote S\K, a multiplicative semigroup in C¢(X). Since G {0} =0,
there exists a prime ideal P in (/(X) such that G n P = @ (see [3], p. 6)
and hence K D P ~ 8. Let M be the maximal ideal in C¢(X) containing P.
We then have

EDmM 8D mM nmMy=m(M ~ M),

whence K™D [m(M ~ My)]™= M ~ M,. This implies that 8§ ~XE™
=KD M n M,, and K=K by the maximality of K.

3.4, TusoreM. Let M be a maximal ideal in O(X). Then M S ds
a mazimal ideal of 8. Conversely, if K is a maximal ideal of S, then there
ewists o unique mawimal ideal M in C(X) such that K = 8 ~ M.

Proof. Let M be a maximal ideal in ¢(X). Then clearly M ~ 8 is
an ideal of §. Assume M ~ 8 ¢ I where I is an ideal of §. Let s ¢ I\M.
Then there exists m ¢ M and fe C(X) such that fs4-m = 1. It is clear
that it M = M, the result is true, so assume M = M,. Then there exist
g e M and g, e M, so that g+g,= 1. Since g = —go+1 e M ~ 8, we have
that g e I. Bub g, = gofs+ gom is also a member of I, whence 1 el.

Conversely, suppose K is a maximal ideal of 8. If K = M,, the result
follows trivially, so assume K = M,. By 3.3, there exists a maximal
ideal M in O(X) so that KX D M ~ M,. To complete the proof, it suffices
to show that KD M ~ 8. (The uniqueness is easily established.) To this

icm
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end, let s ¢ M ~ § and assume s ¢ K. Then for any mge My, smee M ~ M
0

C K, whence m, e K by the primeness of K. But thi
g . 8 § CK
contrary to our assumption. ays that M, C K,

3.5. Remark. If we let J6(S) denote the structur
: re space of §, th
the naitural mapping MM ~ 8 can be easily shown to be a h:)me?
morphism of the structure space of ((X) onto H(8).

3.6. Remark. If I = M, then the natural mapping s+ (M ~ §)

s+M i o :
;(X_l)—/M. can be easily shown to be an isomorphism of S/M ~ 8 onto

3.7. Remark. In view of.3.6 it is clear that the i i
of § are M, itself and all ideals of the form M ~ § Wheree?l} IiI;alialunfi 1G:i(e;;hl)S
If- we let v denote the set of all real maximal ideals in § and endow wS;
with the hull-kernel topology, then v§ is homeomorphic to the subspace
vX v {M,} of fX. We then have that ¢ (»S) is isomorphic to (M¥) = {f-o|
fe My and ¢ € R} using 5.6 in [4]. (In the notation of [4], X (.ZIIO(), is homeo-
morphic to vX v {M} and C(X(I,)) is isomorphic to (B).)

3.8. THEOREM. %= (I[Y).

Proof. Let se (MY), say s= g,-¢ where Goe My and ce R, and
}et ¢ > 0 be given. Then there exists m, ¢ M, such that |g,— Myl < & ;thich
implies that [s— (my-+¢)| < e. Tt follows that s e S*. ’

Conversely, suppose s € 8% Then there exist m, e M, and ¢ e R such
that |s—(me+¢)| < 1. In particular, s is bounded on Z (m,), Whence
[s+2M,| is not infinitely large (see [1], p. 70). Thus there is a real number k
such that s*(M,) = &, whence (s—%)*(M,) = 0 and s—k « MY (See Sec-
tion 2.4 in [4].) .

3.9. TumorEM. § is a D-algebra.

" Proof. It suffices to show that § is a sublattice of ¢ (X). To this
end, let ' :

s= (fi+ea)vifi+e),

where fie M, and c¢;eR. Then Z(f,) ~Z(f,)CZ(s—eve,), Whence
8— Ve, e My, and s e 8. h

Thus 8 is a P-algebra whose structure space is homeomorphic to
the. structure space of O'(X). Since (MY¥) # (M,), 8 is not uniformly closed
80 }t cannot be isomorphic to a ring of continuous functions. However,
8* is isomorphic to a ring of continuous functions. We observe that M, is
a real ideal in § but a hyper-real ideal in ¢(X). Of course, the identity
1somorphism M,->M, can not be extended to an isomorphism between §
and ((X) (compare with 6.6 in [4]).
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Partial order and collapsibility of 2-complexes ()
by
E. D, Tymchatyl; (Saskatoon, B.C.)

A partial order < on a topological space X is said to be closed if <'is
a closed subset of X x X (where X x X has the product topology). An
element ¢ ¢ X is called the zero of X if and only if 8 <« for each v ¢ X.

For each x ¢ X the principal ideal determined by @ is denoted by L(z) and

L@)={yeX| y<a}.
It ACX we let
L(d)= U{Z(y)l yed}.

A. compact, Haugdort space is said to be acyelic if and only if it has
the Spanier cohomology groups of a space with exactly one point. In [2]
it was proved that the Spanier cohomology groups coincide with the Gech
cohomology groups on compact Hausdorff spaces. We shall need the
following theorem of A.D. Wallace [6]:

TerorEM (Wallace). Let X be a compact space with & closed partial
order. If X has a zero and if all of the principal ideals of X are acyclic
then X s acyclic,

A metric for a metric space X is said to be strongly conver if and
only if for each pair of distinct points # and y of X there is a unique line
segment in X with endpoints » and .

Warren White proved in [7] that a 2-complex K is collapsible if
and only if || admits a strongly convex metric o. The following theorem
weakens rather dramatically the condition that |K| admit a strongly
convex metric.

TeroreM. Let K be a finite 2-complen. Then K is collapsible if and
only if | K| admits a closed partial order with zero and with acyclic principal
ideals.

Proof. (=) If X is collapsible then by White’s theorem [7] |K| admits
a strongly convex metric p. Let 6 ¢ [K|. Define # < y in |K| if and only

(*) The research for this article was supported in part by National Research Couneil
Grant No. A-5616.
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