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A remark on Fox’s paper on shape
by
D. M. Hyman (New Brunswick, N. J.)

1. Infroduction. Recently, B. H. Fox [2] has extended Borsuk’s
notion of “fundamental homotopy™ from the category of compact metrie
spaces to general categories by considering equivalence classes of inverse
systems under- appropriate equivalence relations. Speeializing his con-
struction to the category of metric spaces, Fox defines the “shape” of
& metric space X to be equivalence class of the inverse system. of all
neighborhoods of X in an ANR that contains X as a closed subset; this
is independent of the choice of ANR, provided that X is closed in it. For
noncompact X, the restriction of closedness is sometimes inconvenient
(see [2], footnote 6). The purpose of this note is to show that this restrie-
tion ean be removed. Our main result is stated below; pertinent terms
awre defined in the next section.

TEEOREM 1. Let X be a metric space. Suppose that ¥, and Y, are
ANR’s such that X C X, and X C X,. Then the inverse systems U(X, Y,)
and U(X, T,) are of the same similarity type.

2. Inverse systems. We begin by recalling some basic definitions
from [2]. Let & be a category and let ~ be a compositive equivalence
relation on the morphisms of § All categories considered in this section
are assumed to be subcategories of §. Two morphisms in & are concurrent
if they have the same domain and same range. If e, e, are concurrent
and if e is a morphism such that e;e ~ e,e, then e is an equalizer of e, and e,.

Let U be a category, with morphisms denoted by u. If U,, U, are
objects of U, then U, precedes T, in U if there exists a morphism in U
with domain U and range U,. We say that U is an inverse system if

{i) any two objects in U have a common predecessor in U, and

(ii) any two concurrent morphisms in U have an equalizer in U.

For our application, the most important example of an inverse
system is the collection U= U(X,Y) of all neighborhoods of & subset X
of & metric space ¥; u is the set of all possible inclusion maps. Here,
& is the topological category and ~ denotes homotopy.
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If U, V are inverse systems, then a mutation f: U~V is any collection
(in 8) of morphisms f: U—V from objects U e U to objects ¥ e ¥ such
that
(i) if wewm fef, vev and vfu is defined, then vfu e f;
(ii) every object of ¥ is the range of some morphism in f; and
k (iii) any two concurrent morphisms in f have an equalizer in U.
If f: U=~V and g: V—W are mutations, their composition gf is the
collection of all morphisms gf, ¢ < g, f € f, that are defined. In particular,
the collection "u of all morphisms of U is a mutation from U to itself and
acts as an identity under composition: fu = fand ug = g whenever these
compositions are defined.
Two mutation f, g: U=V are similar (written f~g) if conecurrent
morphisms f e f, g « g always have an equalizer in U. Two inverse systems

U and V are of the same similarity type (written U=~VF) if there exist

mutations f: U=V, g: V-U such that gf~u and fg~v.

Lemva 1 (Fox [2]). If X 48 a closed subset of ANR’s Z, and Z,, then
U(X, Z)) ~U(X, Z,).

Completing this list of definitions, we say that an inverse system V
is coinittal in an inverse system U if

(i) V is a subcategory of Uj;

(i) each object of U is preceded in U by some object of V; and

(iii) any two concurrent morphisms in U whose common domain is
in V¥ have an equalizer in V.

It follows from Theorem 2.12 of [2] that if ¥ is coinitial in U, then
V=U.

3. The inverse system ¥ (X, Z). Suppose that X is a subset of a metric
space Y, and let ¥ denote the set of all continuous functions from ¥
into [0,1] with positive values in X Let

Z=TYx[0,1]—((¥—X)x {0}),

and identify X with X x {0} C Z. Observe that X is closed in Z. For each
UeU(X,Y) and each y ¢ ¥, let

VU, p)={y,0)eZlyeU and t<yp(y)}.

Tt is clear that V(U,y) is a neighborhood of X in Z, that is, V(U,»)
e U(X,Z). The collection of all such sets V(U, ), together with all
possible inclusion maps, is an inverse system which we denote by V(X, Z),

Levmma 2. V(X, Z)~U(X, Z).

Proof. For brevity, write U= U(X, Z) and V = V(X, Z). To prove
that U~V it is sufficient to show that ¥V is coinitial in U, which, because
the morphisms in U and ¥ are inclusions, is equivalent to showing that
each U e U contains some V ¢ V.
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Let d be a metric on Y bounded by 1, and define a metric 6 on
Yx[0,1] by
5((%1 1)y (Yas tz)) = max{d(y, ¥), [t~} -

Now let U e U be given, and let WC ¥ x [0, 1] be an open set such
that U= W ~ Z. Define a map ye ¥ by

1) ¥(¥) = 6((y, 0), ¥ x[0,1]—T).
It follows from (1) that
2) ¥, D) e TX[0, 11t < p(y)} CW.
Intersecting both sides of (2) with Z gives
V(¥,y)CU,

‘which proves the lemma.

Levma 8. U(X, Y)~V(X, Z).

Proof. For brevity, write U= U(X, Y) and V= V(X, Z). Define
2 mutation f: UV as follows: If UeU, T e ¥, and ¢ €« ¥ are such that
the graph of ¢|U lies in V, that is,

v, ey« T} CV,

then we define a map F=fU,V,¢): U=V by
(1) f) =y, ()

The eollection of all such maps f is a mutation f: U-V. Now define
2 mutation g: V—U as follows: Let «x: Z—Y denote the restriction to Z
of the coordinate projection Yx[0,1]-Y. If UeUand VeV satisfy
#(V)C U, then we define a map g= g(U,¥V): VU by

(2) 9(z) = a(2)

for all ye U.

for all z¢V.

The collection of all such maps g is a mutation g: V-U. Then gf~u;
in fact, gf = u, for if f and g are of the form (1) and (2) and if gf is defined,
then gf is just the inclusion of the domain of f into the range of g.

To complete the proof of the Lemma, we must show that feg~v.
Let fg e fg, where g= g(T, V) and f=f(U, Vs, ¢). Then for i=1,2,
there exist sets Wi e U(X, X) and maps y; ¢ ¥ such that V; = T Wiy )
Define a map y: ¥->[0,1] by

¥(y) = min(p,(y), ys(y)) for all ye T,
and define a homotopy %, V (W, 9)>V, by

h(w, 1) = (w, (1—s)i+s-g(w)) for all (w,?) eV(Wy,w), 0<s<1.
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Then k, is the inclusion of V(Wy, y) into Vs, and &, is the restriction of fy
to V(Wy,y). This proves that fg~wv.

4. Proof of Theorem 1. For i=1,2, let Z;= ZiX,Y;) be the
set Y% [0, 1]—((¥;—X) x {0}) of § 3. Because similarity i3 fransitive,
the theorem will be proved if we can establish the following sequence of
similarities: : :

UX,Y)=V(X,Z)~U(X,Z)~U(X, Z,)~V(X, Z,)~U(X, Y,).

The first and last similarities follow from Lemma 3; the second and fourth
follow from Lemma 2. The middle one is a consequence of Lemma 1 and
the following result, which is based on a method of Fox [1].

LEvvA 4. If ¥ is an ANR and X C Y, then Z(X, Y) is an ANR.

Proof. Write Z= Z(X, Y). Let A be a closed subset of a metric
space B, and suppose f: 4A—Z is a map. Because ¥ x[0,1] is an ANR,
there exists a neighborhood T of A in B and an extension g: WY x
x [0, 1] of f. Let 2: W—[0,1] be a map such that 217%(0) = 4. Letting
m: ¥Yx[0,1]-Y and 7: ¥ x[0,1]-[0, 1] denote the coordinate pro-
jections, define a map F: W—Z by

P(w) = (mg (1), min{L, mg (w)-+ 2(w)})  for all we W.

Then F({W) is indeed contained in Z, and clearly I extends f; hence Z is
an ANR. . , ‘
‘We close by reformulating the results of the last two sections in the

following manner, which might be of independent interest.

. TemorEM 2. If X is a subset of a metric space Y, then there ewists
a metrio spave Z ‘containing X as a closed subset such that the systems U(X,Y)
and U(X, Z) are of the same similarity type; if Y is an ANR, we may choose Z
to be an ANR. . .
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Topological completeness of first coﬁntable
Hausdorff spaces I*

by
H. H. Wicke (Athens, Ohio) and J. M. Worrell, Jr. (Albuquerque, N. Mex.)

1. Introduction. This paper is the first of several which present
a theory of topological completeness for first countable Hausdortf spaces.
The completeness concept introduced here, called basic completeness,
permits the development of a theory analogous in many respect to that
elaborated classically for complete metric spaces. In this connection it
should be noted that a metrizable space is basically complete if and only
if it has a topology-preserving metric in which it is complete (). This
article presents certain definitions and some set-theoretical and topological
lemmas, which are both fundamental for the theory and have wider
applicability, and proves certain characterization theorems.

One of the principal results proved here is that a Hausdorff space
i8 an open continuous image of a complete metric space if and only if it
s a basically complete space. It should be emphasized that regularity is
not assumed. This theorem leads to the result that the class of basically
complete spaces is the intersection of all classes C of Hausdorff spaces such
that 1) C includes all metrically topologically complete spaces and 2) C is
closed with respect to the application of open continuous mappings with:
Hausdorff images.

For the purposes of indicating the scope of the present results and of
providing a basis for further discussion in subsequent papers we list
here certain criteria for topological completeness. These are formulated
in terms of two classes $ and C of topological spaces. The members of $
are subject to some uniformization condition (2) and C is a subclass of B

* This work was supported by the United States Atomic Energy Commission.
A preliminary version was given as a colloquium lecture at the University of New Mexico
in May 1968.

(*) Such metrizable spaces will be called metrically topologically complete in accord
with a standard usage.

() Uniformization condition and topological uniformization, as employed here, do
not necessarily connote for the spaces to which they are applied the presence of a topo-
logy-preserving uniformity in the sense of A. Weil’s definition. .
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