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We have developed a quadratic nonlinear theory of a plasma-beam superheterodyne free electron laser of
dopplertron type with the non-axial injection of an electron beam with respect to the guiding magnetic �eld. It is
found out that the studied device can work in four di�erent modes of operation. We determine the modes that have
maximum gain coe�cients of electromagnetic signals. It is shown that for all the operating modes the ampli�cation
factor of an electromagnetic signal is enhanced when the electron beam injection angle is increased.
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1. Introduction

Attention of researchers often attracts devices that
generate and amplify a coherent electromagnetic radi-
ation in the millimeter and submillimeter wavelength
ranges [1�4]. Plasma-beam superheterodyne free elec-
tron lasers (SFEL) are the representatives of such sys-
tems [1, 5�8]. The feature of the SFEL is the using of an
additional mechanism to amplify one of the waves, which
participate in a three-wave parametric resonance. Beam
instabilities (e.g. double-stream, plasma-beam instabili-
ties) are used as an additional ampli�cation mechanism of
the SFEL. Such instabilities are able to provide extremely
high levels of beam wave ampli�cation [1, 3, 9]. There-
fore, SFELs have high amplifying properties and perma-
nently capture the attention of scientists [1, 5�8, 10�18].
First the idea of the plasma-beam SFEL (PBSFEL),

which uses the plasma-beam instability as an additional
ampli�cation mechanism and the electromagnetic wave
propagated in magnetized system as a pump, was pro-
posed in [5]. Amplifying properties of the PBSFEL in
the case of the axial electron beam injection with respect
to the guiding magnetic �eld were studied in the frame-
work of a cubic nonlinear theory in [6]. In paper [6]
the mode in that the high frequency extraordinary (sig-
nal) [1, 3, 9] wave and the low-frequency retarded (pump)
electromagnetic wave participate in a three-wave para-
metric resonance was studied. Other modes that di�er
from previously studied ones, for example, using the or-
dinary electromagnetic wave [1, 3, 9] as a signal, using
electromagnetic waves with other propagation directions
have not been previously researched. Also it should be
noted that dynamics of waves in the plasma-beam SFEL
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with non-axial injection of the electron beam with respect
to the guiding magnetic �eld had not been previously
considered. But, it is known from literature that in some
cases the non-axial beam injection results in an increase
in e�ciency of other relativistic high power devices, for
example two-stream SFELs [1�4, 11�13, 19].
The aims of this paper are research of di�erent oper-

ation modes and study of the in�uence of the non-axial
electron beam incidence on the amplifying properties of
the PBSFEL.

2. Model

The model of the studied device is shown in Fig. 1.
Plasma 1, which is characterized by the Langmuir fre-
quency ωp, is located in the longitudinal focusing mag-
netic �eld with strength H0. Relativistic electron beam 2
is injected in this plasma environment at an angle α with
respect to the magnetic �eld strength vector. The Lang-
muir frequency of the electron beam is ωb, ωb � ωp.
We chose a circularly polarized intense low-frequency
electromagnetic wave with frequency ω2 and wave num-
ber k2 as a pump. This wave propagates along the guid-
ing magnetic �eld (axis Z) and in the opposite direc-
tion to the electron beam. The frequency of this wave
is less than the cyclotron frequency ωH of electron ro-
tation in a magnetic �eld. We consider the case when
ωH � ωp. Also we feed a weak high-frequency circu-
larly polarized electromagnetic wave (signal wave) with
frequency ω1 and wave number k1 into the system.
The parametric resonance between the signal wave and

the pump wave results in excitation of a space-charge
wave (SCW) with frequency ω3 and wave number k3,1 of
its �rst harmonic. The three-wave parametric resonance
condition for the frequencies and wave numbers of �rst
wave harmonics in this system has the form

ω3 = ω1 − ω2, k3 = k1 + k2. (1)

(1263)
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Fig. 1. Schematic diagram of the plasma-beam SFEL
of dopplertron type.

It should be noted that the pump wave (ω2, k2) propa-
gates in the opposite direction with respect to the axis Z
(Fig. 1) and therefore k2 = −|k2|. The direction of the
wave signal may be di�erent, so the wave number k1 can
be positive or negative.
The superheterodyne ampli�cation e�ect is used in the

SFEL. Its essence is to use an additional mechanism to
amplify one of the three waves, which are involved in
the parametric resonance. In the studied device plasma-
beam instability [1, 3, and 9] is used as an additional
mechanism for SCW ampli�cation. Growth increment of
the SCW related to the plasma-beam instability is much
greater than the growth increment related to the three-
wave parametric resonance. Therefore, the wave ampli�-
cation in the PBSFEL is mainly due to the beam-plasma
instability. The three-wave parametric resonance, in fact,
is reduced only to transfer of the additional ampli�cation
from the space-charge wave on the electromagnetic wave
signal (ω1, k1). Because of the fact that growth incre-
ments of the plasma-beam instability are high, the gain
of the electromagnetic wave is also large enough. There-
fore, we choose the system parameters so that the space-
charge wave in the studied system was growing due to
plasma-beam instability, and the increment of growth of
the SCW �rst harmonic was maximal.
Another feature of the PBSFEL is that the SCW,

which is growing as a result of the plasma-beam instabil-
ity, is characterized by a quasilinear dispersion relation.
This means that frequencies and wave numbersm-th har-
monics of the SCW are directly proportional to the har-
monic number m: ω3,m = ω3m, k3,m ≈ k3,1m. This
results in that a great number of three-wave resonance
interactions between harmonics of the SCW appear in
the plasma-beam system [1, 6, 10]. We take into account
such resonant interactions in this paper.

3. Basic equations

As initial equations we use the relativistic quasi-
hydrodynamic equation, the continuity equation and

Maxwell's equations. We use the hierarchical approach
to a theory of oscillations and waves [1, 10]. As a result
of the standard procedure of hierarchical approach, we
obtain the set of di�erential equations for the complex
amplitude of x- and y-component of the �rst harmonic
signal (E1x,1; E1y,1), x- and y-component �rst harmonic
pump (E2x,1; E2y,1) and the m-th harmonics (E3z,m)
SCW in the quadratic approximation

K1
dE1x,1

dt
+D1E1x,1 = K3E3z,1E2x,1, (2)

K1
dE1y,1

dt
+D1E1y,1 = K3η1η2E3z,1E2y,1, (3)

M1
dE2x,1

dt
+D2E2x,1 = M3E

∗
3z,1E1x,1, (4)

M1
dE2y,1

dt
+D2E2y,1 = M3η1η2E

∗
3z,1E1y,1, (5)

C2,m
d2E3z,m

dt2
+ C1,m

dE3z,m

dt
+D3,mE3z,m =

C3,m(E1x,mE
∗
2x,m + E1y,mE

∗
2y,m) + Fm(E3z). (6)

It follows from Eqs. (2)�(6) that the eigenwaves of
this system are circularly polarized electromagnetic
waves. In Eqs. (2)�(5) functions D1 = D(ω1, k1),
D2 = D(ω2, k2) are the dispersion functions of the
transverse electromagnetic circularly polarized signal
(ω1, k1) and pump (ω2, k2) waves, where

Dj(ωj , kj)=
i

cωj

{
k2j c

2−ω2
j+

b,p∑
α

[
ω2
α

γα (Ωj,α+ηjωH,α)
2

×
(

Ωj,α (Ωj,α+ηjωH,α)−υ
2
α⊥

2c2
(
ω2
j−k2j c2

))]}
,

(j = 1, 2). (7)

η1=E1y,1/(iE1x,1)=±1, η2=E2y,1/(iE2x,1)=± 1 (8)

are the sign functions characterizing the rotation di-
rection of the electric �eld strength of the circularly
polarized electromagnetic waves; c is the speed of light;
γα = 1/

√
1− (υ2αz + υ2α⊥)/c2 is the relativistic factor

(the subscript α accepts the values b and p; b is the index
characterizing the beam parameters, p is the plasma
parameter index); υαz and υα⊥ are, respectively, the
longitudinal and the transversal velocity of the electrons;
Ωj,α = ωj −kjυαz; ωH,α = eH0/(mecγα) is the cyclotron
frequency of electron rotation in a longitudinal magnetic
�eld; e is the electron charge; me is the electron mass;
K1 = ∂D1/∂ (iω1); M1 = ∂D2/∂ (iω2). In Eq. (6)

D3,m =
− imω3

c

(
1−

b,p∑
α

ω2
α(1− υ2αz/c2)

(mω3 − k3,mυαz)2γα

)
(9)

is the dispersion function of SCW; C1,m =

∂D3,m/∂ (imω3); C2,m = 0.5∂2D3,m/∂ (imω3)
2
.

K3, M3, C3,m are the di�erential equation coe�cients
depending on frequencies, wave numbers and parameters
of the studied system; Fm(E3z) is the function, which is
determined by the plural parametric resonance interac-
tions between the harmonics SCW and depends on these
harmonics [1, 6, 10].
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As it has been mentioned above, one of interacting
waves (SCW) is ampli�ed by the plasma-beam instability.
To consider this additional ampli�cation, we take into
account the term C2,md

2E3z,m/dt2 in Eq. (6). Through
this in the case of absence of the parametric resonances
between the SCW, the signal and pump waves the SCW
increment of growth will be determined by a plasma-
beam instability and will be approximately determined
by the expression (−D3,m/C2,m)1/2 (here we suppose
that C2,md2E3z,m/dt2, D3mE3z,m � C1,mdE3z,m/dt).
It should be noted that in this case the dispersion equa-
tion for the SCW has complex roots. So when we substi-
tute real frequencies and real wave numbers in the dis-
persion function D3,m(ω3, k3) we obtain D3,m 6= 0.

Fig. 2. Dispersion curves of the signal high-frequency
electromagnetic waves (curves 1, 2) and the space charge
wave (curves 3) in the plasma-beam SFEL, which were
calculated for a system with the parameters given
in Table.

As it has already mentioned above, the dispersion re-
lation for the wave SCW is quasilinear (Fig. 2, curve 3).
This results in the fact that SCW harmonics interact
with one another through the mechanism of the three-
wave parametric resonance interactions. Let us denote
numbers of interacting harmonics by m1, m2, and m3.
Then the condition of the three-wave parametric reso-
nance for these harmonics takes the form

ω3,m1 = ω3,m2 + ω3,m3, k3,m1 = k3,m2 + k3,m3. (10)

We take into account that the dispersion relation is quasi-
linear (ω3,m = ω3m, k3,m ≈ k3,1m). Then condition (10)
transformed into

m1 = m2 +m3. (11)

It should be recalled that m1, m2, and m3 are integers.
We can ful�l the condition (11) in a variety of ways, for
example 2 = 1 + 1, 3 = 1 + 2 and so on. Such three-
wave interactions result in generation and ampli�cation
of the higher harmonics of the SCW. Function Fm(E3z)
in Eq. (6) describes this e�ect. We note that the ef-
fect of this term in the quadratic approximation is slight,
whereas the cubic e�ect of this term could be signi�cant.
Also, the set of Eqs. (2)�(6) describes the paramet-

ric instability of the �rst harmonics of signal, pump and
SCW waves. If in the considered device the plasma-beam
instability was absent, and plural interactions between
the harmonics wave SCW could be neglected, then the
wave signal growth would be only provided by the three-
wave parametric interaction of signal, pump and SCW.
In this case we can easily determine the growth increment
of the wave from the set of Eqs. (2)�(6) accepted that
C2,md2E3z,m/dt2 = 0, D3mE3z,m = 0, Fm(E3z) = 0
and amplitude of the pump wave is constant. Assuming
E1x,1, E1y,1, E3z,1 ∼ exp(αpart) we �nd that

αpar =

√
K3C3,1(1 + η1η2)

K1C1,1
|E2x,1|2. (12)

This result indicates that if the circularly polarized elec-
tromagnetic pump and signal waves have di�erent rota-
tion directions of the electric �eld strength vectors, i.e.
η1η2 = −1, the parametric increment of growth will be
equal to zero αpar ∼ (1 + η1η2)0.5 = 0 and the para-
metric instability will be absent. Thus, for implemen-
tation of the parametric resonance it is necessary that
the electromagnetic signal and the pump waves have the
same rotation directions of the electric �eld strength vec-
tor η1η2 = +1. This means that rotation of the elec-
tric �eld strength vectors of both waves should be clock-
wise (η1 = −1, η2 = −1) or counterclockwise (η1 = +1,
η2 = +1) viewing along the magnetic �eld strength vec-
tor. This conclusion completely agrees with the con-
clusions of the general theory in relation to resonant
polarization [1].
It should be noted that the resulting wave ampli�-

cation in PBSFEL is de�ned as the gain due to the
plasma-beam instability, and the ampli�cation due to the
three-wave parametric resonance. The plasma-beam in-
stability contribution to the resulting wave ampli�cation
is determinant.

4. Analysis

Let us analyze dynamics of waves in the PBSFEL with
parameters which are presented in Table. Let us �nd fre-
quencies and wave numbers of the signal, pump and SCW
waves, which participate in the three-wave parametric
resonance in the studied device. For this purpose, we
draw the dispersion curves for the �rst harmonics of these
waves in Fig. 2, using dispersion relationsD1(ω1, k1) = 0,
D2(ω2, k2) = 0 and D3,1(ω3, k3,1) = 0, where the func-
tions Dj(ωj , kj) are de�ned by (7), and the function
D3,1(ω3, k3,1) is de�ned by (9). Figure 2 shows the
dispersion curves for the high-frequency electromagnetic
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signal waves ((ω1, k1), curves 1 and 2), low-frequency
electromagnetic pump waves ((ω2, k2), curves 4) and the
SCW ((ω3, k3,1), curves 3) for the case when the injec-
tion angle of the beam with respect to the longitudinal
magnetic �eld strength is equal to zero.

TABLE

Parameters of the studied plasma-beam superheterodyne
free electron laser.

Parameters Magnitudes

Langmuir frequency of the plasma ωp [s−1] 1.0× 1012

Langmuir frequency of the beam ωb [s
−1] 2.0× 109

Energy of the beam [MeV] 0.51

Focusing magnetic �eld [G] 2.8× 103

The amplitude of the �rst harmonic

of the pump electric �eld is

E2,1 =
√
|E2x,1|2 + |E2y,1|2 [V/m]

2.8× 104

Curve 1 corresponds to a right-hand circularly polar-
ized electromagnetic signal wave viewing along the mag-
netic �eld strength vector (η1 = −1), curve 2 corresponds
to a left-hand circularly polarized wave (η1 = +1).
Curve 4 corresponds to both a right-hand circularly

polarized electromagnetic pump wave (η2 = −1) and
a left-hand circularly polarized pump wave (η2 = +1).
We choose wave number k3,1 and frequency ω3 of the
�rst SCW harmonic so that this harmonic was charac-
terized by maximum increment of growth due to the
plasma-beam instability. As it is known, wave num-
ber value k3,1 = ωp/υbz corresponds to this condi-
tion [1�3]. Frequency ω3 is determined from equation
D3,1(ω3, k3,1) = 0. These values of the wave number k3,1
and the frequency ω3 correspond to point O on the dis-
persion curve SCW 3.
To determine the electromagnetic wave frequencies

ω1, ω2 of the signal and the pump, as well as their
wave numbers k1 and k2, it is necessary to solve the
set of equations, which consists of three-wave paramet-
ric resonance conditions (1) (two equations), equation
D1(ω1, k1) = 0 (we use the solution that corresponds
to the high-frequency electromagnetic wave), equation
D2(ω2, k2) = 0 (we use the solution that corresponds
to the low-frequency electromagnetic wave). These four
equations can be used to determine ω1, k1, ω2, and k2.
These solutions are easy to �nd graphically, if in Fig. 2
we perform translation of curve 4 into curve 5 so that
point O′ has moved to point O. Then the intersections
curve 5 with the curves 1 and 2 give the required values
of the frequencies ω1 and the wave numbers k1 of the
high-frequency wave signal electromagnetic wave.
The points A, B, C and D de�ne the required frequen-

cies and the wave numbers. To determine the frequencies
and the wave numbers of the low-frequency electromag-
netic pump wave it is necessary to project points A, B,
C and D onto the curve 4 in the translation direction.
The points A′, B′, C ′ and D′ de�ne the frequencies ω2

and the wave numbers k2. As can be seen from Fig. 2,

the electromagnetic signal waves are propagated along
the axis Z in cases A and C. In cases B and D they are
propagated in the opposite direction. Thus, the three-
wave parametric interactions in the studied SFEL are
possible in four di�erent cases. It should be pointed out
that previously only one operation mode of plasma-beam
SFEL of dopplertron type has been studied. The extraor-
dinary wave (curve 1, point A) participates in this mode
of operation [7, 8, etc.]. Modes of operation B, C, and D
previously were not studied.
Using standard numerical methods, we analyze the

dynamics of waves in the researched device for various
operating modes of PBSFEL by means of Eqs. (2)�(6).
Figure 3 shows the dependencies of the amplitudes of
the �rst harmonic of the signal wave electric �eld on the
normalized time τ = tδω (δω is the growth rate of the
plasma-beam instability [1, 3, and 9]) for the four possi-
ble modes of operation. Curve A corresponds to mode A
(Fig. 2), curve B corresponds to mode B, curve C cor-
responds to mode C, curve D corresponds to mode D.
It is seen that the gain factors of the signal waves are
approximately identical for modes A and B, which cor-
respond to the interaction with an extraordinary signal
wave (η1 = −1). The gain factors of the signal wave are
also approximately identical for modes C and D, which
correspond to the interaction with the ordinary signal
wave (η1 = +1). However, curves C and D essentially
di�er from curves A and B.

Fig. 3. Amplitudes of the �rst harmonic of the sig-
nal wave electric �eld as a function of normalized time
τ = tδω. Curve A corresponds to mode A, curve B cor-
responds to mode B, curve C corresponds to mode C,
curve D corresponds to mode D (Fig. 2).

From Fig. 3 it follows that mode C has a maximum
gain of the signal wave. In this case, it is necessary to con-
sider that the increment of growth of the SCW (the fre-
quency and the wave number of the SCW are character-
ized by the point O in Fig. 2) due to the plasma-beam
instability has the same value in all four modes. But the
parametric increments of growth αpar (12) for modes A,
B, C, and D are di�erent. It is the parametric increment



Nonlinear Theory of Plasma-Beam Superheterodyne Free Electron Laser. . . 1267

of growth that determines di�erent dynamics of the sig-
nal wave in the di�erent modes of operation, which is
shown in Fig. 3.

Fig. 4. Amplitudes of the �rst harmonic of the SCW
electric �eld as a function of normalized time τ = tδω.
Curve A corresponds to the interaction mode A, curve
B to mode B, curve C to mode C, curve D to mode D
(Fig. 2).

Figure 4 shows the dependences of the amplitudes of
the �rst harmonic of the SCW electric �eld as a function
of normalized time τ = tδω. We see that the maximum
of the gain SCW takes place, as in the case of the sig-
nal wave (Fig. 3), for mode C. The SCW ampli�cation
in mode D is minimal, whereas in modes A and B it is
practically the same. Such behavior of the curves is ex-
plained by the di�erent values of the coe�cient C3,1 in
Eq. (8) for the di�erent modes of wave's interaction.
Figure 5 shows the dependences of the amplitudes of

the �rst harmonic of the signal wave electric �eld on
the normalized time τ = tδω at di�erent injection an-
gles of the beam α with respect to the magnetic �eld for
mode of interaction C. Curve 1 corresponds to the in-
jection angle α = 0◦, curve 2 corresponds to α = 10◦,
curve 3 corresponds to α = 20◦, curve 4 corresponds
to α = 30◦. It follows from Fig. 5 that the gain coef-
�cient of the signal wave grows with increasing of the
angle α. First of all this e�ect is associated with the
change of the increment of growth of the plasma-beam
instability. At the same time, the parametric increment
of growth changes inessentially. The increment of growth
of plasma-beam instability can be found from the equa-
tion D3,m = 0, where D3,m is de�ned by Eq. (9). From
this equation follows that D3,m depends on the longi-
tudinal beam velocity υbz. In the case of the non-axial
beam injection the longitudinal beam velocity decreases
(it should be noted that the beam energy remains con-
stant, γb = const). This results in a growth of the in-
crement of growth of plasma-beam instability and, as a
consequence, in an increase of the gain of the electromag-
netic signal wave. This e�ect occurs in all four operation
modes of the plasma-beam SFEL.

Fig. 5. Amplitudes of the �rst harmonic of the sig-
nal wave electric �eld as a function of normalized time
τ = tδω at di�erent injection angles of the electron
beam α with respect to the magnetic �eld. Curve 1
corresponds to the injection angle α = 0◦, curve 2 cor-
responds to α = 10◦, curve 3 corresponds to α = 20◦,
curve 4 corresponds to α = 30◦. The curves correspond
to operating mode C.

5. Conclusions

We have constructed the quadratic nonlinear theory of
the plasma-beam superheterodyne free electron laser of
dopplertron type with the non-axial injection of an elec-
tron beam with respect to the guiding magnetic �eld.
It is found that four di�erent modes of operation can
be realized in the researched device. Ordinary transverse
electromagnetic waves take part in a three-wave paramet-
ric resonance in two modes. Extraordinary transverse
electromagnetic waves participate in other two modes.
It is demonstrated that the modes of operation involved
with the ordinary electromagnetic waves are character-
ized by maximum gains of signal waves. We have ana-
lyzed the in�uence of the injection angle of an electron
beam on the dynamics of waves in the SFEL. It is shown
that the electromagnetic signal gain increases when the
beam injection angle is enhanced for all the modes of
operation. It is found out that such the increase of the
signal gain is determined by the rise of a plasma-beam
instability increment of growth.
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