A reduced free product of lattices

by
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1. The purpose of this note is to provide a generalization of the
Basic Lemma of [1]. The new form is more general and easier to apply
than the form given in [1]. : .

To state the result we need some notation. For a lattice K with 0
and 1 let C(K) denote the set of complemented pairs, that is,

CE) = {{m,y}] 2,y < K, mry=0, zvy =1}.
K is called a lattice with no comparable complements it {z, 9}, {w, 2} e C(K),
cand ¥y =2, imply ¥y = 2.

Let Ly, A e 4, be pairwise disjoint lattices with 0 and 1. Let C be
a seb of two element subsets of | J(Li] 1 e A) such that if {2, y} € C then
for some A, ped, weL;, yeL,, o+ 0,1, y#0,1, and 1 5 u.

TEroREM 1. Let Ly, A e A, ‘and C be given as described above. Assume
that all L, are lattices with more than one element and with no comparable
complements, and that C satisfies the following condition:

®) if  {mwy, i}y {2o, 92} € C, @y, W€ Lny 41, 9p € L, (Ayved), o <m,
Yo SYs, then @ = wy, and y, = 4,.

Then there. exists a lattice L with 0 and 1 satisfying the Sfollowing
conditions: . ’

() L contains all I as {0, 1}-sublattices; ‘

(i) L is generated by |_J(Ls| A e A);

(iti) €(L) = |J (C(Za)| Aed) ve.

A lattice I satistying Theorem 1 can be described using free products.
Let K be the free product of the lattices Iy, A < 4. (Note that K hasg

neither 0 nor 1 if A is infinite.) In terms .of C we define a congruence
relation @(C) on K:

6(C) is the smallest congruence relation satisfying the following
conditions: o -

. (a) if 0z is the zero of L;, and @ < 0;, then » = 0;(0(C));
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(b) if 1, is the unit of Is, and 1: <% then 1;= w(@(@));

() i {o,y}eC, and avy <z then avy = 2(0(C);

(d) if {#,9}eC, and 2 < @AY, then z= zAy (O(C)).

The quotient lattice K/6(C) will be called the C-reduced free product
of the Iy, Aed.

TrzorEM 2. Let L be the C-reduced free product of the Ly, A e A. Then L
satisfies conditions (i), (ii), and (iil) of Theorem 1. .

A few remarks are in order. Firstly, note that of the three conditions
of Théorem 1, (i) and (iii) are the important ones. Secondly, observe that
apart from a few pathological cases (e.g., |4} =1, or for 1 % p, Il =1,
or C={{w,y}| vels, yeLy, ©#0,1, 4+ 0,1}, i.e. the full graph, and
g0 on) if the conclusions of Theorem 1 hold, then so do the hypotheses.
Tn other words, apart from a few pathological exceptions, Theorem 1
is best possible. Thirdly, Theorem 2 follows from Theorem 1, although
we shall proceed the other way around. Nevertheless, Theorem 2 is the
more important result in some applications.

The Basic Lemma of [1] is a special case of Theorem 1: one L; is
arbitrary and all the others are three element chains. It is easily seen
that the Basic Lemmsa does not imply Theorem 1. Theorems 1 and 2
were made possible by the solution of the word problem for free products
of lattices given in [3]. ) .

The results of [3] needed in the proof are summarized in § 2. Theorem 1
is proved in § 3 and Theorem 2 is proved in § 4. Some applications are
given in § 5, a further application will be given in [6].

2. In this section let L;, 4 e 4, be lattices, assumed to be pairwise
disjoint. Set @ = U (Lu| 2 e 4). i
DerINITION 1 (Lattice polynomials over Q).

(i) If o «Q then z is a lattice polynomial of length 1; we write
Iz)=1. '

(ii) If Ay, 4, are lattice polynomials of length 1,, I, respectively,
then A,V 4, and A4,A 4, are lattice polynomials of length I,-+1;; 1(4,v A4y)
=1(4yA 4;) = U(Ao)+1(4y).

(iii) The only lattice polynomials over ¢ are those obtained from
a finite sequence of applications of (i) and (ii). The set of all lattice
polynomials over @ is denoted by P(Q). It may help the reader to observe
that P(Q) with the operations A and v is the absolutely free algebra
over Q.

Drrinrrion 2 (Upper and lower i-cover). For each A e P(Q) and
each A e 4, existence and value of the upper A-cover, A%, and the lower
A-cover, Ay, are defined as follows:
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(i) Tf A e L; then Ag and 4” exist, and they are both equal to A4;
Agy, A do not exist for u # L. ’

(i) I A= Bv( then A® exists if and only if B® and 0® both
exist and in this event A4¥ = B®y¢® (the join is in IL;, of course).
Furthermore, 4y .exists if and only if at least one of By, O,y exists;
Ag = By (respectively Cw) if only By (respectively () exists, and
A(;_):z B(;,)V 0(1) if both B(;,), O(}.) exist.

(ili) If A = BAC then Ay exists if and only if By and Cu both
exist and in this event 4y = ByA Cpy. A? exists if and only if at least
one of B®, 0¥ exists; 4% =DB® (respectively C) if only B® (res-
pectively CP) exists, and A” = BOA¢" if voth B®, 0P exist.

DEFINITION 3 (Quasi ordering on P(@)). ¥For any 4, BeP(Q) we
define by induction on 1(4)--1(B) the relation 4 C B to hold if and only
if at least one of the conditions (1) to (6) below holds:

(1) 4= B;

(2) there is a 1 A such that 4%, By, exist and A < By, in Iy;

(3) A= A,v A,, where 4,C B and 4,CB;

(4) A = AynA,, where 4,CB or 4,CB;

(8) B= B,V B;, where ACB, or AC By;

(6) B= B,AB,;, where ACB; and 4 C B,.
Set A ~ B if ACB and BC 4.

THEOREM 3 (The structure theorems of free products of lattices [3]).

(i) The relation C is a quasi-order (that s, C is reflewive and transitive)
and thus = is an equivalence relation.

(i) Given A € P(Q) let <A) denote the equivalence class of A under =z,
and let L = {CAY| A e P(Q)}. Define the binary relation < onLby (A> < {(B)
if and only if A C B. Then < is a partial order on L with respect to which
L is a lattice. Moreover, {(AYV<{B)= (AVB) and {A)N(B)= {4 AB).

(ili) For each Ae A the mapping @,: L,—L, given by g,(z) = (&), ¢
a 1-1 lattice homomorphism, and {(@,] A e A); L> is the free product of the
Sfamily (L,| A € A).

(iv) Por each Ae A and A eP(Q), Ay exists if and only if {z €Ly
(&) < (ADY = O and in this event Agy = V (we Ly| @) < (4)), and dually
for A, Therefore, if both Ay and A® ewist, then Ag < A®.

(v) For 2, pe A and A e P(Q), if both Ay and A" exist, then L= u.

3. In this section let L, A ¢ A and C be given as in Theorem 1. We
denote by 0z and 1; the zero and unit of L;. Set Q= U(La| 2e4) as
in § 2. The following definition contains the idea of the proof of
Theorem 1. :
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DEFINITION 4. A subset B(Q) of P(Q) is defined by induction on the
length of the polynomial:

() if A <@, then A eI, for exactly one Aed; 4 ¢R(Q) iff 4 is '

not 0; or 1i;

(iiy if A = Bv 0, then A <E(Q) iff B, 0 ¢ R(@) and the following
two conditions are satisfied:

(ii;) 1,C 4, for no 4 e 4;

(ii,) #C B, yC 0O, for no {z,y}eC;

(i) if 4= BAC, then 4 ¢R(Q) it B, 0 < R() and the following
two conditions are satisfied:

(iil;) A C 0z, for no Aed;

(i) BC &, OCuy, for no {z,y}eC.

Now we are ready to construct L:

L=1{0,1}v {<A>| 4 <R(Q)},
partially ordered by
0< ¢A><1 for all AeR(Q),
(A><(BY it ACB.

In other words, L— {0, 1} is a subset of the free product; the partial
ordering on L— {0,1} is the same as on the free product. Thus L is obvi-
ously a partially ordered set.

To show that L is a lattice, take X, ¥ ¢ L; we have to find Xv Y.
If X or Y €{0,1} this is obvious. So let X, ¥ ¢{0,1}; then X = (B},
Y =<0 B, 0 eR(Q). Set A=Bv (. We claim that XvY = <4>if 4
satisfies (ii;) and (ii,), and XvY =1 otherwise. This follows from the
observation that if 4, 4;e¢P(Q), AC A,, and A violates (i) or (ii,),
then so does 4,. The dual argument now proves that L is a lattice.

For a e Ly, a 5 03,1,, identify a with (a); identify 0; with 0 and 1,
with 1. This makes L, a {0, 1}-sublattice of L. ({a) = (b) implies a = b
follows from (2) of Definition 3; the identification preserves meets and
joins in- view of the discussion in the previous paragraph.) Thus (i) of
Theorem 1 has been verified. (ii) of Theorem 1 is obvious from (ii) and (iii)
of Definition 4.

Finally, we verify (iii} of Theorem 1. It follows from (i) of Theorem 1
that C(IL;) C C(L). Let {z,y}eC; (ii,) and (iil,) of Definition 4 yield
zvy =1 and #Ay=0 in I, hence {z,y} eC(L). This proves D in (iii)
of Theorem 1.

To prove the converse, let {X, Y} € C(L), thatis ¥AY = 0, Xv¥Y = 1.
We can assume that {X,¥} # {0,1}, hence X =<4y, Y =<(B), 4,B
€ R(Q). Therefore 4 v B violates (ii,) or (ii,) and A4 A B violates (iii,) or (iii,)
of Definition 4. The four cases that arise are handled separately.

icm
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Case 1. A v B violates (i) and 4 AB violates (iii;). Hence for some
Ayved, 1CAvB, AABCO,. Thus by (iv) of Theorem 3, 1,= (4 v B)y,

and (4 AB)(” = 0,. Note that if Ay, exists but By does not exist then

by (i) of Definition 2, 4w = 1, and 50 4 D1; by (2) of Definition 3,
hence A ¢ R(Q), contradicting our assumptions. Three more similar
arguments and (ii), (iii) of Definition 2 give that A, By, A”, and B
exist. Hence, by (v) of Theorem 3, we conclude that A = . Since Ay < A?
and By < B® the above equations mean that both By and B® are
complements of Ay in L, By the assumption that I; has no compa-
rable complements we conclude that By = B®. Similarly, Ay = 4%,
Therefors, X = (A>= A= AP eL;, T = (B> = By=B"cL;, and
{X,Y} eC(Ly), which was required to prove.

Case 2. Av B violates (ii;) and A AB violates (iii,). Hence, for some
leA,1,C AvB, and for some {z,y}eC, ACx and BCy. Let zeL,,
yeL, (v,ped, v+#u). Just asin Case 1 we conclude that AwABg = 13
turthermore, A" <, B¥ <y, Since »#pu we have As£v or A=u.
If, say, A # v then the existence of both Ay and A s a contradiction.
Thus Case 2 cannot occur.

Oase 3. AvB violates (ii,) and AAB viclates (iii;). This leads fo.
a contradiction just as Case 2 did.

Case 4. A vB violates (ii,) and AAB violates (iiiy). Lebt {®, ¥},
{@a Ya} €Cy 4, C A, Y C B, ACuam, BCy,. Then m C 3, 41 C ¥,, hence
by condition (P) of Theorem 1, 4, = &, and y, = ¥,. Hence z, = A,yi=F
and so {X,¥}="{<4), (B>} eC. This concludes the proof of Theorem 1.

4. To prove Theorem 2 we shall verify that the I constructed in § 3
is isomorphic to K/@(C). Since L— {0, 1} C K, and in view of the behaviour
of A and v in L, it suffices to show that every congruence class of K

modulo @(€C) except [1,]@(C) and [0;] O(C) contains exactly one element

of L—{0,1}.

Let A e P(Q). We prove by induction on the length of A that if
A4 #£1,(0(C)) and A = 0,(6(C)), then there exists a D e R(Q) such that
A=D(6(@©).

Let 4 <Q; by assumption 4 7 0, and A # 1 for any 4 e, hence
we can take D = A. Let 4 = 4, v 4, and let A, = D;(0(C)), D: e B(Q),
i=1,2. Then A =D,vD,(0(C). If D,vD,eR(Q), then the proof is
finished. Otherwise, by (ii) of Definition 4, Dyv D, = 1:(@(€)), for any
Aed, hence A = 1;(@(@)), contrary te assumption. The dual argument.
completes the proof.

Since X is the free product of the Is, 1 € 4, there is a homomorphism
¢: K—IL which is the identity map on all Iy, e 4. Let @ denote the
congruence of K induced by ¢. Obviously, for A eR(Q), (Adp = (4>

»
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Hence if 4, B eR(Q), (4> # <{B), then (4> == (BY(P). Since O(C) < P
is obvious, we conclude that (4> 5= <B>(@(C)), showing that every
ccongruence class modulo @(C) other than [0,1€(C) and [1;] @(C) containg
exactly one element of L—{0,1}.

S. Ihe concept of {0, 1}-free product of lattices is the same as that
«of free preduct of lattices, except that it is applied only to lattices with 0
and 1, and homomorphism is replaced by {0, 1}-homomorphism. Let us
make two observations. First, the construction of L in § 3 and the proof
+that L satisfies (i) and (ii) of Theorem 1 made no use of the assumptions
.of Theorem 1. Second, the proof of K/@(C) = L in § 4 is again independent
-of the assumptions of Theorem 1. Hence this isomorphism holds for I,
arbitrary and €= @, showing that L is the {0, 1}-free product of the IL;,
JAeA. Since the word problem in I is solved we conclude: .

THEOREM 4. The word problem of {0,1}-free product of lattices Iy,
Jed, is solved relative to the Ly, A€ 4. .

This result is not new, as it can also be concluded from a result
of [5].

Next we specialize Theorem 1 to C = @; this result appears to be new.

TEROREM 5. Let Ly, Ae A, be laitices with 0 and 1, 0 % 1, and with
no comparable complements. Let I be the {0, 1}-free product of the L, 1 € A.
For a,belL, ais a complement of b iff for some Ae A, a,bels, and a is
a complement of b in L,. .

As a further application we prove the following result of R. P. Dil-
worth [2]:

THEOREM 6. Bvery lattice M can be embedded in o uniquely comple-
mented lattice.

Proof. Let 4= {0,1, 2, ...}; let L, be M with a new zero and unit.
Let X;,4 =1, 2, ..., be pairwise disjoint infinite sets, | Xi| = max {8, | M|};
let Li be the lattice freely generated by X; with zero and unit added.
Since |X;| > | M| we can define a function fo: M —+X, which is one-to-one;
get G = {{m, yHy=7Fln), xeM } Let M, be the G)-reduced free product
of Ly and L,. Assuming then M, has been defined, let f, be a one-to-one
map from the set of non-complemented elements of My into X4y, Ca
= {{m, Y ceMp,y= f,.(aa)}, and let M, be the Cy-reduced free product
of My and Lyny;. Then M C M, C M, C ... C My; the lattice L= | (M|
"m=1,2,..) is the uniquely complemented lattice containing M.
The generalizations of Theorem 6 given in [1] can also be proved
in & similar fashion. The present proof of Theorem 6 is equivalent to the
proof given in {1].

Finally, we give an application of Theorem 2 which is crucial in some
applications that are given in [4]:

©
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TesorEM 7. Let Ly, 2 € A, C and Li, A e A and C* be given as in Theo-
rem 1. For every e A let pa be a {0, 1}-homomorphism of L, into L} such
that if {x,y} €C, @ eLn, y € L,, then {ags, yp,} ¢ C*. Let L be the C-reduced
free product of the Ls, A € A, and I the Ct-reduced free product of the Li, A € A,
Then there exists a {0, 1}-homomorphism @ of L into L' such that ¢ restricted
to Ly 18 @a, for all Ae .

Proof. Let K and K* be the free product of the L;, 4 € 4, and the L

" 2 e A, respectively. Since @i maps L info L;C K*, by the free product

properby, there exists a homomorphism ¢ of K into K, such that p re-
stricted to Iz is ¢s for all 1 € 4. Set L = K/O(C), and L' = K*/0(C"), and
let « and o denote the natural homomorphisms. Then ya': K—I' is
a homomorphism; let @ be the congruence relation of K induced by pat.
We claim that @(C) < 6. This follows from the assumption that {x,y} eC
implies {wy, yp} € G, The computation is based on (a)—(d) of the definition
of ©(C), the easy details are leff to the reader. Hence there is & natural
homomorphism ¢ from L = K/@(C) into K/6 CL'. Since a is the identity
map on La, o* is the identity map on I3, and y Testricted to Ly is @i, the
relation ap = wa' implies that ¢ restricted to La is g completing the
proof of Theorem 7.
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