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Extensions of congruence relations
on infinitary partial algebras
A problem of G. Gritzer

by
G. H. Wenzel* (Kingston, Ontario)

§ 1. Introduction. The result due to G. Gritzer and E. T. Schmidt
[2], [1] that every partial universal algebra U can be embedded into
a “largest’” universal algebra 51)/0; generated by U (ie. into a certain
factor algebra of the free algebra on a generators over the class of all
algebras of the type of ) such that every congruence relation 6 on %A
can be extended to a congruence relation on §(1)/6; is well known.

Various weaker or stronger forms of this result snd less or more
involved proofs thereof (see e.g. [1], [2], [3]) are known and its applications
(as 2.0. in the theory of free algebras generated by a partial algebra over
a class of algebras [1] or in the representation theory, e.g. [1], [2], [5])
justify its special consideration. The crucial point of the extension theorem
is the suitable definition of the congruence relation 0; which is obvious
in case % is a universal algebra and owes its less obvious definition in
case of a partial universal algebra % to G. Grétzer [1]. The latter def-
inition of 6z (*) is not applicable if we switch from partial universal
algebras to infinitary partial universal algebras is seen by the following
example:

Let F' = {fy, cves fyy - Jy<p D& & non-empty set of »,-ary operations,
%, > w,. If A= (4; Fy is a partial algebra of the same fype 7,
A= {ag, e, sy o Yocay @ > g, D(fy, %) = O for all f, ¢F where D(f,, U)
denotes the domain of f, in %, then obviously 6z = o (ie. if p,q eP(“)(T)
then p = q(05) if and only if p = q) and 9()]6z=25(x). Let p e P9(x)
be built up from &, different projection symbols x,. Then p = p(6z) would
(according to (4)) imply the existence of 0 <k <y, te P¥7) and
Pey 01 € Pz), 0 <4 <k, such that p = r{po; w.r; Pi—1) ADA Pi8gy ey Goy -)o<a

* The results were obtained while the author was instructor at the Pennsylvania
State University.

(*) p= q(6z) holds if and only there are 0 <%k <, ¢ e P®(z) and pi, qu « PO),
0 <i<h such that p=r(Pos s Ppmr)s T ="7(G0> > Gp=1) DA Ds(Go, o> o dsea
= Qi@ +ov5 g -o)gcq ([1], theorem I1.2.1).
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iy defined for ¢=0,..,k—1. Hence, by our choice of U, pr= g for
alli=0,1, .., k—1;1e.p=7(%u, -, Tupwy) i§ built up from < 8, different
symbols x,. This contradiction proves our point. The problem poses
itself: Can we define a congruence relation 6 associated with the infinitary
partial algebra 9 on P“(z) such that we get the same useful extension
theorem which we obtained in the finitary case? In other words: Can
we find 0; such that % is (isomorphic to) a relative subalgebra of 5?(“)(1:)/0;,
every congruence on U can be extended to §z)j6; and the characteri-
zation of strong congruence relations as given in [3] can still be realized
within ﬁ(")(r)lﬁa (where = it the type of )? Can we, moreover, define §;
in such a way that it coincides with the definition of 6 ag given e.g..in [1]
in case where the type is finitary? Even more: Can we give a description
of 6z which is a natural extension of the neat description in the finitary
case? This paper will answer the questions in the affirmative and thereby
settle research-problem II.4 as proposed by G. Gritzer in [1]. Tt ac-
complishes a bit more though: We know ([3]) that the strong congruence
relations on a partial universal algebra are exactly those which can be
extended to a congruence relation 6’ on an algebra B containing A in
such & manner that 4 = [4]6' where [4]6" = U([alt'; ac A) and [a]6
denotes the congruence block of a modulo 6. G. Gritzer [1] observed
that B can always be chosen to be 9(z)/6;. We add that, in the other
extreme, we can extend every congruence relation 6 on 9 to 6" on ﬂ’(")(-z)/ bz
in such a way that [4]6' = P(")(r)/ﬁ,;; this holds for both infinitary and
finitary types. Finally, the author believes that not only the generali-
zations of the theorems but also the proofs given are of interest, for they
successfully avoid the computational difficulties tied up with the proof
of the transitivity of 6; as presented till now. This yields in particular
a simpler proof for the extension theorem even in the finitary case. (The
reader will observe that our proof of the latter theorem becomes even
simpler if we start out with finitary algebras, since then finite induction
on the rank of the polynomial symbols involved is applicable.) As has
doubtless become clear from the style of this infroduction we presuppose
the reader’s familiarity with the basic concepts connected with (universal)
algebras, infinitary algebras and partial (infinitary) algebras (see, e.g.,
[1]; [4], [6]). The terminology is in accordance with [1].

§ 2. The definition of 6. Let A = <4; 7> be an infinitary partial
algebra, 4 = {ay, a;, .., Gy wetyay @ = <ty Qyyeey yy wdp<ay B'= {fo, i,
ey Joy wdocp. I 99q) is the algebra of polynomial symbols of type v
determined by U, then we call all polynomial symbols ¢ X which are
used in the build-up of the polynomial symbol p (including p itself) the

“components” of p. We define the algebra T(A) = (T(W); F) of type ©
as follows:

@ ©
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(i) The set of symbols X' = {3}, %1, ..., %), ...}y<e is in ().

(i) It p e PUONX, then p’ e T() if and only it g(a, .., a, .
is undefined for every component g of p. ‘

(iii) T'(A) consists precisely of the elements deseribed in (i), (ii),
and equality is formal equality.

(iv) It f, € F, then fylxg,, ..., ., Jo<n, = % i and only if

v v<a

Fil@uoy ey gy '~-)ﬁ<=',, = Qe

(v) If f, e 7, {pi, ..., ps, - Jocr, © T(U) and case (iv) does not apply,

then we define
TolPby -y P8, s, = {F(Poy - oy ...)3<,,7), .

The definitions of Z'(A) and of the phrase “p(ay, ..., Asy ... )sce 18
defined” make it clear that (iv) and (v) turn every f, ¢ F into a well-
defined operation on 7'(90), and T(A) = <T(W); I is an algebra of type <.
Therefore n: P“(z)>T (%) defined by P =P (X, ey Xy eoe)pea IS A1
epimorphism with kernel ker(z) and ﬂ”‘"’(r)/ker(n)gi(?i).

DerFiNITION 1. The congruence relation ker(z) on §r) is denoted
by 0z and called the congruence relation induced by @ = (ay, ..., Gy, o )p<a.

Remark. If = is a finitary type then 6; as defined above and as
defined by Gritzer in [1], Theorem II.2.1 (see footnote (1)) coincide. We
omit a formal proof since it is-a consequence of footnote (!) and the
remark following Theorem 2. We give a final definition which we need
in Theorem 2:

DEFINITION 2. p ¢ P¥(z) is called U-irreducible it p’ ¢ T ().

§ 3. The extension theorem and a generalization to infinitary algebras
of G. Gritzer’s description of 6;.

THEOREM 1. Let v be an infinitary type and A a partial algebm_ of
type v. Then A is (up to isomorphism) a relative subalgebra of T(“)(r)/ﬁa if
G=<lgy Qg eres Qyy oDy<a A A = {Gg, 01, ..oy Gyy o Fy<a -

(1) If 0 is a congruence relation on U= (A; F, then we can evtend
it to a congruence relation 8" on §(z)/6; such that [A]6' = P(x)/8; where
[416" = {z; © « P“)(7)]0zA% = a(6') for some a < A}.

(2) 0 is a strong congruence relation on W if and only if there is an
extension 0 of 0 to T(x)/6; such that [A]6" = A.

Remark. <4; F) is a relative subalgebra of (B; ¥ if

D(fyy W= {Yo5 +or) Yss "-)d<vy e A" ~ D (fyy B); flbos -y Yss "‘)d(f,y €A},

Proof. (1) -Clearly, % is isomorphic to ‘the relative subalgebra
%= {[x]6z; 0 <y < a}; F) of 99x)[6; and to the relative subalgebra

12+%


GUEST


166 G. H. Wenzel

X' = (X'; F> of T(A). So 6 induces a congruence relation §; on ¥;, and
we have to extend 6, to ﬂ"“’(r)/ﬁa in order to seftle the procf. For proof-
technical reasons we distinguish between X, X' and U by choosing pair-
wise disjoint carvier sets X, X', A. Let Cy, ..., 0,y ..., y <&, Dbe the
congruence blocks of 6 in 4, €5, .., Gy, ..,y <& the corresponding
blocks of 6, in X;. If 8, = {Cu X ... XCuyX i 6, 0 < pyy < &},
0 < y < B, then we consider all intersections 4 = R ~ D(f,, A) with R ¢ S,.
If A= @, then we associate some fixed ay e 4 with 4; if 4 == &, then
we associate some fixed (fﬂ,‘fn, ey mﬂé, ...),5<,1, e A with 4. Since every »,-tuple
(Yos >y Yss .,.),K,yeA”v iy in some uniquely determined ReS,, we can
extend D(f,, A) to 4™ as follows:

(1) folWos s Yoy --Jocs, 18 defined as before if (yq, ..., s, wdass,
e R~ D(f,, A).

() Fol¥or ey Yoy - Jocr, = Follor oo Wiy Yo, [05D, as] i (5o, ..
ey Yoy edos, eRand 4= R~ D(f,,A) # O [resp., 4 = O and if case (i)
does not apply. '

These definitions turn % into an infinitary algebra 9, of type = upon
which 6 is still a congruence relation.

Leyua 1. @ T(A)—>A4[0 mapping p’ into [p(ag, @y, .y @y, .. )y<al 0
defines a homomorphism from T(W) into A /0.

Proof. ¢ is obviously a well-defined mapping.

(@) IE folhgs s Fugs ---)6<117 =%, then fltu, .., au, '~')6<v., =@, I8
defined in 2U; hence,

f?(xlllo: ey xlllﬁi -~-)6<vyfp = 5«‘2‘?’ = [(ls]o - [fy(a.ua: seey a',ué: ---)6<vy]6
= [llu]0, ...y [0, ---)6<v7_, = Fo(Zna s ey X5 ® ---)6<v7 .

() IE £ (S wuvs D3y vo)o<s, ¢ X'y then, by definition, fo(poy ..., ps; ..oy
= (£(Pos -3 Doy ---)o<s,) - Hence,

fy(Pé; ey W’i: b--~)6<vy‘p = (fy(%: weey Posy -u)d<v1,)’<77
= [flBas -y Poy o ocn, (g ooy Aoy e Jocal O
= [f'/(pn(auy ey Uy e ocay oy Dol ooy U5y weJo<ay ---)g<»:,]6
= Fo{[Po(@0y -ev Gy - Jo<albs oeos [Pl iy ey Uy e Yol o,
= FPogy s P05 w-Jocs, s
This proves the lerama, Thus, mg: PY7)>A is a homomorphism

from 9) into U, ker(mp) > kerw = 6z, and the second isomorphism
theorem yields ’

T9(r) ket (ng) = 5(z)) O3] ker (g)] 6z -

©
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Therefore, [3,]0z = []6; (ker(wg)/6;) is equivalent to %, =1z (ker (=) ,
ie. to [a,]0=[as]0, i.e. to a, = as0) or, finally, to [x,]0: = [%5]0a(6,).
Hence, ker(mng)/0z restricted to X; equals 6,, and 6 = ker(ng)/6; is the
desired extension of 6; to P“(z)/6;. Since PY%)mp C 4, we conclude
that [X,Jker(wp)/6z = P“(x)/6; finishing up the proof of part (1) of
the theorem. ’

To see part (2), we assume 0 to De strong, choose the blocks Dy, Dy,

oy Dyy ooy ¥ < & of ker(wp)/6; such that D,D ¢} and define a new
equivalence relation ¢ on P*()/6; by the blocks C3, DNCE, ..., €L, DNCL,
wy y< & If we study the corresponding partition in the isomorphie
algebra, T(W), then we see immediately that the new equivalence & is
actually a congruence relation (we skip the easy details) since 0, is strong.
Hence, [X;]0' = X, and 6’ extends 6. The converse statement is trivial
(as in the finitary case), and the proof is complete.

We now turn to the description of 8; in case of infinitary algebras
which together with the example in § 1 settles Problem IL.4 [1]. First
we prove a lemma which corresponds to another lemma due to the author
of this paper in case of finitary types (see Lemma IT. 2.1 in [11).

LEMMA 2. Lt P = fylPos ooy Doy ooy G = Filay ooy G ooy € PDA2).
p = q(fa) holds if and only if (i) P(Ay, ..., Gy vu)sca = g(ay, cey By i)
or (ii) y=1{ and ps = qs(6z), 0 <6 < Yy

Proof. Since the A-irreducible elements form a complete and
irredundant system of representatives of the congruence classes modulo 0;
in P“z), we can associate a unique ¥-irreducible polynomial &, with
every p e P“(z) such that S; = &, holds if and only if p = q(6z). Thus,
p=q(6z) implies p=Gy= Gy = q(fz), i.e. pn=gqn= G= G;. If
Sy = 3, for some ¢ then

_Z)(Xc'», ey :{é; '--)6<a = x; = q(Iﬁ, vy xl.;) “~)L7<a

and
POy ey Boy wiioca = Q= (Bgy ey Tgy oo )sca -
Otherwige,
Pz = fy(Poy ---) Ps, -")15<1'3,T‘ = fr(G{‘oJ [¥] Gi‘aa "-)d<vy
and .

7 = fe( oy ++e5 oy o docn @ = fe(Ghas woey Biyy o Jon, -

Pz = gz and formal equality shows that { =y and &, = Gg,, 0 <8 < .
Hence £ =y and Gy, = S,,, i.e. ps = qs(0z) for all & <, This proves
the lemma. :

THEOREM 2. Let p, q « PYz). Then p = q(6z) holds if and only if
there egist y < 6 = dim(A), te PY(z), s, qs e Pz), 0< 8 <, such
Rt D= 7(Pyy ooy oy oodocyy q= 7(Goy +ory Gay wwdo<y ONA Do(doyeny Aoy or)o<a
= Qo(llyy ony Uy o)o<a fOr all 0 < 8 < 9. !


GUEST


168 G. I. Wenzel

Remark. Since dim () < o, in case of finitary types, our description
coincides with that given by Gritzer (see footnote (1)) in the finitary case.

Proof of Theorem 2. Let p = q(0;). We prove the theorem by
transfinite induction on the indices of the Borel sets B, = By(X), 0 < 1 < 6,
building up P®(z) and containing p (see [6]).

If peB, le p==z, then, by Lemma 2, P(lgy cony Aoy oee)oca
= (dgy ey Gsy wrr)o<a a0 (With %, € (7)) p = @(p), q = 74(q); this proves
the induction beginning. We assume the theorem to be true for all Borel
sets B, with x< A and choose peBi= J(By =<2)v U(fH(U By
n<A); 0Ky < ﬁ). If pelJ(Bs »<24), then the induction hypothesis
applies immediately. I pe | (f,(U(B,,; <0<y < ﬁ), say p efu(U By
% < )} for some 0 <y < B, then p = Fy(Boy --s Doy «o-Jo<n, With ps e U (By
% < A). TED (Ggy ooy @y ... )o<a 18 defined, then (by Lemma 2) q(dg, -5 @s; +-)i<a
iy defined and p = a(p), q=F(q) proves our point again. If
D(8gy eey @5y o )s<a is undefined, then (by Lgmma2) q =100y ) Gay - Jocny
s € PPz), and ps = gs(6z) for all § < »,. By induction hypothesis, there
are gs < 0, 15 e P%(z) and pl, qh e P7), 0 <8<, 0<pu<gps, such
that

Ps= Td(pg: ey pfu ~--)1L<rp,57 Qs = Té(qga ey Qfl’ -~-)u<¢a
and
) p,‘i(a,,, A @ol@gy <eny Bgy oo-Yoca -
We define
y=gtot o Fest I<y

and observe that w» < 6 since 6= dim (%) is not cofinal with any w,
0 <y < f. Now we define the p-ary polynomials t¥ ¢ PY(z) by

(0 o e 2 .
T3(205 <ov s Bugy ver} w003 B0y ones Zgs oo} ---)o<s<yy;o<u5<¢s

] ]
= 7'3(2‘07 weey Bugy "‘)/‘6<9’d’ 0 < § < Vyo

Then
P =JFolPas s Doy )iy,
o (0 0 5 3
= f?(%(pﬂa weey Pus v Ju<gos oy To(P0y v s Paiy "‘)H<!ngi -")6<v,,
_ * * 0 0 . .k 2 . .
= FA¥0) me s T35 oo (D0 woes Doy we§ oerd Pos vves Patgy oo v Joen, 0 <)
similarly
— * * 0 o .. e .
q= fr(rﬂv ey Loy '")5<71,(q07 ooy Ougy eordeoe oy voey Gy oed ~-')0<s<vy;0<u5<¢a .
Thus,
. 0 0 e & .
P= T(pﬂﬁ voy Pugz ooy oer 3 POy veey pusy g '--)D<s<vy;0<n5<lp,!

. 0 0 . . nE & .
q= 7'(%; ey Qugy ooe3 w3 GOy ey sta vy -")0<5<v,,;0<ﬂ,<ws:

im Euwtensions of congruence relations

169

and
p;s(auy vy By e )ca = qf,z(ao, vy A3y o )o<a

for all 0<e<#w, O0<u <@ where t=f,t¥,...,1f, ..)se,, ¢ P¥)
p < 0. Hence, the proof by induetion is complete. ! ’
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