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On the decision problem for extensions
of a decidable theory

by
Verena Huber Dyson (Chicago, Illinois)

Set theoretically, the most natural partition of a class K of algebraic
gtructures divides them into finite and infinite ones. Syntactically, there
arise from this separation—again naturally—no less than five different
extensions of the theory T of K, namely the theory T of infinite models
of T, the theory Ty of finite models of T, the theory T}, of infinite models
of Ty, the theory T} of models of T that are not models of Ty, and, finally,
the theory eT of those structures that are models of Ty as well as of T7.
They are arranged in the following self-explanatory diagram:

T T
ar

It will be seen below that TF is the more natural candidate for a dual
of Ty than T;.
The question, that we are concerned with in this paper, is how the

-decidability of T may affect these five extensions. In [7] we showed that

a decidable theory T may have an undecidable theory T;. Here we con-
struct, among others, an example of a decidable theory T that has an
undecidable extension Ty. As a matter of fact, of the 32 possible com-
Dbinations decidable-undecidable, 7 are ruled out by very simple and
general considerations, among the other 25 cases there are 9 basic ones

for which we exhibit theories, and from these a trivial construction yields

examples for the remaining 16 possibilities.

The diagram above is obviously a special case of a general situation.
However, we want to avoid introducing too much machinery in the form
of definitions and trivial lemmas, although a more thorough investigation
of these generalities might well lead to some interesting results. Thus,
in-§ 1 we ghall offer the bare minimum needed for our purr ose. § 2 contains
the lemmas on the basis of which the seven cases are ruled out, while § 3
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deals with those cases. In § 4 we develop some methods that allow for
the construction of our examples, and § 5 lists those examples with
sketiches of the corresponding proofs. Finally, in § 6 we make a few com-
ments and raise some problems.

If one looks for mathematically meaningful theories T that have
been proved decidable, one finds that there are very few for which our
diagram does not degenerate and none whose decision procedure does
not also entail the decidability of the associated theory T; of infinite
models. In the case of decision procedures based on completeness or
model completeness the theory T simply coincides with T;, and the
known cases of elimination of quantifiers lead to combinations of so-
called basic sentences for which it can easily be decided whether or not
they have infinite models. The theory of Abelian groups is at any rate
rich enough to offer a non-degenerate diagram, but here we find all the
pertinent extensions decidable. It is this theory that we extend in various
ways in order to obtain our examples.

‘We shall make much use of Szmielew’s decision procedure (cf. [11])
and of notation and terminology introduced in [7].

But, alas, complete as the results of this note may seem, they are
very unsatisfactory, for the examples are contrived and definitely not
finitely axiomatisable. It is obviously impossible to find finitely axio-
matisable examples for our purposes among extensions of theories for
which all the extensions in the diagram are decidable. And it seems
highly unlikely that our examples could be turned into finitely axio-
matisable ones by means of an “enrichment” of the language, for, such
a procedure would, no doubt, destroy the decidability properties. Thus,
the problem remains open, for which of the 25 cases there exist finitely
axiomatisable examples. This seems to be a much deeper problem than
the one treated here, and it touches upon the general quest for some

intrinsic properties by which finitely axiomatisable theories distinguish
themselves. (1)

§ 1. -Bases and co-bases. We shall assume throughout that
we are dealing with a fixed similarity type which determines an elementary
language L with equality. By U we denote the set of all those structures
of the given type that have a subset of the set N of natural numbers as
domain. This restriction is feagible for our purpose and keeps foundational

(*) Some of the results of this paper were obtained in spring 1963 in Berkeley, while
the author was working at the University of California on a research project in the
foundations of mathematics sponsored by the U.S.N.8.F., Grant G-19673 (cf. [6]).
They wre completed while she was attending an N.S.F. seminar in algebra at Bowdoin
College in summer 1966. The author is glad of this opportunity to express her sincerest

gratitude to Professor 'A. Tarski, without whose untiring encouragement neither this
nor [7] would ever have been written. '
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troubles at bay. The familiar maps that associate with a class K CU
its elementary theory and with a set § C L the class of all its models in U
are denoted by v and u respectively. The compositions wz and 7u are
closure operations and will both be described by square bracketing. The
natural equivalence relations that they induce on their respective domains
are those of elementary equivalence for classes of models and for sets
of sentences respectively. Closed classes of structures are called elementary
and closed sets of sentences are theories.

T T and R are theories, 4 CL and aeL, we use the mnotation
TR=[Tu R], T{A]=[Tv A], T[a]=[T v {a}], and call T[A] the
extension of T by A and T[a] the finite extension of T by a. A is called
a T-basis for T[A], and a proper one if a¢T for all ae A. If T is the
set O of all logically valid sentences of L we omit the qualification T.

The concept of & basis has a dual that will prove useful below.

DarrNITIoN 1. We call the set BCL a T-co-basis for the theory R,
and write R = T|B|, if

(i) R= bﬂB T[b], and

€

(ii) whenever T[a]2 [) T[b], then there exisls a finite subset B” of B
beB
such that T[a];)_bq? ,T[b].
€

If, moreover, ~b ¢ T, for all b e B, then B is a proper T -co-basis.
Note that, while every extension of T has a T-Dasis, and every set A CL
is a T-basis, not every extension of T has a co-basis and not every set B
of sentences is a T-co-basis, i.e., has property (ii). However, if a theqry R
can be represented in the form (i) then it does have a T-co -ba;sm,‘m
particular the trivial ome comsiting of all sentences b ¢ L for which
T[] D R. But, in a sense, such & co-basis contains much red.undancy
and we shall have occasion to restrict ourselves to certain special types
of sets of sentences.

DerINtIioN 2. A set BCL is T-disjoint i ~bv ~b' T for all
b b of B, and properly so if, moreover, ~b ¢ T for all beB. o

It is eagy to see that to every set B there exists 2 properly T-'d.l'swmt
set B’ such that b(l b} ==b(}g , T[b], and such that B’ is a T-co-basis if and

€,

€
only if B is one. It is convenient to use the notation ~B = {~b: ‘b . .B},
and to call a set A (properly) T - co-disjoint if ~A. is (properly) T- d,lt‘;]fn?lt.
It is clear then, that to every set A there exists a properly T - co-disjoint
set A’ which is T-equivalent to A, ie., for which T [.A'] ='T[A]. Notz
that a properly T -co-disjoint T-basis for a theory R is an mdependen]1
T-basis in the usual sense. By B we shall always denote the set of al
sentences E(n), which state that there are exactly n-.]—:! elements. B li
properly disjoint and (]N [E(n)] is the theory of all finite structures o
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our similarity type, but unless L contains only monadie predicates, ¥ is
not a co-basis, while ~F is a properly co-disjoint basis for the theory
of infinite structures.

The set-theoretic difference of elementary classes gives rise to the
following operations:

DeriNTion 3. T %A = 7(u(T)— p(4)), and
Txxd=Tx(T%A).

Thus, T % A is the theory of all models of T that are not models
of A4, i.e., the theory of those models of T in which some sentence of 4
fails, and we may rephrase the definition as follows:

T%A= () Tl~a].

It follows that ~seT % A if and only if (~a—~s) e Tfor all a € 4, i.e.,
if and only if T'[s]D A. But the set of all sentences s for which T'[s] is an
extension of [A] is obviously a T'-co-basis, and so we find that
T %% A = {T[s}: T[s]D A} = T|{s: T[s]D A} .
Thus, T %% 4 is the theory of all those T-models that are models of
some finite extension of T which is an extension of [4]. Such models might
well be called sirict A-models of T, e.g., if T is the theory of Abelian
groups, then T %% ~F is the theory of strictly infinite Abelian groups,
and any sentence s such that T[s]D ~F may be called an axiom of
infinity for Abelian groups.
The following basic properties of the operations % and %% are direct
consequences of the definitions:
Levwa 1. (i) T¥A =T %T[4], T ¥% 4 = T %% T[4],
(i) TCT %4, TIAICT %% 4,
(iii) of ACA’, then T¥A'CT % A and TH%ACT %% 4/,
(iv) T %% (T% A)=T% (T %% 4) =T % A4,
(V) if TCT, then T%ACT %4,
(Vi) f TCT and (T % A)T' =T % A, then (T %% A)T' CT %% A,
(vii) if TCT' CT %% 4, then T' ¥%x ACT %% 4,
(viii) T % 4 = T|B| if and only if T %% A = T[ ~B].
Of all these statements only the last one may need some comment.
First we show
{1) T %% A=T[A] if and only if ~4 is a T -co-basis .
For, let ~4 be a T-co-basis, and assume that teT %% A, ie., T[t]
CT %% A, then T[~t]=T%[{] DT % A = Q T[~al, by (i), (iii) and (iv).

‘But then T[ ~¢]2 Q T[~a], for some finite subset A’ of A4, and hence
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‘T[] C T[4'], and so, by (ii), T %% 4 = T[A]. Conversely, assume T %3¢ A
—T[4], and T[]2 () T[~a]="T %4, then T[~s]CT xx 4 =T[4],

‘but then T[~s]CT[A'] and hence T[s]DT %A = Q T[~a] for

.some finite subset A’ of A. Thus ~ A ig a T-co-basis. With this we have
proved (vii) in case B= ~4, i.e., T %% A =T[A] if and only if T % A
= T|~A|. The rest now follows from the fact T % A = T % C if and only
it T % A =T %% C and from

(2) if Tx%A=T[CO], then Tx%4 =T %%C,

-which is a consequence of (i) and (iv). We can now rewrite our Definition 1
‘as follows:
(3) R=T|B| if and only if R=T %~B and T ¥%~B = T[~B].

Tt we fix the theory T and let R range over extensions of T, then
“we obtain an operation * of “dualization’ on the lattice T of extensions
.of T by defining R* = T % R. The operation R to R* is then a ‘closure
.operation, and it follows from the above considerations that a theory R
is closed if and only if it coincides with the intersection of all finite ex-
-tensions of T that are extensions of it. We note that we have ( L} Tla])*

= (T[4])* =T %4 =) T[~a], and (T|B)* = T[~B]= | T[~b], but
conly () Te])* D T[~0] unless C is a T-co-basis.
c

In the following lemma we list some properties of the lattice T as
.enriched by the operations * and **. They are all very easy to verify
.on the Dbasis of Lemma 1.

Lemya 2. (i) If RCS, then S*C R* and R** C 5*,

(ii) (RSy*=R*~ S*, R*S*C (R~ S)*= (R** ~ §**)*,

(RS)** o (R**s**)** g R**S**’
(R ~ S)#* —CR** - S** — (R** oy S**)**, RQR**’ R*** p— R*,

(iii) (T[a])* = T[~a), (T[a)*=T[e], I*=T, T* =1L,

(iv) if R* =L then R=T, and if R* =T then R=T,

(v) RAR* =T, (RR**=T, (RR)* =1L,

RR* =L, if and only if R=T[a] for some ael,
SRAR*=S~R* RRECR¥*R*CR%R*CL,

(vi) if R is complete, then either R = T[a], for some a, or R* = L.

T4 is seer from this that, as one would expect, the operation * bears
.some analogy, but not a complete one, to that of complementalti‘on. The
.closed extensions of T, i.e., those for which R* = R, behave in some
respects like finite extensions, as will be seen, under further I‘e.StI'IGtIOIlS,
in the next section. It is clear that the closed extensions are just those
+that can be written in the form (i) of Definition 1. Moreover, by Lemma 1
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(viil), B is a basis for R* if and only if ~Bis a co-basis for R*. For closed
theories the dual can be defined by either (T[A])* = T|~A4|, or by

(T |B))* = T[~B], and we have here independence of the choice of basis.

and co-basis. This, of course, justifies our additional clause (ii) for the
definition of a co-basis. Note that, if R is a finite extension of T, then
the inequalities in the conclusion of Lemma 2 (i) become proper and all
other inequalities become equalities.

Of particular interest are the extensions of the form RR* and R*R**,
A model of RR* ig, in & sense, a non-standard model for R*, while a model
of R*R** is strictly non-standard, in that it is non-standard for R as well
as for R*. We shall write oR for R*R**. Clearly, if R has a co-basis, then RR*
coincides with &R, but the converse also holds, namely:

Levma 3. If RR* = 2R, then R = R*,

For, by Lemma 2 (v), we have RR* ~ R* = R as well as R ~ R*
= R**, Note that the lemma can also be phrased as follows: If (T % 4)[4],
= (T%A)(T¥%*A4) then T[A]=Tx%%A. Now if SR* is complete,
S CoR and R* is not a finite extension of T, then oR s L, according to
Lemma 2 (v), and thus, since 8R C SR*, we must have R = SR*, and.
hence we obtain the following sufficient criterion for S to be closed:
. CorOLLARY 3. If R* is not a finite estension of T, S C R*™ aqnd SR*
is complete, then S = R**,

The following diagrams represent the general case and its possible.
degeneracies.

T T T
g % P
R R R R R
% k%
kR R RR R 5 K2R 1a),
ReR™
R oR Rl~d] 4R
L
L
L
T T T T=R* TR
T[Na] N R* R** R‘OR** l
Rl~d] Tld R=RR* R N
L L=R
L=2R
L L=R*
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Of course, all these concepts are relative to a theory T. On the other
hand, any fixed set 8 of sentences of L gives rise to a diagram of extensions
associated with each theory T, by taking R = T[8], and it would be
interesting to investigate the behaviour of the operations % § and %% 8
under change of T'. In particular it would be useful to have some sufficient
conditions under which T" % 8§ = (T % 8)T’ holds, similarly for T %% 8
= (T %% S)T", in case T' D T. We make here only the trivial observation
that, if T %8=T|B|=T[~4], and T'DT, then T %82 Q T'[ ]

DI [~Al= (T % 8)T', and that, if both equalities hold, then T’ %% §
= T'|4| D T'[ ~B] = (T %% 8)T’, while T'|4]| = T'[ ~B] of course implies
T % 8= T'|B|

Particularly natural choices for § are, on the one hand, the set C,
where € is the set of sentences ¢ for which [¢] is a complete theory—we
shall simply eall these complete sentences—and, on the other hand, the
set ¥, where F, a subset of C, consists of the sentences f for which p[f]
contains up to isomorphisms just one finite structure. It iz the latter
case that we shall be concerned with, and we shall work with the set B
of sentences stating that there are exactly n+1 elements rather than
with F. Thus we have Ti= T[~E], and Ty=T% ~E=[) T[En)],
write 8T for oT;= 8Ty, and obtain the diagram mentioned in the in-
troduction. We note that B is a T-co-basis, i.e., that T:;= T%, if and
only if every finite extension of T that is an extension of Ty has only
finitely many non-isomorphic models. As an illustration we consider
the theory AG of Abelian groups. We use the notation of [7] where (cf.
p. 67) it was shown that AG; coincides with the theory of periodic Abelian
groups (i.e., Abelian groups of bounded torsion), and where a basis D
for AG; was introduced. The set H of all sentences H (m) expressing
periodicity m, m > 1, forms a co-basis for AGy, and we thus find that
the theory 4G}, i.e., the theory of strictly infinite Abelian groups, coincides
with the theory of non-periodic Abelian groups, whereas AGy; is the
theory of infinite periodic groups and 294G is the theory of non-periodic
direct products of finite groups. We collect these results for further use:

AG; — AG[ ~T], AG;= AG[D]=AG|H|, AG}= AG[~H]=AG|~D|,
AGy; = AG[D] = AG(H|, 24G=AG[D v ~H].

We note that we have here a particularly nice co-basis for Ty, which
is also a proper Ti-co-basis for Tr. We have chosen it so that it is disjoint,
but an equivalent basis would be the set of all laws r(k) of the form #*= 1,
and so we see that the theory of finite Abelian groups coincides with
the thepry of all proper subvarieties of the variety of Abelian groups,
or, more precisely, the theory of every proper subvariety of the class
of all Abelian groups is an extension of AGyand every finitely axiomatisable
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class of finite Abelian groups is an extension of a finite union of such
varieties. If we denote the theory of groups by G, it follows that every
law s of the form zkzy = yo is an “axiom of finiteness” for G, i.e., is such
that G{s]D Gy. However, Malcev’s work shows, that for no %, except
for 1, 2 and possibly higher powers of 2, the law »(k), even in conjunction
with the law n(2) expressing nilpotence of class 2, can be an axiom of
finiteness for G. This follows already from [8] where he proves that every
theory G[r(k)An(2)], for % > 3, has a finite essentially undecidable ex-
tension. Moreover, he shows in [9] and [10] that the theory of finite models:
of every such extension of G is hereditarily undecidable. In view-of these:
results the following problems arise:

ProBLEM 1. Find & law s, such that G[s] is decidable, but has infinitely
many non-equivalent non-Abelian models.

PrOBLEM 2. Find a sentence a such that G[a] is an extension of G
but has infinitely many non-isomorphic non-Abelian models.

PROBLEM 2'. Find some seniences a such that G[r(3)An(2)Aa]D Gy,
and such that this extension has infinitely many non-isomorphic non-
Abelian models.

It seems quite likely that the law ya* = yz* is a sentence as required
in problem. 1, and that the law 2%2%y = y2* will do for & in problem 2 and
thus also for s in problem 1. On the other hand, one may ask.

PrOBLEM 3. Are there any finite groups © such that all theories G[a],.
for whick ©(®)D G[a]D Gy, have only finitely many non-isomorphic non-
Abelian models?

That these are difficult problems becomes strikingly clear if one-
observes that, by asking for axioms of finiteness for the thec y G, one
is looking for theorems of G} that are not theorems of G, i.e., for éentences
that hold in all strictly infinite groups but not in all groups. But these.
are the groups that satisfy the negation of some theorem of G; that is.
not a theorem of G. And, as mentioned above, this latter theory, Gy, is.
not axiomatisable, which, loosely speaking, means that it is not easy”
to find a proof for a sentence that holds in all finite groups, but not in
all groups, the most remarkable illustration of this point being the proof:
of the validity in G; of the sentence

(Vo) (z # 1—>a® # 1)A (o) (v # 1) > (Ha) (& # 1A (Ve) (weme! = ene~i))
(cf. [4]).
. § 2. Axiomatisability and co-axiomatisability. From now on:
we shall assume that a recursive one to one enumeration » of L is fixed,
Le., a mapping »: L—N under which the logical operations are mapped.

onto resursive 'opera,tions and with an inverse a, and shall mean by L.
the corresponding numbered system. A sequence (A (n)>neny of sentences:

icm°®
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of L is called recursive if »(A(n)) is a recursive function of n. The seb
A= {A(n): neN} of values of such a sequence is of course recursively
enumerable (r.e.) and is termwise logically equivalent to a recursive
sequence with a recursive set of values. But we shall occasionally need.
a stronger property. )

DerINTIION 4. A set A CL is T-decidable if the set {beL: (Hae d)
((be>a) € T)} is recursive, and & sequence (A(n)inew 1§ T-decidable if
it ig recursive and its set of values 4 is T-decidable.

A sequence <A (m)> with range A is called an awiomsystem for R
relative to T, or a T -awiomsystem for R, if it is a recursive sequence and.
R = T[A]. R is a recursive extension of T, or, is T -axiomatisable, if it
has a T-axiomsystem; it is finitely T -axiomatisable if it is an extension.
of T by a single sentence. (Note that, contrary to some usage, we do apply
the term ‘““theorem’ to valid sentences of T whether T is axiomatisable-
ornot.) IERD T D T and R is T’ -axiomatisable and T" is T'- axiomatisable,.
then R is T - axiomatisable. Moreover, if R is T-axiomatisable, then it is.
T axiomatisable for all T’ such that RD T' DT, and thus in particular-
a O-axiomatisable theory is axiomatisable relative to all its subtheories.
We call 2 O-axiomatisable theory simply axiomatisable. Clearly a theory T
is axiomatisable if and only if it is an r.e. subset of L.

DEFINITION 5. A sequence (B(n)> is a co-axiomsystem for R relative:
to T if it is recursive and

(1) R=nON T[B(n)], and the set

(i) {m: (En)(T[~a(m)AB(n)] # L} is r.e.

Tf a theory R has a T -co-axiomsystem we call it T - co-aziomatisable.
Tn this case R is a %%-closed extension of T, ie., T ¥%R=R.If RO T"
T and R is T'-co-axiomatisable, and T’ is T - co-axiomatisable, then R:
is T'-co-axiomatisable. Moreover, if R is T-co-axiomatisable, then it is.
T - co-axiomatisable for all T’ such that RO T' DT, and thus a O-co-
axiomatisable theory is co-axiomatisable relative to all its subtheories.
But, whereas a theory is always axiomatisable in a trivial way relative-
to itself, it is just the corresponding property that ig significant in the-
dual case; thus we call a theory co-axiomatisable if it is co-axiomadtisable.
relative to itself. In this case, of course, condition (i) becomes trivial,.
while for T = O it is very strong. Clearly, a theory R is co-axiomatisable-
if and only it it is co-T.e., i.e,, is the complement of an r.e. set, or, the-
sot of non-theorems of R is r.e. In this case a(L—R) is trivially a co-
axiomsystem for R. We call R a recursive co-extension of T if R=T|B|,
for some recursive sequence B. But note that, while R is T -axiomatisable
if and only if it is a recursive extension of T, the existence of a recursive:
T-co-basis is neither necessary nor sufficient for T - co-axiomatisability..
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A decidable theory is a theory that is both axiomatisable and co-
axiomatisable.

To give some justification for our definition of a co-axiomsystem
we note that a theory is usually said to have a disproof-procedure (cf. [1])
if the set of its non-theorems is r.e. More precisely, a disproof procedure
for a theory R can be described as follows: first a recursive sequence
¢B'(n)> of sentences, each of which is consistent with R is given and
then an algorithm is exhibited which yields for exactly the non-theorems &
of R a consistency proof of R[ ~aaB'(n)] for some . In this sense the
set ~B' forms a basis for the set of non-theorems of R. Now such a se-
quence <B'(n)) must clearly have property (i) for T = R while the existence
of the algoritm is expressed by (ii). Thus <(B'(n)> is a co-axiomsystem
for R. Conversely, every T -co-axiomsystem does yield such a procedure,
since, according to (ii), the set {n: T[B(n)]# L} is r.e. and, by (i),
T[B(n)] = R[B(n)], and thus a sequence ¢B’(n)> as above can be obtained
from the sequence ¢(B(n)). Clearly, if R is a recursive co-extension by B
of a co-axiomatisable theory T, then B is a T-co-axiomsystem for R,
and the disproof procedure for T' induces one for R. But the usual way
of obtaining a sequence B’, in the non-trivial cases where R has infinitely
many non-equivalent complete extensions, and provided that R is axio-
matisable, is as follows: first one finds a recursive sequence (R¥y of axio-
matisable complete extensions of R, which is representative of the class
#(R) of models of R in the sense that the class u(R) is the elementary
closure of the set of “basic” models u(R¥), ie., is such that R ==kﬂNR"’.

Now, the condition of recursiveness of the sequence means that for each

theory R® there is an axiomsystem (B(k,n)dney such that (B (%, n))

is a recursive function of % and ». But then the set { A B(j, n): n, k e N},
<k

where /g\k stands for the obvious k-fold conjunction, can be arranged
)

in a simple recursive sequence B’ which will have the desired properties,
since we have

i) R=\ R[b

(io) Q (61,

(is) R[]+ L for all beB’, and

(i) a¢ R if and only if (b e B')((b—~a)cR).

lltTote that in this application (i) is of course indigpensable, and that
by (uc? the disproof procedure is reduced to the proof procedure for R.
A typieal illustration for this method, occasionally quoted as Erghof’s
theorem (ef. [3]), is to be found in Szmielew’s decision procedure [11]
(ct. [7] for a summary).

) All th.is i3, of course, based on the general and trivial principle accord-
ing to which the intersection T'= (| T} of a recursive sequence of uni-
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formly co-axiomatisable theories has a disproof procedure. It is clear
that the co-axiomatigability of T does, however, not follow from the
mere existence of individual disproof procedures for the theories Tfy.
For example, let T = AGs[A], where A is the sequence of sentences
~7(Cymy), where g is some recursive function with non-recursive range
and € is a cyclic group of order m. Then we have T = (| T[H ()] and
each theory T[H(n)] is decidable and hence co-axiomatisable, because
T[H(n)] = AGs[H (n)A ~7(Cs)] or = AGy[H (n)] according as = belongs
to the range of g or not, and these theories are finite extensions of a de-
cidable theory. Yet the set

{m: T[v(Cn)] # L} = {m: (Tn)(T[z(Cm)AH(n)] # L)}

is the complement of the range of g and thus is not r.e., i.e., T is not co-
axiomatisable. ‘

We state now some useful lemmas. Let us call a sentence ¢ eL
complete if the theory [c] is complete.

LeMMA 4. Let C be a recursive sequence of complete sentences, and

To= () T[cl, the theory of O-models of T. Then:
o

(i) If T is finitely aziomatisable and all ¢’s in C are consistent, then To
is co-axiomatisable.

(ii) If T is co-axmiomatisable then so is Tg.

For the proof note that in case T = [a], the set. {c e C: (c—>a) €0}
serves as co-axiomsystem, while in case (ii) the set {ce C: T[e] # L}
does it.

COROLLARY 4. The theory Ty of finite models of a finitely aviomatisable
or of a co-axiomatisable theory T is co-axiomatisable.

Remark. If the set ¢, of all complete and consistent sentences of L
were known to be recursively enumerable, then it could be used for C
in the above lemma and it would follow that a finitely axiomatisable
theory with only a countable number of inequivalent complete extensions
is decidable, since it coincides with its theory Tg,. To our knowledge
the question whether O, is r.e. or not has not yet been answered (for
related problems and results, cf. [5]).

Levma 5. If T is co-axiomatisable, then the T-dual of any recursive
extension of T is co-awiomatisable, and if T is awiomatisable, then the
T-dual of any recursive co-ewtension of T is awiomatisable.

This is obvious, but note that mere co-axiomatisability of an ex-
tension R of an axiomatisable theory T does not entail axiomatisability
of R*, i.e., the condition that some T'-co-basis of R be a co-axiomsystem
is indispensable.

Fundamenta Mathematicae, T. LXIV 2
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Lemua 6. (i) If R and R’ are T-axiomatisable, then so are R~ R
and RR'.
(i) If R and R’ are T-co-awiomatisable, then so are R~ R and all
finite extensions of R.
(iii) If T and T' are aviomatisable and T ~ T’ and TT' are co-amiomat-
isable, then all four theories are decidable.
) For (i) note that

THAm A THA (n)}] = T[{ w_/é\n A1) \/i/g\n A,
and
TIAIT[A]=T[A J 4"l
(ii) follows from the fact that
UTIBn)]~ N TB'(n)]= ) T[B(n)VB'(n)]

and
(N TIBm)])[a] = N T[B(n)Aa],

Tor (iii) it suffices to show that T'is co-axiomatisable under the agsumptions,
but this follows from the fact that a ¢ T if and only if either a ¢ TT' or
there exists a sentence d ¢ T such that (d->a)e T’ but (d—a)¢ T\ T

COROLLARY 6. If a theory T is finitely axiomatisable and undecidable
then so is amy theory T’ for which T' C T}, i.e. T} is hereditarily und-
ecidadle.

For the proof of the corollary we observe that under the assumptions Ty
is eco-aixiomatisable by Corollary 4. Hence T’ cannot be co-axiomatisable,
since otherwise T = Ty T'T would be decidable according to Lemma 6 (ii).

In particular then, a finitely axiomatisable theory T with a decidable
theory T; of infinite models is itself decidable. That the analogous situation
for T; replaced by Ty does not prevail was shown in [7], Theorem 3, by
an example of a finitely axiomatisable undecidable theory for which Ty
is decidable.

The condition of finite axiomatisablity in the corollary is indispen-
sable as the following example shows. Let g again be a recursive function
with non-recursive range R(g). Then the theory of cyclic groups of prime
order pn with m e R(g) is co-axiomatisable, and the theory of cyclic
groups of order p, with m ¢ R(g) is axiomatisable. Neither theory is
decidable, but both have the same complete and axiomatisable, hence
decidable, theory of infinite models, namely the theory of the additive
group of the rationals. '

§ 3. Seven possibilities ruled out. Lemma 6 hag, of course,
many corollaries of theories related as in the diagrams of § 1. We are,
however, only interested here in the properties of decidability and un-
decidability rather than the finer distinstions between axiomatisability,
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co-axiomatisability and their negations and combinations, and even
then only in the special case where R = T;. Since R = RR* ~ R*, (see
Lemma 2), it follows from Lemma 6 that the decidability of RR* and R**
entails that of R. Moreover, part (iii) of Lemma 6 shows that if T and R*
are decidable and R is undecidable but axiomatisable, then. RR* cannot
be decidable. And finally, if R, R*, R** and R are all decidable then
so is RR*, since by 6(i) it is axiomatisable and hence 6 (iii) is applicable
to the pair R**, RR*. Thus we have

TaroREM 1. (1) If the theory TF of strictly infinite models of a theory T'
and the theory Ty; of infinite models of the theory of finite models of T are
both decidable, then so is the theory Ty of infinite models of T.

(ii) If the theory Ty of finite 'models of a decidable theory T is decidable
but the theory Ty of ifwinite models of that theory is undecidable, then the
theory Ty; of infinite models of Ty is undectdable as well.

(iil) If Ty, T:, TT and 8T = T;TF are all decidable, then so is Ty.

If we arrange the extensions considered in the sequence (T, Ty,
T;;, Tf, oT) and write quintuples with entries ‘v’ and ‘d’ as abbreviations
for the statements that the kth extension in this list is undecidable or
decidable respectively, then we can paraphrase the above theorem as
follows: If T is decidable then the following cases cannot oceur: (ddudd),
(wdddd), (udddu), (wddud), (wddww), (vuddd), and (wuddw).

If we replace % by 0 and d by 1 and use the usual binary number
system, then these cases are represented respectively by the numbers 27,
15, 14, 13, 12, 7 and 6. We shall use these numbers to refer to them.
Part (iii) of Theorem 1 expresses the impossibility of case 27, while cases 15,
14, 13 and 12 are ruled out by part (i) and 7 and 6, as well as 14 and 15,
by part (i).

This is a very trivial and general theorem. For, if we simply consider
the lattice diagram underlying the diagram of § 1, disregarding the relation
of duality by means of the operation *, and label the vertices with ‘u’
or ‘@’ in accordance with our cages we note that on the basis of § 2, all
but 12 and 13 are already ruled out, whereas in these two cases the only
property that is needed for their exclusion, in addition to the purely
lattice theoretic relation between the extensions, is the axiomatisability
of T;. It is therefore rather surprising that actually these 7 cases should
be the only ones that cannot occur for the special case of R =T, as
we shall show in § 5 by means of examples with infinitely axiomatisable
theories T. One cannot help feeling that finite axiomatisability of T
should add some deeper ties to the diagram.

§ 4. Some decidable extensions of a decidable theory. We
ghall construct our examples for the remaining 25 possibilities by extend-
ing the decidable theory 4G of Abelian groups. To this end we need some

2%
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criteria under which an infinite extension of a decidable theory is again decid
able. We fix a decidable theory T and with it the structure T = <B, ~,
{1, *> of the set G of extensions of T under the operations of intersection,
join and dualisation. We write B4 for the set of decidable extensions of T.
While the set B, of finite extensions of T is a subset of T and forms a sub-
structure of ¥ that is a Boolean algebra, and the set of aziomatisable
extensions forms a sublattice of T, nothing algebraically nice can hbe
said—as far as we can see—about Ty itself. Those extensions that are
closed under the operation ** of taking the double T'-dual form, according
to Lemma 2, & Boolean algebra-T** under the operations ~, [, ] **, and *,
Now, since both axiomatisability and T-co-axiomatisability are preserved
under intersection by Lemma 6 (i) and (ii), the subset 6, consisting of
those theories that are both axiomatisable and T-co-axiomatisable is
closed under intersection, but not in general under * nor under the new
join [, ]**. On the other hand, the set Bz of all axiomatisable theories
that have an r.e. T-co-basis is closed under * but not under the other
two operations, for the union of two r.e. T-co-bases is a T'-co-axiom-
system but not in general again a T-co-basis, so that this strong form
of T-co-axiomatisability need not be preserved by intersection, and the
union of two T-axiomsystems is as a rule weaker than the double dual
of the join, so that axiomatisability need not be preserved by the operation
[, I**, although the property of having an r.e. T-co-basis is preserved,
since the set {bAb’: beB,d ¢ B’} is a cobasis for [T|B|, T|B'[]*. We
shall call these latter theories, i.e., the theories R for which there are r.e.
sets 4 and B such that R = T{A]= T|B|, strongly decidable extensions
of T. This seems the natural generalization of the concept of a finite
extension from the point of view of decidability.
‘We have the following inclusions:

BIB2D (Bz A B*) DB, DD Ty,

which—as might be expected, and is demonstrated by examples in § 5—
are all proper. Moreover, we note that, whenever B is a recursive sequence,
T%BeBs, T eBg and T % B= (T%B)T' then T % BeT;. This is
of particular interest in case B = ~F and we see how useful it would
be to have some conditions for (T[A]); = TH{A]

We state now a very weak and very general principle that leads
oceagionally to a decision procedure. )

Lemwva 7. Assume that
(1) Tl.C T,C...CT,C... i8 a recursive chain of awiomatisable theories
such that its union T = T, is decidable and such that RC T, and

('ii) 81, 8oy ey Sny e 18 a recursive sequence of uniformly decidable
theories such that R ~ Ty = T ~ Sy, for all n, then R is decidable.

icm°®
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By the assumptions we require the existence of recursive functions 7
and f such that for each n the set {a(h(n,m)): m ¢ N} is an axiom system
for T, and that f(n,m)= 0 if and only if a{m) is a theorem of S,. (It
is by no means sufficient to have merely a recursive sequence of in-
dividually decidable theories Sy, as is easily shown by examples. For in-
stance, let Ty = AG, Tpoy = T[~E(n)], R= {J Ry, where R, = AG, R,
= R,[~T(g(n)], and g is a recursive funetion with non-recursive range
Then (i) i satistied, but, although (R,) is a sequence of uniformly deci-
dable theories, the sequence (S», With Sy = R ~ Ty, is only a uniformly
axiomatisable sequence of decidable theories, and R= | J R, is not de-
cidable. The function f, such that

~E(g(m) i gim)<n,
r=0 otherwise ,

a(f('"‘: m)) =

uniformly prescribes the axiom systems relative to AG for the theories Sy,
which are finite extensions of 4G, and thus decidable, but the sequence
(a(f(n,m))) is not decidable in the sense of Definition 4.)

For the proof of the lemma simply note that &R if and only if,
for some n, & ¢ Ty and a e Sy, while a¢ R if and only if either a¢T or,
for some 7, a T, but aé¢ Su.

An illustration of the use of Lemma 7 is given by the following
situation. Let M be an r.e. sequence of finite structures, Le., a sequence
of structures M (n) such that the sequence of sentences D(n) characterising
them—that is, their diagrams—forms a recursive sequence. Assume
that the theory (-r (M) is complete and axiomatisable by some sequence 4
of sentences. Bvery sentence A (n) is then, relative to 7(M), equivalent.
to a sentence ~F(n) where F(n) is the disjunction of the diagrams of
exactly those finite structures of M for which A (n) fails. There are only
finitely many such models for each n, and if there are none we set for F' (n)
any fixed contradiction. If this sequence F is also recursive, then the seq-
uence <A (n)vE(n)y is an axiom system for the theory 7(M), and so (M)
is decidable. In particular, using our terminology, we can say that if T’
is a co-axiomatisable theory of finite models with a complete theory T:
that is axiomatisable by a sequence thatb is decidable relative to T, then T
is decidable.

We shall now state some useful consequences of Lemma 7 that are
most appropriately phrased in terms of recursive sequences of sentences
relative to T rather than in terms of extensions. From now on all sequences
are assumed to be recursive. We introduce a partial ordering on the set
of all such sequences by

DEFINITION 6. The sequence A = (A(n)> is weaker than the sequence
B = (B(n), reative to T, it (B (n)—>A(n)) €T, for all n.
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‘We represent this relation by the symbol <r and omit the subseript T
when there is no danger of ambiguity. Thus 4 < B means that there is
a recursive sequence D such that, for each n, A(n) is equivalent in T
to the disjunction D(n)vB(n), and by the same token, B is stronger
than A, B > A, if there is a recursive sequence ¢ such that, for all o,
B(n) is equivalent in T to the conjunction C(n)AA(n). We shall also
use the phrases: ‘A is a weakening of B by the sequence ‘D’ and ‘B is
a strengthening of 4 by the sequence (". We shall say that an extension R
of T is recursively weaker than the extension R’ if there is a T-axiom-
system for R that is weaker than some T-axiomsystem for R, and shall
-write R <z R’, again usually omitting the subscript T. Occasionally we
shall indulge in some abuse of language, by wusing phrases such as ‘R’ is
a weakening of R’. It is clear that the partial ordering < on the set of
recursive extensions of T ig strictly stronger than the relation of inclusion.
We have a lattice of sequences under the operations v and A defined by
DVvB=<{D(n)vB(n)> and DAB= <(D(n)AB(n)>, and with this also
a new lattice of extensions of T. But, while we do have T[DAB]
= T[D]T[B] we have, of course, only T[DvB] C T[D] ~ T[B]. Finally,
we recall Definition 2 and observe that the set of T'-disjoint sequences
is closed under strengthening, and the set of T'-co-disjoint ones under
weakening. Using the notations B for the sequence {B(4): i = n} and B,
for {B(4): ¢ <n}, we can now state:

LevMA 8. Let T be an awiomatisable theory, then

() if D 4s a recursive sequence, such that (T[D™]> is a sequence of
uniformly decidable theories, then every weakening of T[D] by a T-disjoint
recursive sequence is decidable, and

(ii) if C is o T-co-disjoint recursive sequemce, such that (T[C"]> is
o sequence of umiformly decidable theories, then every recursive weakening
of T[] is decidable.

To prove (i), let B he a T-disjoint sequence. Then T[DvV.B]
=( QNT[D"+1][B(n)][Dn]) ~T[D]; for certainly T[DvB] is a sub-

theory of each of the theories mentioned on the right side, and thus the
inclusion C holds. Moreover, if s¢ T[DvB], then, ~s has a T-model
in which either all sentences of D are satisfied, or else—since B is T'-dis-
joint—all but one, say D(n), in which case then B(m) holds. Thus s is
& non-theorem of one of the theories over which the intersection ranges,
and the inclusion D holds as well. By our assumption about D, the sequence
of these theories is uniformly decidable, since they are finite extensions
of the theories T[D"]. Hence, the representation of T[DvB] as an inter-
section yields a disproof procedure, and since T[DvB] is clearly axio-
matisable it i3 decidable. To prove (ii) we use Lemma 7. Let A be any
recursive sequence and set R= T[Av (], T, = T[0,)], and the theories

&
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Sy = T[C"** U (AV O)s] A Ty. Clearly R = | ] Ty, and, by the assumptions
about €, S, are uniformly decidable. If we can show that R ~ T, = S,,
then all the conditions of Lemma 7 are fulfilled and our result follows.
Now the inclusion C is obvious, since R C T[C™™ u (4 v 0),]. To establish
the converse inclusion, assume that s ¢ R ~ T,. Now, if s¢Ty, then,
clearly, s ¢ Sy, and so we may assume that s e T, but s¢ R. Bubt then
we have (~s—>i\</n~0 (3)) € T, whence, because C is T-co-disjoint, the

theory T[~s] is an extension of T[C"™]. Thus we find that
L T[AV O ~8] = T[(AVC) u O"][ ~s] = Su[ ~s], and hence s ¢ S,.
If we set 4= ~C in Lemma 8 (ii) (ox D= 0, B= ~C in (i),
note that, for any T-co-disjoint sequence ¢/, we have T[C"]= T[0] ~
~T[ \V ~0(4)], and using Lemma 6 we obtain
<n

CoroLLARY 8. If T is awiomatisable and C is a T-co-disjoint recursive
sequence such that T[O] is decidable, then T is decidable if and only if
KTLC™ is a sequence of uniformly decidable theories.

From this together with Lemma 8 (ii) it follows immediately that,
for a decidable theory T, the set of decidable extensions by T-co-disjoint
sequences is closed under weakening. Because of its usefulness we state
this result as a lemmas:

Leva 90 If T is a decidable theory and C is a T-co-disjoint sequence
such that T[] is decidable, then every recursive weakening TLAv O] of T[C]
is decidable as well.

CoroLLARY 9. If T and O satisfy the hypothesis of Lemma 9 then
T[C'] is decidable, for every recursive subset O’ of C.

To establish the corollary let €'= {C(n): ne M}, where M is
a recursive set of natural numbers. The sequence (4 (n)>, where A(n)
= C(n) or ~((n) according as n ¢ M or mot, is then recursive and so
T[(C'] = T[Av (] is a recursive weakening of T[C] and hence decidable.
It follows from this in particular that if T and T: are both decidable,
then so is any extension of T obtained by excluding a decidable set of
finite models, ie., a set of finite models for which the set of diagrams is
decidable. This fact can be used for constructing decidable theories with
decidable theories of infinite models, but undecidable theories of finite
models, for, a decidable set of finite structures need by no means have
a decidable theory.

‘We close this section with the rather vague observation that the
relation < inherits some of the special properties that the relation of
being a finite extension has, but mere C does not have. Lemmag 8 and 9
may be viewed in this light, and so can the following variant of Lemma 1 (v)
and (vii).
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Lemya 10 (). If TCT' < R such that T’ is weakening of R by an
increasing sequence O (i.e., (0(n)—~C(n+m)) eT for all n and m), and
Ry A= (T%A)R, then T' ¥ A = (T % 4)T".

(i) If TCT < T¥% A =T[~H], with H disjoint, then T %% A
=T ¥x%A.

For (i) we only need to show that T % .4 C (T % 4)T". Agsume then
that s ¢ (T % A)T". If also s ¢ R % A, then certainly s ¢ T' % A gince T" % 4
CR % A. If, however, scR % .4, then, by assumption, se(T% A)R,
and if we have R = T[B], we find that s ¢ (T % 4)[B,] = Q T[Bn, ~a],

for some n ¢ N. But, by the assumption on C, the conjunction over the

set (BvO) is logically equivalent to the disjunction over the séntences

C(h)A /\hB(h), 0<h<k and so s¢T' %A follows from the sentence
i<

s¢(TxA) [(BVO)] = Q T[(BV O, al.

For (i) assume that T" %% ACT %% A and T' = T[ ~HVB]. Then
there exists a sentence s such that L = T[sAH (n)] D T'[4]D T[A] for
some n. Since H is disjoint, we have T'[sAH(n)]= T[sAH (n)AB(n)]
and so L # T[sAH(n)AB(n)] 2 T[{A], contradicting the hypothesis that
~H(n) e T %% A. By Lemma 1 (vii) this proves (i).

Though uniteresting as well as trivial, this lemma will prove labour
saving later.

§ 5. 25 examples. We are now ready for the proof of the counterpart
to Theorem 1 which we shall phrase rather loosely so as to avoid an
abundance of clumsy verbiage.

THEOREM 2. Theorem 1 is best possible.

By this we mean that, as long as no further restrictions are imposed
on T, all those combinations decidable-undecidable for the quintuple:
of extensions (T, Ty, Ty, T7, 0T) that are not ruled out by Theorem 1
actually do occur. The proof of this statement obviously requires the
construction of 25 theories to exemplify the 25 possibilities. Fortunately,
we are able to reduce the labour to the construction of nine basie
examples.

We recall the coding introduced in § 3 and shall mean by the phrase
“T has property (n)” that the quintuple of extensions agsociated with T
has the decidability properties as indicated by the binary representation
of n where 0 stands for undecidable and 1 for decidable. For ingtance,.
saying that T has (26) we mean to say that T, T;, Tyand T} are decidable,
but Ty; and &T are undecidable. A theory that has property (31) will
be called fully decidable. Now, the set of ordered five-tuples is obviously
& semilattice under the operation of componentwise ordinary multipli-
cation. Thus, the set of numbers < 32 is a semilattice under the operation.
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induced on them via their binary representation. We denote this operation.
by o, so that, e.g., 59 = 1. On the other hand, we introduce a compo-
gition for theories. Let R and S be theories whose languages L(T) and L(S)-
have no predicate symbols and no term symbols in common. We form.
the language L’ = L(T, S, P, ¢) which contains in addition to the symbols
oceurring in T' and S the unary predicate symbol P and the individual
constant @, and no other symbols. In this new language we define theories T”
and S’ as follows. The axioms of T” are the relativisations of all theorems.
of T to P, as defined in [12] p. 24, the sentences ~P(a), (V&) (P (z) Ve = a),
and all the closures of all formulas ~® (&, ..., &) or o(&y, ..., &) = a,
for all » > 0, where & and ¢ are respectively an n-ary predicate symbol
or n-ary term gymbol belonging to L(S) and the & are any terms or @
and ¢ are such symbols belonging to L(T) and at least one of the & is a.
Analogously we define S’ with S and T interchanged as well as P replaced.
by ~P. Now it is clear that T’ and S’ can also be defined in case their-
languages do have some symbols in common, namely by first renaming
them. It is also clear that all this can be done in some unique canonical
way, too tedious to set down for our purpose. Therefore we can define

DEFINITION 7. Given two theories T and S, let T' and S’ be as described
above. Then ToS=T ~ §'.

The models of T o S are then all such that upon deletion of the one
element that is the value of a they become models of either T' or S. It.
is easy to see that every sentence 4 of L’ is equivalent in T o S to a dis-

P

junetion of the form (~P(a)ABF)v (P(a)AO~F) for some sentences.
B e L(T) and C «L(S) and such that A is a theorem of T< S if and only
if B is a theorem of T and C is a theorem of S. (We are using the familar
notation D@ for the relativisation of the sentence D to the unary predi-
cate Q.) In particular, given any sentence B e L(T), the sentence P (a) vBE
i8 @ theorem of T o S if and only if B ¢ T, and similarly for any C e L(S).
Tt follows that T o S is decidable if and only if both T and S are decidable..
Moreover, it is easy to see that (TeS)=TioS;, (To S)s=Tyo Ss,
(T o 8)yi = Tyio Sy, (ToS)f=Tf oS} and (T S)=2T08S. It follows.
that this construction serves our purpose.

TLmyea 11. If the theories T and S have the properties (1) and (m)-
respectively, then the theory To S has the property (n e m).

Obviously there is no harm done, then, by using the same symbol o
for both operations. Considering the semilattice of natural numbers < 32
under the operation o it is a trivial matter to verify that t?ne sgt of numbers.
other than 27, 15, 14, 13, 12, 7 or 6 forms a sub-semilattice generated.
by the numbers 31, 30, 29, 25, 23, 19, 11 and 5. This set of generators.
is minimal. We list the numbers in descending order because.n. o m
< min(n, m) and thus it is in descending order that one finds minimal
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sets of generators. It follows that we are left with the task of finding
for each of these nine numbers a theory with the corresponding property.
‘We shall now exhibit our examples in a sequence of nine propositions,
for each of which we give at least a sketch of a proof.
PROPOSITION 1. The theory of Abelian groups is fully decidable.

Proof. The theory 4G is thus an example of a theory that has
property (31). Moreover, it is non-degenerate in the sense that all the
pertinent extensions are distinct. This is why it is rich enough to offer
among its extensions examples for the other eight possibilities. That 4G
has indeed property (31) is seen easily enough from an analysis of Szmie-
lew’s decision-procedure [11]. In particular it was shown in [3] as well
a8 in [7] that 4Gy is decidable. But, since we shall make much use of the
peculiarities of this procedure in the sequel, we shall list here some of
the structural features of the Lindenbaum algebra associated with 4G.
For detail and notation we refer the reader to [11] and [7]. Every sentence
of L(AG) is equivalent in 4G to a Boolean combination of sentences
belonging to the basic set B. B splits into two sets H and. Q. Every sentence
of H is of the form H(m), where m is a positive integer, and an Abelian
group satisfies H (m) if it is of exponent m. @ consists of the sentences
Q'%q, &, n), where i is 1, 2 or 3, g ranges over all primes, % over the positive
integers and m over the matural numbers. An Abelian group is a model
for Q¥(q, &k, m) if its ¢°-rank is m, ie., if its subgroup consisting of all
those ¢* 'th powers that are of order ¢ is of rank n. @¥(g, ¥, n) is valid
in W if the factor group of the group of all g*~'th powers of elements
of A over the group of all ¢"th powers is of rank . Finally, Q(”)(q, k,n)
is valid in 9 if 9 is of pure g*-rank =, i.e., if the subgroup consisting of
all elements that are of g-height k—1 and of order ¢ has rank n. We
denote the set of all primes by A, and if P C A we write P for A—P.
I P = {g},-we shall omit the brackets. Moreover, we denote by Q¥ the
set of all sentences §(q,%,n) with geP, and write Qp for the set
Q¥ v QP w @P. Finally, it §C B, we shall denote the et of Boolean
combinations of elements of § by ||§||. The Lindenbaum algebra of 4G
is isomorphic to the Boolean algebra generated by the set B and subject
to the defining relations as given, e.g., in Lemma 1 of [7]. We repeat
those relations in a form that will prove convenient:

(1) (i) The sets H and the sets {Q'%q, &, n): ne N } are each disjoint.

(i) @%g, by m) = V. (@¥g, b1, 1)AQVg, by n—r)) for i=1
or 2 and all ¢, %, n. "

(ﬁi? AGIH(m)] ~ [1Q]| = AGIQ(m)] ~ |1, where
Qm)=1{Q%a, %, 0) € Q: (¢, m) < "} © {~@™(g, ,0) €Q: (¢, m) = ¢}
and (n, m) denotes the greatest common divisor of m and m.
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Decision problem for ewtensions of a decidable theory 27

Once it is proved that this yields a complete set of relations (cf. [11]

and [7]), it is easy to see thab

@) (i) AGS]  [Q#] = AC ~ @zl whenever SC |QF| and AGLS]
# L,

(i) AG[~H] ~ ||Qll = 4G ~ Q]

From (1) (i) and (ii) it is seen that the sets AG  [|Qq|] form a sequence
of uniformly recursive subsets of B and that thus—because of the in-
dependence property (2) (i)—also AG ~ Q] is a reeu.rsive subset oﬁ B.
{(More precisely, it is easy, as is done in [7], to exhibit for each fxl.ter
AG ~ ||Q¢l| C 1@l what we might call a full recursive set of. generating
reduced digjunctions of elements of Qg v ~Qq, $0 that the union of these
sets is recursive C [|@]. We call § a full generating set for a filter § C e,
if, whenever a disjunction of elements of ¢ ~Q.belongs to i";,' then. some
sub-disjunction of it belongs to §, and reduced, if no sub‘-d{slunctlon of
a disjunetion that belongs to § belongs to §. That these or similar concepts
are indispensable, is seen by examples. For instance, if we add to 46
the axioms Q“)(q,,(n), 1,n-1), where g is a recursive one-one ﬁmct%on
with non-recursive, range, and ¢, denotes the nth prime, then the resultn_ng
set is again generating and recursive but neither full nor reduced, Wh]]:e
if we reduce it, the individual sets remain reeursi.ve, but no longer uni-
formly so, for, ~Q"(gn, 1, 0) belongs if and only it n is in the range of g,
and indeed the resulting theory is not decidable.) From this in turn
together with (2) (il) it follows that

(3) AG[ ~H] is decidable,
since all basic sentences belong either to H or to Q.

Now, according to (1), the complete sentences are 'exactly those of
the form H(m)A 4l\ Q®(q, k, ngz) = H(m)A T (m, r), subject to the con-

a*lm

dition that mgr 5= 0, whenever (g***,m)= ¢*. These sentences are, of
course, the atoms of the Boolean algebra || B H./(N AG ~ || B]). On the other
hand, they clearly all describe finite Abelian groups, and so we have
here the particularly nice situation in which Ty is fully determined by
the Lindenbaum algebra of T. So far then AG,= AG;D *_‘IG[H, (m)].
But it is easily seen from (1) and (2), that any AG-consistent sen-
tence of the form H(m)As can be “gompleted” to sx.1ch an atom, and
that hence AG[H (m)]D AG;, whence we have equ:a.hty in the above.
To show that H is actually a co-basis for AG;, we introduce the set D

of sentences o
o) 1 A
D(g, k,n) = (~QVg, &, )V Q®(g, &, m)) A (~QP(a, &, M)V @7Ag, &, n)

and observe that (1) implies AG[H (m)]2 AG[D], for all m. On the oflher
hand, it follows from (2) that whenever AG{s][ ~H] # L, then there
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if AG[s]1D (" AG[H (m)], then s must imply, in 4G, a finite disjunction
of sentences of H and thus H is indeed a co-basis. In fact we have

(4) AG;= AG,= AG|H| = AG[D), and is decidable.
Tt was shown in [7] that the last equality holds, but we shall give

here a proof that illustrates the methods introduced in § 4. Since 4Gy
= AG|H|, we have AG} = AG[~H], and, since every finite subset of’

the set ~@, as well as every finite subset of the set ¢, = {Q“)(q, 1,0}
is consistent with some sentence H(m), with m % 1, we find that both
the theory of the direct product of all finite eyclic groups and the theory
of the additive group Q of the rationals are extensions of 046G, i.e.,

(5) (i) AG[~B]= AG[~Q]= T(1< ﬂNcm) D0A4G, and

(ii) AG[Qy v ~H]= AG[Q,][ ~H(1)] = v(0) D 24G.
Now from this, 4G;= AG|H| and (2) it follows that

AGs = AG[~Q] ~ AG;= AG[(AG[~Q] ~ ||Q]) ~ AGy]
= AG[ q[;i (AG[ ~Q ~ AG_f)] .

IE we set Qgm = {Q¥(p, %, 1) €Q: p=gq, and k—1, n < m}, and similarly
for Dym, then clearly AG[~Q,] = L%TAG[NQM], and it is easily seen.
mE.

that AG; ~ AG[ ~Qym] = AG[Dyyn] and therefore AG; ~ AG[~ Q]|
= AG[D,]. We note that, since the theory AG[~@Q], as well ag all the
theories AG[ ~Q,] are obviously decidable, we could now invoke Lemma 7
to conclude the decidability of AG,. However, since the co-axiomatisability:
of AGy is ensured even by the mere finite axiomatisability of 4G, the
significant outcome of this argument is that D is an axiomsystem for 4Gy
relative to AG. Thus we have established (4) and obtain, using (3),

(6) AGY = AG|~D| = AG[ ~H], and is decidable.

It is at this point that, using Lemma 5, we automatically get

(7) AG is decidable.

'We observe that this seems really the natural chain of reagoning..
The decidability of 4Gy can either be obtained as above, i.e., by finding-
an axiomsystem for it, or else by model theoretic considerations as in [3]
where Feferman and Vaught’s method of building up from cyclic models.
by direct product formation is used. The decidability of AG[~H], om
the other hand, follows, as we have seen, easily from an analysis of the-
relations between the basic sentences, which shows, of. 2 (ii), that for-
this theory only the basic set @ need be considered. That the two results.
together yield the decidability of AG then hinges on the fact that H is.
a co-basis of AGy, so that the two theories which have separately beem
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exist primes ¢ such that AG[sA ~D(q, k, n)] # L, for any » and k. Thus,,
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-proved decidable are duals of each other. It is clear then, what role the
“division of B into the sets @ and H plays.

Now the decidability of 24G = AG[~H v D] = AGJD] ~ AGH ~Q]

follows easily by two applications of Lemma 7 and using the decidability

of AG}, of each theory AGY[ ~Q,] and of AG}[ ~Q]. We also note that 246G

.can be represented as the intersection of the decidable extensions 4G ~Qq]
.of AGy, although it can, of ecourse, not be the intersection of finite exten-
sions of AG;. At any rate we have

(8) 846G is decidable.
In- order to prove the decidability of AGy; and of AG; we observe

first that AG;= AG[~E]= AG[~U] if we denote by U the set' of
atoms H(m)A U (m, r), where r i3 & sequence of natural numbers subject
-to conditions induced by m as described above. Again, for AG, the theory
.of infinite models is completely characterised by the algebraic structure
.of the Lindenbaum algebra. Clearly,

AGy = (N AGIH (m)])[~T]1 E N (ACH(m)][~ UJ) = N AGLH(m)],

-where actually AG[H (m)][~U]= AG[H(m)][ ~Un], if we write Um
-for the set of sentences U (m, r), with fixed m. But we l.mve hfare the special
case, where equality holds, ie., the theory AGy; coincides W.lth the. "ﬁheory
of infinite periodic groups. This follows from the fact, easﬂy verﬂ.hed on
‘the basis of (1) and (2), that every gentence S e ||_B[| e1t]%er mpl}es
.a finite disjunction of sentences of Hu ~D or else is consistent vsnth
AGTH (mg)1[{~Q™(g, 1, n): m ¢ N}], for some m and ¢. Roughly speaking,
this means that there are enough periodic infinite groups to y{eld a bas,%s
Afor the set of models of AGy;. More precisely, it means jnhat H is a cobasis
for AGy; relative to AG;. We remark that in general, if R* = T|H|, then
(M R{k] = R%R* 2D R¥%R*, and thus RR* = R|H| ~ 3R C R|H]|, a8 can
HheH

-easily be seen from Lemma 2. Thus, equality hold_s only if 2R D R|H|,
a8 is the case here, That each theory AG{H(m)] is decidable can now
-eagily be shown. Tor instance it follows from (1) that

AGLH(m) =) (AGLH (m)[{~@V(g; 1, m): m ¢ VY]

.and is thus even a finite intersection. of obviously decidable ?:hem.m.es.
“From the decidability of 4Gy, (4) and (7) DOW follows the decidability
of AG; by Lemma 5. Thus ‘

(9) AGy;= AG,H)|, and both AGy; and zlfiGi are jemdablfe.om o

G is thus fully decidable is fairly easy to see fr

'theorTeilia;t :onSi(ierations, che one has the decidability of 4G. We have
.gone here to the trouble of trying to analyze how these rii%;lts hgxllg
together with the structural properties of the algebra || BY/(~ ~ |\ Bl),


GUEST


@
30 V. Huber Dyson lm

beé&mse we are interested in the question, what properties of a de-

cision procedure for a theory T are sufficient to ensure the full deci-

dability of T? So far, we are not able to phrase a concise and meaningful

general principle. At least, we shall see in the discussion of the next ex-
amples in what ways things may break down so that full decidability
fails to hold. However, it must be pointed out that our examples are all
very contrived and that none of them are finitely axiomatisable. Thus,
the question remains open, how many of the regularities of the theory
of Abelian groups are connected with its being finitely axiomatisable.
Another striking feature of AG is the fact that the set of laws other than
the one defining 4G forms a co-basis for 4Gy. One may well axk whether:
the result that this set of laws also forms a co-basis for 4Gy, relative to
AG; necessarily follows from this together with the faet that AG itself
is an equational theory. That the latter condition would be indispensable
can easily be seen by, e.g., adding to AG the axioms stating that every
group of even exponent is cyeclic. Furthermore, we remark that when
all T-complete sentences, i.e., all sentences such that Tfs] is complete,
define finite T-models—as is the case for AG—and once a basic set of
sentences, e.g., L(T) itself, has been exhibited, then, while the decision.
problem for T becomes the so-called ‘“word-problem’ for the algebra
B=|B|/(~T~ ||Bl}) relative to the set of generators, the decision-
problems for the various extensions considered here all become ‘‘“word-
problems” relative to B for various natural quotient-algebras of B. For, if
we denote the set of atoms by A, the set of elements that generate atomic
or atomless ideals by H and K, respectively, and express the formation
of filters by square-bracketing, then we obtain corresponding to our
extensions the filters [~ 4], Q [a] = @ [l =[~K}, [~4 v ~K], N [k]
K

=[~H] and [~H v ~K]. The ideals that give the above-mentioned
algebras are then, of course, obtained by dualisation, i.e., in our notation
by adding the prefix ~. We note that H is the “largest” cobasis for T
and that any set of generators for the ideal generated by H is a co-basis
for T;. The ideal generated by H corresponds to T} and is the maximal
atomic ideal while the ideal generated by K corresponds to Ty and is the
maximal atomless ideal. '

Finally, we close this discussion with the remark that there are-—as
is to be expected—many known cases of fully decidable theories T with
non-trivial theories Ty and T;, for which 7y does not coincide with the
theory T, of finitely axiomatisable models. One such example is the
theory B4 of Boolean algebras, which actually coincides with BA,.
A set of Dbasic sentences consisting of a single sentence a and a disjoint
sequence 4 can be chosen so that the atoms are of the form ahA(n),
~aANA(n), and that BAdi= BA[{~aVv~A(n)}]. Bd;= ) BA[arA(n)]
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= BA[a], BA;=BA[a][~A4], BAj= () BA[~aAA(n)]= BA[~a],
and oBA = L, while BA;; is complete. So, here we have the partic-
wlarly simple situation where a single sentence separates the atoms
that determine the finite models from those that determine the strictly
infinite omes.

One consequence of the above discussion of the set B of basic sen-
tences for AG will prove particularly useful. We shall denote the nth
prime in the natural order by p, and write P, for the set of all primes pr
with 7 > #.

LEMMA 12. There exists a recursive funetion f such that, for all sentences
seL(AG)

() if AG[sh A ~H(m)] L, then AGIs] A |Qps, )l = 4G ~
m<f(v(8))

A NQp gy and § has, in particular, a strictly infinite AG-model, in wh?'oh
the sentences Q%(p, %, 0) hold for all p e Py with the possible exception
of one such prime, that can be chosen arbitrarily;

(ii) if AGs] # L, then AG/s] ~ [|@p,qll = AGs HQPWE))’H and s
has in particular a finite AG-model, in which the semtences Q(‘).(p, k, 0)
hold for all p € Py with the possible emoeption of one such prime, that
can be chosen arbitrarily, and

(i) of AG,[S/\mJ(\m) ~H(m)] # L, then AGus] ~ ||Qp o= 4G

~ 1[ij(v(8))|| and s has in particular an infinite periodic AG-model, in whff'ch
the sentences Q(p, %, 0) hold for all P € Pyosn with the possible ewception
of one such prime that can be chosen arbitrarily.

This function was used in [7] and it is clear what it is. From now
on f shall always stand for this particular function. Moreovgr, we let
g be a fixed recursive one-one function with non—ref:urswe range
R(g) C N—{0}. Finally, we assume that a recursive ordering of the set
D of all sentences D(q, k,n) has been fixed so that D= {D(n): n> ik
Now we are ready for the eight counter-examples. .

PROPOSITION 2. T'= AG[A] has property (30), if

Am= [ A (DA ~E ()~ Pan, 1, o), n>1.

Proof. We start with the observation that, whenever TD AG,
then Ty D T[H(m)]D T[D] and T} C ) T[D(m)], and thait Ty = T[D]
if and only if T = T|~D), while Tf = T[~H] if and only %f Ty = Tll.ll‘
This follows by Lemma 1 from the properties of 4G exhibited in connection
with Proposition 1. For the theory T under consideration here the .eql‘la,l-
ities hold. To show that Ty C T[.D] we note that the latter th?gry coincides
with AG; extended by the set of sentences k/<\n (~H (k) >Q®(Potny, 1, 0))-

Now agsume that T[D][s] = L. If also T[D v ~H][s] # L, then certainly
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AG/[s] has a model, in which all gentences Q“(p,m,1,0) hold. Bus
then, since the range of g, being non-recursive, cannot be co-finite, s hag,
according to Lemma 12 (ii), a finite such model, and thus a finite T-model,
On the other hand, if T[D v ~H][s]= L, then k;/m H (k) e TLD[s] for

some m, but then T[D][s] = AG[sA k/\ 4 (70)/\];/ H ()], since the remaining
<m A

axioms of T[D][s] are automatically theorems of this latter theory. Now
this theory, being-a finite extension of 4G;, certainly has finite models,
Having thus proved T; = T[D], from which follows T§ = T'|~D|D T[ ~H],
it remains to show that T|~D|C T[~H], which is done in an anal-
ogous way. Assume that T[~H][s]+# L. If also T[~H U D][s] = L,
then A4GF[s] has a model in which all conclusions of the axioms A
hold, and, as above, s has a strictly infinite AG-model, i.e., a model in
‘which some sentence of D fails, which is also a model for T, On the other
hand, if T[~H v D][s]= L, there is nothing to prove here, because
then some sentence of ~D is a theorem of T[ ~H][s], and so certainly
T'|~D|[s] = L. We note that we have here examples where the operations
of intersection via co-basis and of extension commute. Since it iy clear that
the theories over which we take the intersections are finite extensions
of AG, almost all axioms of T being vacuously theorems, we immediately
obtain the decidability of Ty, T¥ and hence also of T, or more explicitly,
we have
T;=T[D]=T\H| = (\ AG[H(m)A A\ A(n)],
meN n<m
and
Tf=T[~H]=T|~D| = (| AG[~D(mA A A(n)].
meN n<m

Similarly it follows that
Tu= [ AGL{H(m)A A\ A(n)],
meN

n<m

and that therefore both Ty; and T; are decidable. However, T is un-
decidable, since Q“’(p,,, 1,0) e T if and only if n € R(g). Thus, T is almost
a8 well behaved as 4G, ie., Ty and T¥ are not only decidable but have
absolute co-bases that are coaxiomsystems, and T; = T; %T}. However,
oT is badly undecidable, in that it has no finite decidable and consistent
extensions. On the other hand, of course, 7(R) is still an extension of oT.

ProrosuroN 3. AG[A] has property (29) if A is the set of sentences

A(n, k) = (Q(D(Pa(n)y 1, ”)‘*NQ(I)(zi 1, 7“')) ’
Jor all k=0, n>1.

Proof. Let T, = AG[{~Q™(2,1,%): k> 0}] and
T, = AGL{~@"(pgm, 1, m): n > 1}].

icm°
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Then it is eagily seen from the discussion of Proposition 1 that both these
theories are decidable. (Observe, however, that the same could not be
said for sequences like <Q™(Pymy, 1, 7)) or <~Q(Dymy, n,0)). Clearly
T=T, ~T, and is thus likewise decidable. Moreover, Ty = AG;T, and
Ty = AG;T, and so these theories as well as T; are decidable too. We
have here a case where the inclusions TyD AG;T and Ty D (N T[H(m)]
are proper, and as a matter of fact Ty, though decidable, does not have
a recursive cobasis, ie., Tf is not axiomatisable. For, we have now in
addition to the old “axioms of infinity” ~D the new ones of the form
Q"(pymys 1, m). Now, since we have chosen # > 1, we see that if m is
either not divisible by any prime of the form p,m) or odd, then ~H (m)
is a consequence in T of every ‘“‘axiom of infinity”. On the other hand,
for every n, the group €z X Cpyny 18 & model for T H (Zpgm))land 80 wWe
find that in particular ~H (2pm) is & theorem of T7 if and only if m ¢ R(g?,
and thus TF is not axiomatisable. Nevertheless 6T iy decidable, for it
coincides with the theory (24G)T,, which is again easily seen to be
decidable. Since T} C T[ ~H]—for, it is easily seen that () T[N:D(m)]
= T[ ~H]—it remains to show that all sentences of ~H are indeed
theorems of 8T, and it suffices to show this for sentences of the form
H(2m) with m divisible by some primes of the form pym. Let Pymy, .-
wevs Doty D all such prime divisors of m. Th.en' t‘he sentence H (2m)—
=V QPgins, 1, m:) is valid in all strictly infinite models of T, but
=<r

then, the negation of the conclusion being a theorem of Ty, we find 1-;ha,’ﬁ
~H (2m) is indeed a theorem of oT. It follows that T has the desired
properties. .

PrOPOSITION 4. AG[A w B] has property (26), if

A(n) = (~Q%(pny 1, 0)>9(pn, 1, 1)AQ(Dn, 1, 1)7Q(pn, 1, 1))
and

B(m) = (~@"(za, 1,0~ A Q¥(@un,1,0) -

Proof. Let us denote AG[4] by R. R is then the theory of t‘hc‘»se
Abelian groups that are direet products of torsion free groups and ﬁ@te
groups of squarefree order. If we denote by M the set of.squaret'ree pos1f‘,1ve
integers, we see that {H (m): m ¢ M} is a proper cobasis for Rf;*a:nd.. since
every extension R[H (m)] is complete it follows that R; and Rf coincide.
Altogether we have ’

R;= R|H| = AG{A] = AG[A v D],
R} = R; — AG{A]= AG[A v ~H]= R|~D|
=N RIQ™(p,1,0)n ~@%p, 1, 0],
Y

oR — Ry; — 9AG[A] = AG[4 v D v ~H].

3
Fundamenta Mathematicae, T. LXIV
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Tt is not difficult to see that all these theories, including R, are decidable,
for R and 2R, one gives an argument showing that if a sentence ig a theorem
then it is a consequence in AG, respectively 24G, of the first f (v (8)) axioms,
and then the rest follows. Now we adjoin the axioms B to R and find
firgt of all that Ty = R|H'| = Ry[S v ~H"'], where H' = {H(m): m < M},
with M’ the set of squarefree products of primes p; such that each j lies
outside the range of g restricted to the largest of them,
H' ={H(m): m¢M},and 8(k)=( A ~H(m)~> A QP pany 1, 0)),
) me Mg M’ i<k
where M is the set of squarefree products of the first % primes. Since
the sets of pumbers involved are obviously recursive, Ty is decidable.
But note that Ty is a proper extension of R/ B], for, the sentence ~§ (k)
is valid in Q X €p,,, Which is a model of R{B] but not of Tr. As to Tj,
we find that T; =T} = T[~H']=T|~D v ~§|, and it iy easy to see
that the intersection ranges over a sequence of uniformly decidable
theories. Thus we have all the required decidabilities and that (26) holds
follows from the fact that Ty = oT = Ty[ ~H]= Tr[{Q (Do), 1, 0):
n € N}]. For, indeed, if m ¢ R(g), then Ty ~Q(pm, 1, 0)] hag the mode]

[l p,, and so Ty; is not co-axiomatisable.
kERig)

PROPOSITION 5. The theory of finite elementary Abelian p-groups
extended by the set of semiences

A(n,m) = ( 14\15 NQm(pa(n)} 17j)“>NQ(1)(pa(%)7 1, ""“l"'m‘)) y W= 1, m=1,

has property (25).

Proof. Let R be the extension of AG;[ ~H (1)] by the set B of all
sentences ~Q%(p, 1, 0)->0™p, 2,0)AQ™(g, 1, 0), where p and ¢ range
over all pairs of distinet primes. R is the theory of finite elementary
p-groups. We have R=R;, R;=Ry;, Rf =0R=L and R is clearly
fully decidable. As a matter of fact, as a set of basic sentences for R one
may choose the union of the two sets H = {H(p): pe A} and
Q={0%p,1,m): pe A,m=>1}, each of which is disjoint, and R; is
the intersection of the complete theories R;[H(p)]. For T =R[A] we
obtain the following

Ty = R[{H(pym) —2{}@‘1’@,(,.,, 1,5 n=]=v{C:m=1,k{R(gIm)}
T;i=R;= R[{H(P)—>~Q(l)(1’7 L,n):ped,n=0}= T{G::: ped},

Tf = Td{~H(pm): m ¢ B(g)}] = QW)T'K[H (Pm)] = T{Chn: m e B(g)},

Ty = T{{~H(pm): m ¢ R(g)}] = ey TLH (pm)] = 7{Cpp: m ¢ B(9)}
T=T{~Hv ~]=1(Q).
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From this it is clear that Ty, T;, T and 8T are decidable, but that TF
is not axiomatisable, while Ty; is not co-axiomatisable.

‘We observe that this example gives an illustration of how a degenerate
diagram may unfold upon extension. The Lindenbaum algebra for R
is atomic with the set @ of atoms, R = Ry and to R; = Ry; corresponds
the intersection of the filters generated by the sets ~@p. The algebra
for T is obtained by “deleting” the atoms Q®(pyem, 1, n-+m), and the
set H splits now relative, to T into an r.e. co-basis for T} relative to T;
and a co-r.e. co-basis for T which is also a co-basis for Ty; relative to T;.
Neither of these theories has a recursive co-basis but Ty still has a re-
cursive co-axiomsystem. T is still atomic, and the set of atoms splits
into the set {Q(l)(pm, 1,n): m ¢ R(gin)} of diagrams of finite models and
the set {H(jpg(n))Aié\n ~Q™(pomy, 1,4): m =1} which is a T-co-basis

for Tf. The union oT = TyT} coincides now with the complete and con-
sistent extension obtained by negating all basic sentences, which always
plays a special role.

PROPOSITION 6. The theory of all Abelian groups that are either infinite
or of the form G2 X, has property (23).

u(m)?

Proof. Let us denote this theory by T. It is decidable by virtue
of Lemma 9, for it is obtained from the extension AG; = AG[ ~E], where &/
is the familiar disjoint sequence of sentences E(n) stating that there are
exactly n--1 elements, by weakening ~# with the sequence U, where
U(n) = 7(CF X Cpyyyy) if = 2" pymy—1, for some m, and ~F(n) other-
wise. It is clear that this sequence is recursive. However, the sentence
Q®(pn, 1, 0) is valid in Ty if and only if n 5 0 and n does not belong
to the range of g and thus Ty is not axiomatisable. It remains to verify
that all the remaining theories are decidable. For T this is clear since
T; = AGy. Ty;, on the other hand, is complete and axiomatisable; in fact,
it is obviously the theory of the group €3. Thus, by Corollary 3, we have
T} = T; and of course 8T = Ty;, and so these theories are decidable too.
‘We note, however, that T7 and with it T;, cannot have a recursive co-basis,
but only recursive co-axiomsystems, since otherwise Ty would have to
be decidable.

ProposITION 7. T = AG[A] has property (19) if
An) = (H(2m) >V, 1, gm)), n=>1.

Proof. We observe that T is a recursive weakening of AGY
= AG[~H] by the sequence B, where B(2n—1) = H(2n—1) and B(2n}
=9Q¥((2,1, g(n)). Thus T=AG[~HvB] and T, = AG{ ~HvB], and
it follows by Lemma 9 that both T and T, are decidable. By Lemma 10

3%
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we have T} = AG} = T[~H], s0 th&ty T} is decidable too and Ty = T |H|,
Since ¢ is assumed to be one-one it follows that

Ty = AG/[{H (2n)—Q™(2,1, g(n)): n =1} v
U {~QM(2, 1, m): 1 <Im ¢ R(g)}]

and similarly for Ty with 4G, replaced by AGy;. Since the group e
% €%, is a model for Ty as well as for Ty, ~QM(2,1,m) is a theorem of
either theory if and only if 1 < m ¢ R(g) and we find that neither theory
is axiomatisable. However, 0T = AG[{ ~GM@, 1, m): m = 1)), and i
thus decidable, so that T has all the desired properties.

ProrosITIoN 8. T = AG[B v A] has property (11) ¢f B and A are
the sets comsisting of all sentences

B(g; k,n,p) = (~D(q, ¥, n) - QMp, 1, 0))
and

Am)y=( N\ ~B(H>Q@um, 1,0), m=1.

j<m

Proof. This then is an example of a decidable theory for which
both T; and Ty are undecidable, while 8T, Ty and T} are decidable. In
tact, the latter two extensions will turn out to be strongly decidable in
the sense that they have recursive T'-co-bases. Let us denote the sets
@ ®aiy, 1,0): m>1} and {Q¥p,1,0): pe 4} by @ and @, e
spectively. From Lemma 12 (ii) it follows that, whenever S is a co-infinite
subset of @, then (AG[S])r = AG,8]; so that in particular (4G[Q,))
= AGsQ,]. On the other hand, (AG[Bl)y= 4G; and (AG[B][Q.))r
= (AG[Qy)); because AG[B]C AG;. Thus (4G[B][Q.))r = (AG[B])Q]
and, since the premises of the sentences 4 (m) obviously form a decreasing
sequence, we can apply 10(i) to AG[B]C AG[B][A] < AG[B][Q,] %o as
to obtain (4G[B][A])y = (AG[Bl)y[4], ie., Tr= AG{A]= T[D] and
T7 = T|~D|. Because of our choice of B it follows immediately that
T?QT[NE(O),QI], and, recalling what the sentences D are, one Sees
that T ~8(0), Q] = AG[ ~H(0), @] and is thus complete. Now
Corollary 3 shows that T7 = T[~E(0), Q,]. Therefore T; and T} are
both axiomatisable and have recursive T'-co-bases. It should he ohserved
however, that from this alone does not follow automatically their decid-
ability, since the decidability of T has not yet been established. And
i_ndeed,1 if one represenﬁ\‘s T; as the intersection of the theories
T[~Q™(p,1,0)] and T[B(0)], one does use, as will follow from
the - decidability of T, a sequence of wuniformly decidable theories,
but noi?.obviously so. Note that the set of primes for which. the cor-
geSpondjng theory is a finite extension’of 4G is not recrrsive. However,
we ‘can use the . facts that = Ty= () T[B(n)], and that T[H(n)]
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= AG[Bm)A N O™ (Pyimy» 1, 0)], from which the co-axiomatisability of Ty
=n

follows. As to TF, the co-basis itself obviously yields a co-axiomsystem
because T[~D(p, k, 0)] = AG[Qs, ~@®(p, %,0)] and T[~D(p, k,n)]
— AG[Q;,Q%(q, k,n)], for n>1, and the theory AG[@,] is decidable
according to earlier remarks. Having thus established the decidability
of T, and Tf we finally have arrived at the decidability of T, and recall
that 6T, being the additive theory of the rationals, is decidable as well.
Tt remaing to show that neither T; nor Ty is decidable. But it is clear
that the axioms A are so chosen that @¥(pn,1,0) is a theorem of T;
and so also of Tj; whenever n ¢ R(g), while @, is a model for Ty; and
thus also for T; whenever n ¢ R(g). In fact Ty; = AGn[Qy].

ProposITION 9. The theory T of all groups of the form G X GE™ or
G2 x G, with 0 % m ¢ B(g) and n =1, has property (5).

Proof. Let R= AG[H(6)], T=R[{Q™(2,1,n+1)QM(3, 1, g(n+1)>],
and set @, = {Q(I)(Z, 1,n): n>=1} and Q= {Q(l’(3, 1,n): nx=1} It
is clear that ~Q"(3,1,%) is a theorem of T; if and only if ke E(g)
and a theorem of 7y if and only if k¢ R(g), so that T; is not co-
axiomatisable while Ty is not axiomatisable and T[~@,] CTy. But
T[ ~Q,] coincides with the theory R[~@,v ~@s], which is the theory
of the group 6% x 5. Therefore T;; = T[~@,] and Ty is complete and
decidable. From this we immediately obtain TF = T; and 8T = Ty, as
well as T= ) T[Qm(3, 1, k)], where & ranges over all positive integers.
We note that the set Qg splits into two sets, one of which is an r.e.
co-basis for T; while the other is a co-r.e. but not r.e. co-basis for TF.
Nevertheless this set yields a co-axiomsystem for T, because each of the
extensions of T by a sentence of @ is complete and hence decidable,
thus establishing the decidability of T which is all we needed to complete
our proof. In fact, each theory T[Q(3,1, k)] coincides with the ex-
tension of R[Q(3,1,%)] by the recursive sequence A, where A(n) is
Q™2,1,n) or ~Q™(2,1,n) according as k= g(n) or not. We observe
that those theories for which % ¢ R(g) are finitely axiomatisable. Again,
although the set of finitely axiomatisable ones among them is not re-
cursive, they are uniformly axiomatisable and we have a situation as
deseribed in the discussion of Definition 5. This then, is an example
of a theory which is decidable despite the fact that neither Ty nor T7
nor T; is decidable. '

Tn view of Lemma 11 this finally completes the proof of Theorem 2
and with it settles the question that motivated this paper. It seems in
order to mention at this point that this article can be viewed from two,
so to speak, polar, vantage points. Its purpose may be seen in the two
theorems, and these then give justification to the general machinery
introduced. On the other hand, one may well find the main interest and
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content in the lemmas and generalities and would, in this case, congider
the theorems and the propositions that lead up to them as illustrations,
As a matter of fact, it would be quite feasible to find ad hoe proofs of
a model theoretic nature for the propositions, if those were the exclusive
aim. But, as mentioned before, we were here principally interested in
shedding some light on the recursive structure of the Lindenbaum algebra
of a decidable theory. It should be obgerved that, as long as our examples
are viewed as extensions of AG, they can indeed be viewed in this light
since the set of finite complete extensions of 4G coincides with the set
of theories of individual finite Abelian groups, and so the theories Ty, T} etec,
are “canonically” associated with T’ via the Lindenbaum algebra of 4G,
However, if they are taken out of context, they must be seen as examples
of Lindenbaum algebras with a distinguished recursive set of generators,

§ 6. Remarks. In this investigation we have been concerned
with theories T whose language L contains equality as a logical constant,
80 that the extension T;= T[~F] is canonically associated with T.
Any theory T belonging to a language without equality coincides with
its theory of infinite models, and Ty is then the intersection of all finitely
axiomatisable complete extensions of T that have finite models. The
diagram shrinks to (T, Ty, Tf, &T).

For languages with, as well as without, equality it may be of some
interest to analyse the relations in the diagram that is obtained by re-
placing E by the set C of all complete sentences, i.e., of sentences s such
that the theory [s] is complete and consistent. To our knowledge it is
not known whether, for a fixed language—e.g., the language L with
equality and one binary predicate symbol—the set C is recursively enumer-
able. Therefore we do not know whether Corollary 4 of § 2 carries over
to T.= Q T(s], the theory of all (-models of T, and hence whether

the analogue of Theorem 1 (ii) holds. In view of this and of the remarks
following Corollary 4, as well as in view of the fact that there exists
a finitely axiomatisable consistent and decidable theory, the consistency
of which can not be proved in arithmetic (ef. 5, Corollary 3.6), we raise
the obviously related questions. 1

PEROBLEM 4. Is the set O of complete and consistent sentences of I
recursively enumerable?

EPROBLEM 4'. Does there ewist a finitely awiomatisable complete and
consistent theory whose consistency camnot be proved in Peano’s arithmetio?

If, for a fixed theory T, K is the set of sentences s such that T[]

is complete, then the theories T[~K] and T = ) T[s] and with them
s
the further three extensions, are canonically associated with the Linden-

baum algebra of T. In case T is finitely axiomatisable, T; of course
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coincides with T, so that an analysis of the pair T[~C], T, is of special
interest for finitely axiomatisable theories T.

We repeat the question whether Theorem 1 can be strengthened
for finitely axiomatisable theories T; in particular,

PrROBLEM 5. Does there exist a finitely axiomatisable decidable theory
for which the theory of infinite models is undecidable¥

PROBLEM 6. Does there exist a finitely aziomatisable decidable theory
for which the theory of finite models is undecidable?

'We observe that a negative answer to either problem would lead
to a weak form of hereditary undecidability. More precisely, if Problem 6
has a negative answer (for Problem 5 the situation is completely analogous),
and T is undecidable and is the theory of finite models of a finitely axiom-
atisable theory, then every finitely axiomatisable subtheory of T is undecid-
able, since every subtheory of T must have an undecidable fheory of finite
models. On the other hand, if every undecidable theory of the form [a];
were hereditarily undecidable in the usual stronger sense of the word, then
it would, of course, follow that the answer to Problem 6 is negative. This
hereditary undecidability would certainly be a very strong property.
Still, it is a rvemarkable fact (cf. [2]), that every known undecidability
proof of a theory of the form [a]; for an undecidable theory [a] leads
even to a proof of the recursive inseparability of the set of [a]-finitely
refutable sentences from the set of logically valid sentences, so that if
may not be unreasonable to consider the possibility that every undecidable
theory of the form [al; is at least hereditarily undecidable under the
further assumption that [a] be undecidable.

ProBLEM 7. Does there ewist a finitely amiomatisable theory T with
an undecidable theory Ty of finite models, and a decidable theory R such
that TCRCT; ?

Note that these problems are not directly amenable to the methods
of [5], for a transformation, as in [5], of an axiomatisable theory into
a finitely axiomatisable one does not preserve complete sentences, and
an isomorphism of theories as in [5] need not preserve the sentences H(n).

Finally we recall that there are finitely axiomatisable undecidable
theories T with non-trivial decidable theory T;. An example is the theory
of Abelian cancellation semigroups, as shown in [7]. In view of Corollary 6
the analogous situation for Ty is impossible; however, it is easy to con-
struct an infinitely axiomatisable undecidable theory T with decidable
theory T; by adjoining to a decidable theory that has models of all finite
cardinalities the set of all sentences ~X(g(n)) where g is a recursive
function with non-recursive range.
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On a class of subalgebras of ¢(X)
with applications to fX\X.

by
Donald Plank* (Cleveland, Ohio)

W. Rudin has proved that, assuming the continuum hypothesis,
ANAN has a dense subset of 2° P-points. A similar theorem of N. J. Fine
and L. Gillman states that, assuming the continuum hypothesis, SR\R
has 2 dense subset of remote points in SR. It is the purpose of this paper
to unify these results by giving a more general method of finding such
points. ’

Specifically, for a completely regular space X, we define a class
of subalgebras of O(X) called f-subalgebras. Examples of B-subalgebras
include O(X) itself and C*(X). With each f§-subalgebra 4 of 0(X) we
associate a (possibly empty) set of points in BXN\X called A-points. We
show that, under the continuum hypothesis and with reasonable restric-
tions on A and X, BX\X has a dense subset of 2° A-points. The Rudin
theorem is then obtained by observing that the P-points of JN\N are
precisely the C*(N)-points, and the Fine-Gillman theorem follows from
the fact that the remote points in SR are precisely the C(R)-points.

Our method considerably simplifies the Fine-Gillman proof of the
existence of remote points in SR but does not have the power of their
method. Using their method, we show the existence of remote points in R
which are not P-points of fR\R. We conclude by investigating a f-sub-
algebra H of ¢ (N) previously studied by R. M. Brooks. ‘We correct Brooks’s
characterization of the maximal ideals in H and show that his characteriza-
tion holds precisely for the ideals MP where p is a P-point of SN\N
(equivalently, where p is an H-point).

1. Preliminaries. The basic reference for this paper will be the
Gillman and Jerison text [5]; the terminology and notation will, with
only a few exceptions, be thab of [B].

* This paper constitutes a portion of the author's doctoral dissertation written
under the supervision of Professor Leonard Gillman at the University of Rochester.
The author wishes to thank Professor Gillman for his valuable advice and encouragement.
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