A note on Rouché’s theorem

by
S. B. Bank and G. H. Orland (Urbana, Ill.)

In this note we will prove a generalized version of Rouché’s theorem—
the converse of this generalization will also be proved. Following this
two closely related results will be demonstrated. These deal with analytic
functions having an unequal number of zeros inside a closed curve. We
hope that, in spirit at least, this note has some points of contact with
Kuratowski’s paper [2].

The classical Rouché’s theorem (see for example [1], p. 254) states
the following:

If C is & scroc (seroc = simple closed rectifiable oriented curve) and if f
and g are analytic funciions on the set C* consisting of the union of C and
its interior, with |f(2)] > |g(a)—f(2)| for z € C, then f and g have the same
number of zeros inside C.

This theorem can be proved by observing that

F(t)= i_ J f_w dz
omig  fle)+tlg(2)—f(2))

is continuous for ¢ € [0, 1], and is an integer equal fo the number of zeros
of f(z)+1(g(e)—f(2)) inside C. Therefore F(t) is a constant equal to F(0)
and F(1).

Now suppose C is a scroc and f and g are analytic functions on C*.
If @ is any region of the complex plane which contains ¢* and on which f
and g are analytic, then a continuous complex valued function H defined
on @ x [0, 1] is called a homotopy joining f and g if it satisfies the following
two conditions:

(a) H(z,1) is analytic on G for each i <[0, 1],
(b) H(z, 0) = f(z) and H(z,1) = g(2).
Should H also satisfy
(e) 0 ¢ H(OX[0,1]),
then H will be called non-vanishing on C.
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1t H has zeros on € only for { = #;, where 0 < ¢, < ... <l < 1, and
if m; is the number of zeros of H (2, t;) on (, we shall say that H vanishes

R
to order X mq on €. In the case where H vanishes on ¢ for infinitely many
1

values of ¢ we will say that H vanishes to order oo om (.

In what follows we will occasionally use an interval other than [0, 1]
for ¢ and also make tacit use of the faet that homotopy is an equivalence
relation. ’

The symbol N¢(f) will designate the number of zeros, counting
multiplicities, of f interior to the scroc C.

THEOREM 1. Let C be a scroc and let f and ¢ be analytic on O*. Then
there exists @ homotopy joining f and g and non-vanishing on C if and only
if f and g have the same number of zeros imside C and none on C.

Proof. Let H be a homotopy joining f and ¢ which*is non-vanishing
on (. We will show that )

e

1 I'Hz(s, t)
Hz,t

R
&

is a continuous function of ¢: then the argument described which proves
Rouché’s theorem will prove that N(H(z,0)) = Ng[H(z, 1)), ie. that
Nelf) = Nolg).

Let Gx [0, 1] be the domain of H and let K be any compact subset
of G. Since H is uniformly continnous on K x [0, 1], if tu~>t, then H (z, t,)
—~H(z, t,) uniformly on K. By a well-known theorem of Weierstrass.
Hiz,ta) >~H(z, 1,) uniformly on compact subsets of @. Consequently

z% -,g—“(i;:—g’; uniformly on ('

since H (2, ,) is non-vanishing on C. The integral is therefore a continuous
funetion of 1.

Now, to prove the converse, suppose that f and g have the same
m:meer of zeros inside € and none on (. The non-vanishing homotopy
will be inductively constructed. A )

To begin consider the case where Ne(f) = Nelg) = 0. In this case,

let h(z) be an analytic branch of log (g (2))f (2)) on a region & containing C*.
Then the funetion on G x [0, 1] defined by

H(z,t) = f(z) et

is clearly a homotopy joining f and g and is non-vanishing on (.

The case where Ne(f)= Ne(g) =1 must be handled next. Let
and b be the simple zeros inside ¢ of f and g, respectively. Then f(z)
= (F=a)fi(z) and g(z) = (s—b)g\(z) Where Ne(f,) = No(g,) = 0. Should
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= 4 then K(z,1) = z—a is a homotopy joining z—a to z—a and non-
vanishing on C. Should b # a then, for 0 < ¢ <1, let y(i) be a continuous
curve in the interior of ¢ for which y(0)= a and y(1) = b. Then

b—y(®) . y(t)—a,
el Gl b sy Sl C b)

Kz, t)= b—a

is a homotopy joining s—a and z—b. If K(z,1) vanished for some ze C
we would have

Db—y(O]e—a)+ Iyt —alz—b) = (b—a)p—(b—a)p(@) =0.

This is impossible since y(?) is interior to 0, and thus K is non-vanishing.
We have previously shown there is a non-vanishing homotopy joining f;
and g,. Multiply it by K and we have the required non-vanishing homo-
topy joining f and g. .

To complete the induction we will assume that the theorem is true
for all f and ¢ of the type under consideration whenever Nc(f) = %\*c(g) < k.
Suppose now that Ne(f) = Nel(g) = k. Let @ and b be zeros inside C of f
and ¢ respectively, and write f(2)= (z—a)fi(z) and g('z) = (z—b) ().
Then No(fi) = Nelgy) <k The inductive hypothesis gives us a non-
vanishing homotopy joining f; and g,. We have also consi?rueted & non-
vanishing homotopy joining #—a and z— p. Their products is the required
non-vanishing homotopy joining f and g.

We will now consider the case where Nelf) = Nelg)-

TamoREM 2. Let € be a scroc and let f and g be analytic functions
on CF having no zeros on C. If Ne(f)=m and Nolg) = m+k, then there

exists a homotopy joining f and g and vanishing on C to order k. Furthermore,

the homotopy can be chosen so as to have one selected zero on. C of multiplicity k.

Proof. Let 2, be a point on ¢ and write ¢(z) = (—71y) .. (2—72) B(2)
where the #;'s are zeros of g inside €' and Ne(h)y = M. B§.' Theorem 1 the?e
is 2 homotopy H, joining f and & which is non-vam’shmg on €. We will
produce a homotopy Hi joining the constant function 1 and 22— and

3
which vanishes to order 1 at (s, 1) = (%, &) Then ” H; will be the homotopy

i=0
sought.
Let a = inf {Rez} and let J(f) be a continuous curve for 1<t 1
el
tfor which
tE)=a—1, (&) =2, sy =g, and ()¢ O fort=1%.

e 14+4f(z—a), O=i<i,

Hifz, 1) = {:,:(1), Lt

does exactly what is required.
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Thet the homotopy shown to exist in Theorem 2 cannot vanish to
an order lower than k is asserted by the next theorem, which is essentially
a converse of Theorem 2.

TaEoREM 3. Let O be a scroc and let f and g be analytic functions
on OF having no zeros on C. If there is a homotopy H(z, 1) joining f and g
and vanishing to order k on C, then |N¢(f)—Ne(g)l < k.

Proof. Let the domain of H(z,t) be Gx [0, 1], where @ is a region
containing C*.

Case 0. If k= oo the theorem is trivially true.

Case 1. Suppose that H(z,t) has zeros on C for t=
0 < i< 1. Let these zeros be m in number. Set k(z) = H(z,
and B be scrocs satisfying the following conditions:

only, where
). Now let D

io
t
(1) The interior of E is contained in the interior of C.
(2) The interior of C is contained in the inzerior of D.

(8) The set D* (consisting of the union of D and 4ts interior) is contained
in @. (Hence for each ¢, H(z,?) is analytic on D*.)

(4) The only zeros h has between D and E are on C and h has no zeros
on D or E.

_Further by the continuity of H, there exists an ¢ > 0 such that if
[t—t| < ¢ then H(z,t) never vanishes on D or E. Let
h(2) = H(z,i—e) and  hy(e) = H(z,i+e) .

By interchanging h, and &, if necessary, we may suppose Ne(h,) = No(hs)-
Theorem 1 tells us that

Noplhy) = Np(k) and  Ng(hy) = Ng(h) .
Therefure

Ne{ln) = No(he)| = No(hy) — Ne(hs) < Np(hy) — Ne(hy)
= Np(h)— Ng(h) = m .
Again applying Theorem 1,

Ne(f) = Ne(hy)  and  Ne(g) = Ne(hy)
80 we have

Ne(f)—Ne(g)| < m .

Case 2. §uppose that 0 <t < ... <tr<1 and H(z,t) has its zerous
on C for precisely these #;’s. Denote the number of zeros on ¢ of H (2, ts)

by ms s0 3 m;= k. Let
1

H=0<h <t <h<.. <h<t<lygr <. <tp<tr=1

e ©
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and hi(2) = H(z, 7). The hy’s have no zeros on C. By case 1,

| Ne(h)— Ne(hirn)] < mey
80

INe(f)— Nolg)] = [Nolho)— Ne(hn)| < 2[1\' (he)— Ne(har))] < Z

i=0
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