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If we now define, for I C N containing 1, L ag the product of all
lattices in L;, each taken as many times as it appears as a factor of L,
then we get clearly

L=pI®
I

and this proves theorem I.

Remark. If in this proof one replaces the word ‘lattice” by
“quasilattice”, and do the same in the statement of the theorem, then
we get a representation theorem for distributive # -quasilattices. However,
the following characterization of distributive #-quasilattices seems to
be simpler:

THEOREM II. An algebra W = (X; 01, ..., 0an), n =2, 18 a distributive
n- quasilattice if and only if it is the sum of a direct sysiem of distributive
n - lattices.

(For the definition of the sum of direct systems of algebras, see [2].)

Proof. The sufficiency is nearly trivial (cf. theorem 3 of [1]). The
necessity follows from theorem 3 of [2], as the operation fie ... (®,¥)
satisfies the conditions characterizing the partition functions, which
follows from (1), lemma 2, (vi), lemmas 3 and 4 and (v).
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Some remarks on sums of direct systems of algebras

by
J. Plonka (Wroctaw)

0. Introduction. In this paper we give some additional remarks
concerning the notion of a sum of direct system (with the least upper
bound property) of abstract algebras defined in [1]. At first we recall
the following definition:

Let 4 be a direct system of abstract algebras of a fixed similarity
type without nullary fundamental operations, indexed by elements of
2 partially ordered set I, the ordering relation of which has the least
upper bound property. Moreover, we assume (which is not an essential
restriction) that the carriers of the algebras s (¢ ¢ I) of this system are
mutually disjoint. The sum S () of the system 4 is an abstract algebra
of the same similarity type as the algebras %;, the carrier of which is the
sum of the carriers 4 of all algebras of the system 4 and whose fundamen-
tal operations are defined by .

B, ..., Tn) = Ft(‘pix.in(wl)_’ ey 'pim‘o(wn)) 3

where @, € Aiy, ..., %o € Ai,,y o= Lb. (4, ..., ), {F:} is the seb of funda-~
mental operations of the algebras in the system #, and g; are the canonical
homomorphisms of #.

Let us also recall the definition of a P-funetion (partition function)
of a given abstract algebra U= (4,F) without nullary fundamental
operations.

A mapping f: A2— A is called a P-function if it satisfies the following
conditions:

(1) f@,8)=q,

@) fle,fy,2) = e, fz9) 5

(3) Ff @, 9),2) = fle, fly,2) ,

(4) [P @1y ey #0), 9) = B (@1, 9), oy f(2n, 9)

(5) FIE @, ooy @), 22) = F(@yy s ) (L<E<0),
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6) Py @y ooy @n)) = Fly, P(F(, @), ooy (5 20)) 5
(1) T, By, y,eny) =y,

where (2, ..., %s) is an arbitrary n-ary fundamental operation of .

The connections between the notion of a sum of a direct system of
algebras and the notion of a P-function are formulated in theorem II
in {1], where it is shown that to every P-function f of an algebra there
corresponds a representation of this algebra as a sum of a direct system
of algebras, in which f(»,y) = @, and conversely.

1. Now we shall give some more properties of the sum of a direct
system of algebras and of P-functions.

LEMMA 1. An operation f(z,y) = woy is a P-function of the algebra
W = (X; (Fo)er) if and if it satisfies the formulas (1)-(3) and the formulas
(8)  Fiwy, ..., wn)oy = Fyfw,, ..., ¥x—1, 0309, Bpg1y eey Tn)

i (k=1,2,..,n)

(9) Ty 0850...0 B 0 F(@, o0y Bp) = @, 0850 ... 0y .
Proof. Sufficiency. From (8) and (9) we obtain the following
equalities:

Fify, .., @) 0y = Fy(a,, vy @) oyoyo..oy=Fzoy,.., @no0y),
7 times

Fuwy, ..., an)oae = Fy(y, ..., Br—1y BkOTky Tet1y oony Bn) = Fo(dy, ...y @) ,
YO (2, ..., 0) = YOFUD iy Xn) 02,0 ... 0 24
=Y0Z0..0Bn OFY By, e, Tu) = Y 02,0 ... 02y
= (yoml)o(yomz)o‘..o(yown)
=(yox)o...0 (Y 0 xn) 0 Fily 0 my, vy Y 0 Bp)
=yoFyoa,..,yoz)0mo0..0z,
=yoFyy o a,, ey Y O3,

which prove (4), (5) and (6). Equality (7) follows fr
identification of variables. @ e fom (1) and (&) by

Nesessity. By (4) and (5) we have
By, oey s,y oy 0 Yy Bkl eeey B)
=Fy®1, e, Bpa, 330 9, Bty -y Tn) 0 (T 0 Y)
=Fzi 010y, 050 m; 0'Yy wey T 0 Tx0 Y)

= Fu(tty, ..., @) 0 71 0 Y= Fw,..y@) 0y
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proving (8), and similarly, using (1), (2), (8), (6) and (7) we get
@10 .0 080 Foe(®y, ooy Bp) = 210 oo 0 T 0 Fe(B1 0 oo Ty vvvy Ty 0.0 0 L)
=, 0 ... O Tn,
which proves (9).

TeEOREM L. If in an algebra U = (X; (Fi)er) there emist two P-func-
tions o,y and o,y both of them being terms in two variables in U, then
2oy =20,y for all z,yeX.

Note that the trivial P-function f(z,y)= « does not, in general,
satisfy the assumptions of this theorem. If it, however, does, as in the
case of groups, where x = zyy~', then this theorem shows that then
every algebraic P-function is trivial (and from Theorem 1 from [1] it
follows that then even every P-function is trivial).

Proof. Formula (8) of Lemma 1 implies that for every term ¥ in
two variables of % equation (5) is satisfied, and so, under our assumptions
we get

(xo,y)o,y=mo,y and (T0,y)0Yy=x0,y

but by (1) and (4) left-hand sides of the two last equalities are equal,
and the equality x o, ¥y = 2z o,y results. N

LevMA 2. If 2o,y and xo,y satisfy (1)-(3) and are mutually distributive
(on the both sides), then the following equalities hold:
20y (% 0, Y) (2 02_:’/ 032) = 2 0,(% 0,4 0,2),
2 0,(2 052) 0,(1 0, Y 052) = B0, (X0, 0,%) .
Proof. We prove the first equality, the proof of the second being
analogous. We have (£0,9)0,(%0,2)=20,(y0,2) and (zo,y) 0, (w0y2)
= % 0y (6 05 %) 0, (Y 0, ) 0, (¥ 0,2), hence

0, (Y 052) = & 0, (2 052) 01 (Y 05 %) 05 (Y 05 2).
Putting in the last equality w0,y in the place of ¥ we obtain
B0y (B 0y Y 032) == L0, (20, Y) 0, (% 0y 2) 0, (B0, Y 0,2) .
This formula in turn implies
T0,(®0,Y) 0, (B0, 0,2) = T 0y (T 0y Y 0,2) 0,( 0, Y)
= (a; 01 (2 05 ¥) 0, (% 05 2) 0, (X 0, Y 05 z)) 01 (% 0,9)
=20, (X0, Y) 01 (X 052) 0, (0059 052) = @ 0, (T 0,9 0,2) ,

as needed.
Lemma 3. If @oy is a P-function of the algebra %= (X; (Fier)s
then

Fo(@y, ooy @n) 0 FolYry ooy Yn) = Fe(@1 0 Y1y ony B0 0'Yn)
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Proof. By (1), (2), (), (8) and (9) we have
Ti@yy ooy Xn) 0 Fe(Yyy ovy Yu)
=By, ey Bn) O F oY1y ooy Yn) 0 Y10 Y2 0 . 0 Y
= Fy(2yy eey Bn) 0Y1 0...0 Y0 Fo(Yy, ooty Yu)
= Fy(%5y ceey Xn) 0 Y1 0...0 Y
= BB, 0 Y1y ooey Bn O Yn) -
TerorEM II. Let U = (X; (Filer) and let T = Ty v T, (T, T, # 9).
If mo,y and x 0,y are two operations defined in X which satisfy equalities
(1)-(4) and (6), are mutually distributive and the operation o, satisfies con-
ditions (B) and (7) for F = F; with teT; (i=1,2), then the operation
20y = xo(20,y) is a P-function for .
Proof. Condition (1) is trivially satisfied. We shall prove now
that (3) is also true. In fact, we have
(@oy)oz=(wo,(x0y)) 0, ((w 0y (% 05 9)) 0, z)
=00,(%0Y) 0, (% 052) 01 (B0,Y 0,2) = X0, (0, Y 0:7),
hence we get, using Lemma 2
(10) (xoy)oz=mo,(x0,9 0,2)
and
zo(yor)=u 01(99' 05(Y 0, (?/ 23 5)))= wol(m (2 y) 01(z 0, Y 0q #)=u 0y (-’” 03 Y 052),
whence
(11) 50(Yo0z) =20, (20,9 0,2).
From (10) and (11) condition (3) follows immediately and, moreover,

as o, satisfies (2), it follows that o satisties (2) as well.
We turn now to condition (4). Let t < T,. In this case we geb

By ey @) 0 (Fi(2y, .., Tm) 05 9)
=Fe(21, ..., Tn) 0, F@, 0, ..., B 05 9)
= Ft(ml 01(@y 09 %), w..y @ 03 (%n 05 ?/))
=Fy®,0Y,...,2n07%)

(by Lemma 3, which has to be applied to the algebra (X ; (Ft),ET,)).
In the case of ¢ ¢ 7, the proof is similar.

To prove (5), take ¢ e T, (when t < T,, the proof follows the same
lines) and observe that

Py, ..., 2n) 0,(Fe (3, ..., Tn) 0, m2)
= B2y, ..., Zn) 05 (Fyy, ..., ¥n) 0, Ts)

= Fy(@1, .., Tn) 0 Fo@y, ..., @) = Fo(,, ..., ) .
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Moreover (still under assumption ¢ e 7,), we have
YO T (21, eevy Tn) = Y 01y 05 Fi(@y, ..., 2n))
=y 0y (y 03 Fo(y 05 By, ..., Y 0 @n))
= Y 05 (Y 0, F(y 0, @y, ..., Y 0, Tn))
=y 0, (y,ong(yo1 (Y 02 @)y ooy Y 01(Y 04 m,,)])
=90, [y 0, Fy 0 Byy0ee, Yy 0 0)) = Y0 Fe(y 0 7y, ..., Y 0 Bm),

thus proving (6). The proof for ¢ e 7, is similar.
Finally we prove (7) and once more we restrict ourselves to the ease
teT,. We have then

YOFUY,y ey ¥) =¥ 0. (y 02 Fe{y, o., )
=y0, (Y oL Fly, .., ¥)) =90,y =¥,

and so the theorem is proved.

Marczewski [2] defined the set S(), for a given algebra A, as the
set of all natural numbers n for which there exist algberaic operations
in 9, depending on exactly n variables.

‘We prove now

TeEOREM ITI. If A 4s a non-trivial (i.e. consisting of at least #wo
algebras) direct system of algebras without nullary fundamental operations
and of the same similarity class, then either S(S(#)) = {1} or S(8(#))
=1{1,2,3,..}

Proof. We shall prove that in S(#) every term defines an algebraic
operation which depends on every variable occurring explicitly in this
term. In fact, let I be the partially ordered set of indices of algebras
occurring in the system st As |I| # 1, we can find ¢ % j in I such that
i< j. If now f(z) is a term with one variable and f'(z) is the algebraic
operation in the algebras in # defined by f(x), then for a ¢ 4; we have
f'la) e A; and for b e A; we have f(b) e 4;, hence f'(a) + f'(b), as the
carriers of algebras in # are disjoint, and so f'(z) is not constant.

If f(®y, .., %s) i8 & term with « variables, and f'(®,...,®,) is the
algebraic operation defined by f, then for ¥ =1,2,..,% we have for
aeds, be Aj

flla,a,...,a)edy, fla,..,a,b,a,..,a)ecd;
k—1 times
and so f' has to depend on all its » variables.

Observe now that if all algebras in the system - are unary, then §(#£)
is also unary, and so S(S(#)) = 1. If, however, there is a fundamental
operation of % > 1 variables, say f(a, -.., &), then s(z, ) = fu(z, v, ..., ¥)
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is a term with two variables, and clearly by formal superposition of s(z, y)
with itself we get terms of an arbitrary number n of variables. As we
have seen, those terms define algebraic operations depending on % variables,
and so in this case S(S(#)) = {1,2,3,..}.

2. We give now an application of Theorem II, namely, a repre-
gsentation theorem for a class of binary algebras.

Let now % = (X; 0y, 0,), where o; are binary operations satisfying
the following conditions:

(12) BO1X =10,

(13) (@ory)ouz=woi(yoi2),

(14) BO;YOr2= L0201y ,

(13) (mo1y) 05z =(x052) 0i(y 0;%) ,

(16) wos(yoiz)=(wojy) oc(x0;2) (5,5=1,2),
a7 (@o,y) oy =(yo,x)0,@.

Note that these conditions imply the algebras (X; o) are semigroups
of the type considered by Yamada and Kimura [3].
We shall need the following equality which is a consequence of

(12)-(17):

() @0uY 0w oY) =T 0:Y = X 0:Y 04 (Y 07 ) .

In fact, #0iy = (T 01y) 05( 01 y) = (% 05 2) 04(2 05 y) 0:(y 05 @) 04(y 05 y)
and so

{wocy 04(y 05 ) 04(w 019)) 04 (2 05 y)

=g0;Y0:(Y0;0)0:T0;Y=T0sY.

201y 0i (oY) =

The second part of (i) follows similarly.
LeMuA 4. Formulas (12)-(17) imply (2 0,y) 0,2 = (2 0,2) 0, 4.
In fact, using (i) we get
(£ 0,Y) 0,8 = (% 0, %) 01 (Y 02 B) = T 0, (Y 0, %) = T 0, % 0, (Y 0, )
=20, (Y0, 2) 0 8=20,(0,Y) 0,y =T0,Y 0, (B0, y) =T 0, ¥,
and similarly, using also Lemma 2 , we get
(@ 0,Y) 022 = (£0,2) 0:(y 0,2) = (®0,2) 0,(Y 0, 2) 0, ¥
= (0 0,2) 0, (2 0,2) 0, Y0, (y 0, 2)
= (2 0,2) 0, Y 0,(y 0,2) 0, (Y 0, 0, 2) 0; (2 0, 2)
= (2 0,2) 0,y 01(y 0,3 0,2) 0, ( 0, 2)

=(00;2) 0,0, (w0, %)= (0;2) 0,9

icm
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LieMMa 5. The operation xy = (2 0,Yy) 0.y is associative.
Proof. Using Lemma 2, Lemma 4 and (i) we get
(@y)z = (2 019) 029) 02} 0,2 = (© 0,7 0, %) 0, 0y 2
and also
7)) 0((y 012) 0,2

= (20,9 0,2) 05(20,2) 05 (y 0,2) 0,2

x(yz) = (w01 ((y 01 2) 0q

= (20,9 0,2) 0, (X 0:%) 0,2) 052
= (20,9 0,2)0,(0,2) 0,y 0,2
= (0, 2) 0, 4) 05 (% 0,2) 0,y 052
= (20,20,Y)0,Y 0, %
= (0,4 0,3) 059 052.
Consider now the algebra P* = (8, % 8,; 04, 0,), where each of the

sets 8, S, is a semilattice with respect to the operation zy, and the fun-
damental operations o, and o, are defined by

[wy, 41] 0, [@2, Yol = [@1%2, Y1]s  [31) ¥2) 02 [0, o] = [0, 1%l -

THEOREM IV. An algebra P = (X; 0,,0,) belongs to the equational
class determined by equations (12)-(17) if and only if it is the sum of a direct
system of algebras which are subalgebras of suitable algebras of the form P*.

Proof. The sufficiency is trivial. To prove the necessity observe
that the operation o; (4=1,2) is a P-function in the algebra (X; oy),
hence from (15), (16) and Theorem IT it follows that # o, (% 0, y) is a P-func-
tion for the algebra B. Now we may apply Theorem III of [1] to obtain
that P is the sum of a direet system of algebras, say {P:}ics, where in
each algebra P; in addition to equalities (12)-(17) the equality

(18) 20, (X0, Y) =1
is also satisfied.

In every algebra P; we define the relations R, aud R, by means of
yoso=y (j=1,2).

Clearly, R, and R, are equivalence relations; moreover, they are
congruences, because if 2 R;y and u R;v (j is one of the numbers 1, 2),
then for k= 1,2 we have

(2 or 1) 05 (y 0 v)

zR;y if and only if zojy=2 and

= (2 05 Y) 0k (2 0; V) 0k (% 05 Y) 0x (% 0; V)
= 3 0g (205 ) 0 (% 0; Y) 0k % Ok (2 05 Y 0; w 05 V) 0k (1 0; % 0;Y 05 V)

= 0k % 0x (2 05 u) 0k (U 05 ) = T O U .
Fundamenta Mathematicae LXII 21
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Every equivalence class of the relation R has at most one point in
common with a given equivalence class of the relation R, ag from xR,y
(j=1,2) it follows that = (wo,y) 0,y and y = (y 0, @) 0, ¢, Which in
view of (17) gives = y. This shows that the algebra B¢ can be isomor-
phically jmbedded in the product (PBs/Ry) X (Bi/R,). Our theorem will be:
proved if we show that the algebras Sy = Bi/R; (j = 1, 2) are semilattices.
Ttis enough to do this for Sy;. In this algebra the operation & o, y is trivial,
i.e. equal to z, by (17), and Lemma 4 and the operation x o,y is equal
to @y = ( 0,y) 0, y. Using Lemma 5, and formulas (12) and (17) we obtain
our assertion.
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