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Then if 4’ is H ~ T(f*(4)) and B’ is H ~ T(f(B)), A’ and. B’ are disjoint
closed subsets of &, neither A’ nor B’ separates two points of T'(F) (which
has k42 points) in &, and A’ v B’ separates each two points of T(F)
in @. This contradicts Lemma B, since the coherence of @ is << %. Qon-
sequently, there are two points of 7'(F) that are not separated in @ by G-
and therefore belong to the same quasicomponent @ of G —@'.

From Lemma 1, @ is connected. Since T is monotone, 77Q) is con-
nected. Then f (T“I(Q)) is a connected subset of ¥ — (4 « B) that containg
two points of F and this involves a contradiction. It follows that the
coherence of Y is less than or equal to k.
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On a method of construction of abstract algebras
by

J. Plonka (Wroctaw)

1. In this note we consider abstract algebras with finitary operations
without nullary fundamental operations (*) and of a fixed type. First
we recall the definition of a direct system of algebras (see [3], chapter 3):

(@) I is a given poset (partially ordered set) whose ordering relation
is denoted by <.

(ii) For each iel an dgebra W= (Ag (FPer> s given, all
algebras Uy being of the same type.

A

(iii) For each pair <, j of elements of I with i<j a homomo.rph'ism
pi: WUy ds given. The resulting set of homomorphisms must satisfy the
following conditions:

(@) 1<k implies g o oy = P, ond
(b) @i is the identity map for iel.

The system (I, {Widier, Pudici; tsexy 18 called a direct system of
algebras. .

We shall consider only direct systems # with the lLu.b.-property,
i.e. systems which satisfy additionally the condition:

(iv) The ordering relation of I induces a partial order with the least
upper bound property (*).

For every such direct system s we define an algebra A = 8(+) which
we shall call the sum of the direct system . )
We may clearly assume that the carriers of the a%gebgs Ugare .mutua_.]l}
disjoint, as otherwise we could obtain this by taking isomorphie copies.

(*) This is not a serious restriction. In fa;ct, if %fundumenta;l operation Itf;': :; J;huil;.g;
then one can replace it by a unary operation Fi(z) =T, without essen
in the algebraic structure of the algebra in question. .

(1) We recall that an ordered set has the least ‘upper: bound property it every two
of its elements have a least common upper hound. :
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The carrier of the algebra 8 (#) will be equal to | ] A¢, and the fundamental
iel
operations of 8(s#) are defined by

Fyy, ey Bn) = (i (1) y vovy Pin,iolTn))

where 4, =1lu.b.(iy, ..., %) and @ e 4y, (r=1,2,..,n0).

Note that the set I is a semilattice under the binary operation
1,8, = 1.w.b. (4, 4,). The notion of the sum of a direct system was congidered
in the case of semigroups by various authors (see e.g. [1], [4] chapter 8
and [9]). As far as we know, the general definition does not appear in
literature. The notion of the direct limit of algebras is closely connected
with our sum; in fact, the direct limit is a homomorphic image of the sum.

Let o, and o, be terms in an algebra. We shall say that the equation
0, = 0, is regular if the set of free variables occurring in ¢, and o, is the
same. Now we prove

TeeoREM 1. If £ is a direct system of algebras with the l.u.b.-property,
containing at least two algebras, then in the algebra 8(#) all reqular equations
satisfied in oll algebras of # are satisfied, whereas every other equation
is false in S().

Proof. The first part follows easily from the definition of fundamental
operations in 8(#) and the properties of homomorphisms. To prove the
second . part consider an irregular equation which is satisfied in A = S(A)
and a fortiori in each Ui, say o

®) = g,

and let X; be the set of free variables occuring in o; (i = 1, 2). Since
X, # X,, we may assume without restriction that, say, #; e X,\X,. Since
I} # 1, we can ﬁnd iy, % I I with 4, <4, and 4, # 4,. Choose a e 4,
bedy, and put in (1) 4;=15, @s=a (i # j). Then evidently o eA;H
opedy; thgs 0 # 0, since the sets A, and 4,, are disjoint. ' X
As an immediate consequence of this theorem we get the following
COROLTARY 1. An equational class of algebras which has no nullary
]"undamemml operations is closed under the formation of S(+) if and onl
if the defining equations of this class are all regular. ' !

g (S;I)nzz evidemfly the class of all groups is not closed under the formation
group is never a disjoint sum of its sub ivi
case), wo man vet th S ubgroups except the trivial

cnghmzl l2a T'he class of all groups canmot be defined as an equational
g ry fundamental operations, all defining equations being
Now let ¥ = <.A.,‘ <.F‘>“1v>

be an al, i
operations and let f: 42 o oobra withont millary fundamental

~4 be a function, not necessarily algebraic
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in %. We shall call f a partition function for the algebra U (or, shortly,
P-function) if it satisfies the following formulas:

Ly flfl@, ), 2) = flo, fly, 2),

(1.2) f(w,o) =,

1.3) flz,f,2) =flz, fz,9),

(1.4) f(Ft(wu ey wﬂ(t))f'/) = Ft(f(wn )P | (T ?/));

(L5)  fly, Felty, ooy 2u) = £y, Bl 05 e FY 5ai0))s

(1.6)  F(Fu@y, ooy Tun) s @) = Fe@ry ooy i) (L <T<n(B)),
)

(1.7 f(f'/:Ft(y; --'7'.'/)) =Y.

The following theorem demonstrates the connection between P-func-
tions for the algebra % and the possible representations of % in the form
A = S().

TrEoREM II. To every P-function f for the algebra W there corresponds
a representation W = S(#) obtained as follows:

Divide A into disjoint subsets A (4 € I) putting two elements a,b of A
into the same set A; if and only if f(a,b) = a and f(b, a) = b. The sets A
are seen to be closed under fundamenial operations of A, and so let
Wi = (A <FD, p- In the set I of indices we introduce the relation “<
defining i, < 4 if and only if there ewist a e Ay, b e Ay, such that (b, a) = b.
Tt turns out that this definition is consistent and the relation obtained gives 1
the structure of & poset with 1.u.b. Finally define the MAPPINGS Piyig: Agy A4,
for i, <y by pulting @i,ne) = fla,b) where b is an arbitrary element
of Ai,. The mappings so defined are homomorphisms and the sysiem

A= I, Adiery {Pisde<riiier)
is a direct system of algebras for which A = S (). Conversely, every represen-
tation % = S(#) can be oblained by this construction by starting with a suitable
P -function f.

Moreover, the correspondence between P -functions for A and represenia-
tions of U in the form A= 8(#) is one-to-one.

Proof. The consistency of the definitions of A;’s, their disjointness,
the required properties of the ordering relation and the mappings can
easily be obtained from theorem I in [10]. We must now prove that ea&lgh Aq
is clogsed under F; (teT) and that the mappings are homomorphisms.

Let Gy, oy Oy € Ai and b= Fi(ay, .oy Gngp)- Then (b, &)
= f(Flar, -y Guip} ) =b by (1.6) and, moreover,

fla1, ) =f(a,1,17’,(a], R a’)‘n(f)) zf(a'uFi(f(a’l’ ay); ey flt, “n(i))))
= flon, Fi(an, -, @) = &
by (1.7) hence b e A4.

Fundamenta Mathematicae, T. LXI 138
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Liet 4y gy Byp ey Gugpy € Ay, a0A by = @i, (@) = flas, ¢), where ¢ is
an arbitrary element of A. Then

Fi(pn,u(an)s oy @i 1l Oniy) = Fi(D1y o s bnie)
= Fy(f(a, 6), -1 f(an, ©))
= f{Fay, .., Gng), ]
= @iy iy Fol s e Gn))) 5

which implies that the mappings gy, are homomorphisms. It follows
that #4= <I ] (Q[’l>isI s <Pty i dbi<ia; 11€l€I> ig a well-defined direct system of
algebras with lw.b. It remains to prove the equality A = S(#), which
will be established if the following identity holds:

Fy@yy ooy Tuy) = Ft(‘P’L'l.‘iu(ml)7 ey Win(t),in(wﬂ(t)))

where @y € Ay, and 4y = Lu.b.(iy, ..., dngy)-
Observe that with 4 ¢ 4;, we have

By, @) ey Penie 1l@ni)) = FlF (@1, )5 vvv s [ (@i )
=f(Ft(m1; wey Bngt) (’/) ’

and go it suffices to prove that Fy(®, ..., Tnp) € Agy.
In fact, let Fy(y, ..., &np) € A;. Then by (1.6) we get § > 4,, and (1.5)
with (1.7) imply

s Fulny s tug) = (Y, P f, @), s F5 @aie))
=fly; Fuy, -, 9) = y;

thus (1.6) implies 4, > j, whence 4, = j, and the proof is complete.

The converse part of our theorem and the fact that the correspondence
between P-funcfions and representations of U ag §(#) is one-to-one can
easily be checked.

Now let U be an algebra belonging to an equational clags K whose
defining equations are all regular. Let g(z, y) be a term of % and let K*
be the equational class defined by the equations of the class K to which
the equation g{z,y) =« has been added. From theorems I and II we
get the following

TrerorEM III. The term g(x,y) defines o P-function for A if and
only if U is reprosentable as the sum of & direct system of algebras from the
class K*.

We leave the simple proof to the reader.

icm°®
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2. Examples.

2.1. Let P be an idempotent semigroup satisfying (1.3). Such
semigroups are called left-normal in [10]. It is easy to verify that z-y
defines a P -function for P, whence by theorem IIT P is the sum of a direct
system of trivial algebras, i.e. of algebras with the fundamental operation
flz,y) = 2. This result was proved by Yamada and Kimura in [10],
theorem I.

2.2. An algebra Q= (X; 4, -), where + and - are both binary;
idempotent, commutative and associative operations satisfying (z-+y)z
=wz+yz and @-+yz = (v-+y)(w+2), is called a distributive guasilattice
(ct. [6]). It was proved in [6] that the operation # oy = x-+-2y satisfies
(L.1)-(1.7) and so is a P-function for Q. Thus theorem IIT shows that Q
is the sum of a direct system of distributive lattices. (Cf. theorem IV
of [6].)

2.3. An algebra D = (X; d(®,, ..., #s)) which satisties the axioms:
@,y oy @) =2 and A(d @13, ooy Brn)) s ooy E@usy ony Trn) = A(Biay Bgy wvny Tun)
is called an n-dimensional diagonal algebra. (Cf. [7] for further properties
and a representation theorem.) From a theorem of Liapin (see [4], p. 108)
it follows that a semigroup satisfying xyz = # is a 2-dimensional diagonal
algebra.

Now let M= (X;-) be an idempotent semigroup satisfying the
condition ayet = zeyt. (This condition (in the form (ay)(#t) = (a#)(y?)
when associativity is not assumed) was studied for binary operations,
not necessarily associative, by various authors (see e.g. [5], [8]) and was
called mediality, the entropic law or abelianity.) It is easy to verify that
the operation @ oy = xy» is a P-function for M, and so by theorem ITI
we find that 9 is the sum of a direct system of 2-dimensional diagonal
algebras. (3)

2.4. Let G = (X 5 F (@5 ..., @) e an algebra whose single fundamental
operation f is idempotent and symmetric (i.e. f(#y, ..., Tn) = f(@4; .oy T1,)
where 4, ..., 4 i8 an arbitrary permutation of 1,2,...,n) and satisfies
the following generalization of the associative law:

(4) f(f(wu wes @n)y Tnt1y oors mzn—l)
=f(m1yf(m29 cry Tn1)s Bptzg -oey “’2n—1) == e
=f(m1a weey @ty [ (@ oeesy ‘”2»—1)) -

It is easy to check that the operation zoy=f(x,%,¥, .., y) is
a P-function for S, and so by theorem III S is the sum of a direct system
of algebras with one n-ary fundamental operation f which is idempotent,

(3) This result was proved by Yamada and Kimura in [10], theorem 6.8.
13*
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symmetric, satisfies (A) and, moreover, f(®,¥,¥,...,¥) = @. The last
class of algebras can be described completely, owing to the following
result of K. Urbanik (whose proof we reproduce with his kind permission)
(For similar results see also [2].):

Let % = (X; f(@y, .., @) (n > 3) be an algebra such that the operation f
is symmetric, satisfies (A) and, moreover, f(x,y, ..., ¥) = &. Then in the
set X it is possible to define a binary operation - such that (X; -I-) is an
abelian group, (n—1)a = 0 for all a ¢ X and finally f(®,, ..., &n) = w4 m,+
[ R o

Proof. Define 2+y=7f(z;y,0,..,0) where 0 is an arbitrary, but
fixed element of X. The commutativity of 4 is a consequence of the
symmetry of f, and -0 = & follows from the identity f(z, y, ..., y) = a.
Moreover,

(m+?/)+z=f(f(w’ ¥,0,..,0),2,0,.., 0)
Sf(wyf(y: 0,..,0,2),0,.., 0)
=:f(w’f(?/;z.; 0,..,0),0,.., 0)

whence (X, +) is a commutative semigroup with a wnit. Now put
—2=f(», ®,...,5,0,0). Then clearly
o+ (—2) = f(z, f(z, ..., ©, 0, 0),0, ..., 0)
=f(fl, .., ,0),0,...,0) = 70, ..., 0) = 0;

ceonsequently (X, 4) is an abelian group.
Now we shall prove the formula

) f(@, @y ooy B4, 0,4 1y 0) = @)+ 2y 4. Ly, (k=1,2,..,m)

using induction in %. For k = 1 the formula is contained in i
our assumptions.
Assume 1 <k <n and the formula (*) for this k. Then ?

But et s = f(01, F( @y ooy #341, 0, ..., 0),0,...,0)
= f{f@15 ey B2, 0, .., 0), 0, ..., 0)
=flay, ..., Trt15 0, .00y 0)
as we wanted.

From. (x) the identity (n

—1a=0 f s i i
proof 15 complote, ) ollows immediately, and our

o ;1.& Let QI be an a:rbitr'fmry abstract algebra without nullary funda-
Witz; o operations and ef)nsuler the system # of all subalgebras of 2%
e natural order by inclusion and with injeetions ag homomorphisms.

Method of construction of abstract algebras 189

To define the sum §(£) one has to replace the algebras of £ by digjoint
isomorphic copies. It would be interesting to find a characterization of
algebras which can be represented in the form 8(#) where # is the system
of all subalgebras of a suitable algebra. (This construction was considered
in [3], § 36.)

2.6. Let B = (X; o h(m)) where G =@, (Toy)s2=Be(Y+z), DsYez

= wezey, b(b(@) =2, h(@)ey=h(@+y), Yoh(@) =y-h(y-2), y-h{y) =y.
This algebra is not idempotent and satisfies the assumptions of theorem ITI,
whence it is the sum of a direct system of algebras of the form (X; h(z)),

where k(h(2)) = 2 and @y =2.
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