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Existence of 2-segments in 2-metric spaces
by

Edward Z. Andalafte* and Raymond W. Freese (St. Louis, Missouri)

1. Introduction. It is known that in a certain class of metric
spaces the exigtence of a metric segment joining each two points of a set
is equivalent to the existence of a between-point for each pair of its
distinet points. In particular it has been shown that each two distinet
points of a complete, convex metric space are end-points of a metric
gegment of the space ([1], pp. 41-43, [2], [3], p. 89).

A similar question can be considered in a 2-metric (area metric)
space ([3], [4]), and the purpose of this paper is to prove that under suit-
able definitions of completeness and convexity, each three points with
non-vanishing 2-metric (area) of any suitably chosen 2-metric space are
vertices of a 2-segment, an isometric image under the 2-metric of a closed
Huclidean triangle.

2. Preliminary notions. By a 2-metric space is meant a set §
of objects a,b, ¢, ..., P, q, 7T, ... and a function pgr, called the 2-metric
or area, on ordered triples of points of § into the non-negative real num-
bers, satisfying

(1) If p,qe8, there is a point r € 8 with pqr # 0, and

(2) Bach four points of S are 2-congruently embeddadle in the 3-di-
mensional Buclidean space By, i.e., if p, q,r,s ¢ 8 there are points p’, ¢',
v, 8" e By and & 1-1 area-preserving correspondence between the quadruples.

A ftriple p, g,r of points of a 2-metric space is said to be linear
provided pgr= 0. A 1-1 area-preserving function between subsets of
2-metric spaces is called a 2-congruence. The expression T C, B, indicates
that the set T is 2-congruent with a subset of FE;, and the notation

D1y D2y ooy Do N2 D1y Diy ooy P
indicates that the n-tuples are 2-congruent in the given order.
Several notions of betweenness can. be defined in a 2-metric space.
The most useful in the following is the notion of linear belweenness,
B(p,q,r), defined to mean p # ¢ 5 r % p and for each ¢ in §, tpg+igr
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= tpr. A subset of a 2 -metric space is said to be linearly 2 - convex provided
for each pair p,r of its distinet points, it contains a point ¢ satisfying
B(p,q,r). A weaker but more natural notion of betweenness is the
notion of interior of a triple, defined as follows. A point p of a 2-metric
space § is said to be weakly interior to g, 7, s € §, denoted pTgrs, provided
pgr+prs—+pgs = grs. If none of the areas involved vanishes we say
that p is strietly interior to g, 7, s and write pIgrs. A guadruple of distinet
points is called triadic provided one of its points is weakly interior to
the remaining triple, pairs of whose points are called the sides of the
triadiec quadruple.

Similarly we can define a number of notions of convergence of a se-
quence of points. A sequence {p,} of points of a 2-metric space is called
weakly 2 - convergent to p in § provided limp,pt = 0 for each point ¢ of §.
The sequence {p,} is said to be a 2-Cauchy sequence provided for some
non-linear triple a, b, ce S we have

limapnpn = UmMbpnpy = Himepupy = 0 - (m, n->co) .

A simple example shows that a weakly 2-convergent sequence need not
be 2-Cauchy, and that the 2-metric is not necessarily a continuous
function relative to the weak 2-convergence topology. The notion of
strong 2-convergence is therefore introduced as follows. The sequence
{ps} C 8 is said to be strongly 2-convergent to p ¢ 8 provided

(1) {pn} is weakly 2-convergent to p, and

(2) for each point ge S and each sequence {g,} weakly convergent
to ¢, we have imppmgs = 0 (M, n—>oo).

It is now noted that every strongly 2-convergent sequence is
a 2-Canchy sequence, and that relative to the strong 2-convergence
topology, the 2-metric function is. continuous. More surprising is the
fact that in any 2-metric space with continuous 2-metrie, strong 2-con-
vergence and weak 2-convergence are equivalent. Clearly in Fuclidean
spaces the notions of weak 2-convergence, strong 2-convergence, and
metric convergence are equivalent, as are the notions of 2-Cauchy and
mefrically Cauchy sequences.

Defining a 2-metrie space S as 2-complete provided every 2-Cauchy
sequence of its points is strongly 2-convergent to a point of the space,
and defining a 2-segment as above, the main result may now be stated.

TErOREM. Let 8 be a 2-complete, linearly 2-comvex 2-metric space
in which each 5 poinis containing a triadic quadruple and a point linear
with one side are 2-congruent with 5 points of By. Then each three points
a,b, ¢ of 8 with abe % 0 are vertices of a 2-segment.

I.n the remainder of the paper [a'b'¢’], [a'b'], and (a'b’) will denote re-
spectively the closed BEuclidean triangle and the closed and open Euclid-
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ean segments with the given points as vertices or end-points, and L(a’b’)
will denote the Euclidean line determined by the distinet points a’, b'.

3. Weak 2-segments. In order to prove the main theorem
a weakened form is first proved, as Lemma 1, in terms of which results
are obtained permitting strengthening of the conclusions to obtain the
desired result.

Lemma 1. Let 8 be a 2-complete, linearly 2-comvex 2-metric space
in which each 5 points consisting of a triadic quadruple and a point linear
with one side are 2-congruemt with 3 points of H,. Then for each three
points a, b, ¢ of 8 such that abe = 0, there exist points a', b’, ¢’ of Ey with
a'b'e’ = abe and a 1-1 mapping g on a subset of S containing a, b, ¢, onto
the closed triangle [a'b’c’] satisfying:

(i) g(a) = a’, g(b) =¥', g(c) = ¢, and

(i) If ® and y are in the domain of g, D(g), then axy = a'z’y’, bay
= bw'y’, cxy = c'x'y’, where ¥’ = g(z), y' = g(y).

Proof. Let a,b,ce8 and choose a',b’, ¢’ ¢ B, as vertices of an
equilateral triangle whose area a'b’c’ = abe. The function g is defined
as follows. Let f;: a—a’, b—>b', c—¢', D(f,) = {a, b, ¢}, B(f;) = {a’, b, ¢'}.
Suppose inductively that functions f,, ..., f» have been defined. To de-
fine f.4: partition [a'b’¢’] into 4" non-overlapping half-closed triangles
and denote this partition by I,. Let X, be the set of functions f on subsets
of 8 satisfying (i) and (ii), with R(f) C[a'b'¢’], which are extensions of f,.
Letting N(f) be the number of triangles of partition I, with points
common to E(f) we choose fyi1 e Z, such that Nu(fur1) = Na(f) for all
fe Zn. Now the sequence fi, fy, ..., fx, ... uniquely determines a function f
which is an extension of each f,, and with D(f) U D(f,)C S, and R(f)
= UR(fs) Clabe’].

The function f is now extended to the closure of D(f) and R(f). Let
» € D'(f). Then there is a sequence {p,} of pairwise distinet points of S,
strongly 2-convergent to p. Consider {p,} where p, = f(pa). Since {ps}
is strongly 2-convergent, it is 2-Cauchy, and limapmp, = Lmbp,pn
= lim ¢pmpn = 0, implying lim a'py, pr, = limb'p;, p,, = lim¢'py, pr, = 0 which
imply (in E,) that {p} is 2-Cauchy and converges to & limit, call it p’.
Now p’ is uniquely determined by p, for if a sequence {P,} C D(f) strongly
2-converges to p, then the assumption that {p.} is strongly 2-con-
vergent to p'’ % p’ leads to a contradiction by consideration of the se-
quence py, By, Pyy D, -, and use of properties of subsequences. Thus
we define g(p) = p’. Now ¢ is 1-1 in D’(f) for let p’ ¢ B'(f). Then a se-
quence {p,} C R(f) is strongly 2-convergent to p’, and is thus 2-Cauchy,
and the related sequence {p,}C 8§ is 2-Cauchy (relative to a, b, ¢). Hence
by 2-completeness {p,} is strongly 2-convergent to p € D(f), uniquely
determined, as before. Hence ¢: p—>p’ is 1-1 in D'(f).
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We define g(z) = f(») for « in D(f), and hence ¢ is an extension
of f, D(g)= D(f)C 8, R(g) = R(fyC[a'b'c’]. By continuity of the 2-met-
ric g satisfies (ii). We note also that if p ¢ D(g), apb4bpc+ ape = abe.

It remains to be shown that E(g) = [a'b'¢']. We observe first that
[a'b], [a'¢']l, [b'¢']C B(g). For if the contrary were assumed, some point
say of [b'¢’] would not be in E(g) and by closure of E(g), points p’, q e
[o'c'] could be found with p', ¢’ ¢ B(g), (p'¢') n B{g) =0. Let p,qel
be the corresponding points. Then by linear 2-convexity there is a point s
in § such that B(p,s,q). Let s’ denote the unique point of (p'g’) such
that a'p’s’ = aps, a's’q" = asq, and p's'q¢’ = 0. Clearly s' ¢ R(g). It follows
that B(p',s’, ¢'), which implies, by familiar properties of linear between-
ness, B(b,s',¢’) as well as abs+asc= abe. Also since a, b,p,q,
$ G, By, and aps = a'p’s’, ags = a’q’s’, it follows that

@, b,p,q,8 mpa, b, 0 ¢, 8

and hence abs = a'b’s’, acs = a'c’s’.

We define g*(x) = g(2) if # e D(g), ¢*(s) =s’. We must now show

that g* satisfies (ii). It suffices to show that for z e D(g), asx = a's'y’,
bsy = b's'a’, esv = ¢'s'w’. Now zlabe, s0 a,b,¢,s,2C, By, and since

azxb 4 bwe+ axe = abe ,

it follows that if e —a’, b +¥’, ¢ ¢’ then £ —+a’ = g(z) and since abs = a'd's’,
aes = a'c’s’, that
a,bye, 8,0 ~a’, b, ¢, s, 0.

Thus g* satisfies (ii). Consider now a decomposition I, of [a'b'¢'] such
that the triangle of I, containing s’ contains no point of R(g). This can
certainly be done, since R(g) is closed. Then Nu(9*) =2 Na(fas1)+1,
contrary to the choice of f,.,. Hence each point of [a'b’], [a'e’], [b'c'] is
in R(g).

To complete the proof that R(g) = [a’b’¢’], suppose there is a point o’
interior to [a'b'e’], 2’ ¢ R(g). Then a circle can be found with center z’
whose interior contains no point of R(g) but whose circumference containg
a point ¢ of R(g). At least one of the segments [a'q'], [b'q'], [¢'q'], say
[¥'q’], contains a point of the circumference distinct from ¢'. Let p’ be
the first point of [b'¢"] ~ R(g) encountered in proceeding from ¢’ to b".
Then p’, ' € R(g), (p'¢’) ~ R(g) = 0. As before, letting p, ¢ be inverse
images of p’, ¢/, there is a point s of § with B(p, s, q), and a point &' is
uniquely determined in [a'b’e’] so that p's'q’ = 0, a'p's’ = aps, a'q's’
= ags, and a function g* is again defined o that g¥(s) = &', y*(x) = g(x)
if z e D(g).

Again we must show that g* satisties (ii). Let ¢’ be the intersection
of L(b’q’) with [a'c’], and ¢ its inverse image in S. Now aic — 0, and since
¥'p'q' = 0= p'g’t’, we have bpg = 0= pqt and (since each quadruple is
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embeddable in ;) bpt= 0= bgt. But since P$q= 0, consideration
of b,p,s,q yields bsp= 0=bsg and applying to b,p,s,t we have
pst = 0 = bst. Thus bst = b'ss’. Again a,p,$,q,tC, By and as before by
the choice of 8’ we have

@y Py4,8,t ~pa'y 9, ¢y 8"t

80 ast = a's't’. Applying the same procedure to a, b,p,s,q yields abs
=a'b’s’, so we thus obtain that ‘
abt = a'b't' = a'b's’ +a's't’ = abs + ast .

To complete the proof that g* satisfies (ii), let z € D(g). Again we
must show asz = a's'a’, bsw = b's's’, esx = ¢'s'z’". Suppose z'Ia'b't’. Then
zlabl and a,b,t,s,4C, By, and indeed a,b,t,s,s ~, a',b',t, s 2, s0
that asz = o's'e’, bsz = b's’a’. To show that csz = ¢'s's’, we observe that
#'Ia'c'w’, or z'Ib'c'w’, where ' is the intersection of L(c's') and [a'd’]. As
we have seen, u' e R(g) and letting u be its inverse image, we have

a,bye,u ~y,a,b, ¢, 0.
Further, since abs = a'b’s’ and ast = a's't", from B(a, t, ¢) we can show
that slabc, so that a,b,c,u,sC, B,, and indeed

a,b,e,u,8 ~ya, b, e’ u, s

and esz = ¢'s'z’ follows. Similarly if #'Ib'c’w’, and thus g* satisfies (ii).
Again a contradiction is reached by partitioning [a'b’¢’] so that the
triangle containing s’ contains no point of R(g). Thus R(g) = [a'b'¢'] and
the proof is complete.

The function g will be referred to hereafter as a weak 2-isometry.

4. Properties of the weak 2-isometry. We are now in a po-
sition to develop further properties of the weak 2-isometry g which will
permit strengthening of the conclusion of Lemma 1.

LeMumA 2. Under the hypotheses and notation of Lemma 1, if p,q,7 ¢
D(g) then p'q'r’ = 0 if and only if pgr = 0.

Proof. If p’q's' = 0, denote by &' an intersection of L(p'r’) with
one side of [a'd’c’]. The labelling is chosen so that s’ ¢ [a'b'] and B(s’, ?, 4
If B(a’, s', b') then ashb = 0 where s is the inverse image of s, and pIlabg.
Hence a,s,b,p, ¢C, Ey and it follows that

a,8,b,p,q ~p0a’, 80,0, ¢
Thus spg = s'p'q’ = 0. Similarly sgr = 0, and since p, ¢,r,sC, B,, we
have pgr = 0. If p’ = s’ the result follows as above, as well as if s’ = b’,
or ¢’ =g’

Conversely, if pgr =0 and p’q'r’ # 0, then if p’,¢’,r" are not on
the sides of [a'b'c’], some side, say [a'b’], is intersected by at least two
of the lines L(p'q’), L(¢'r’"), and L(p'#’). Suppose for instance that L(p’q’)
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and L(p'r) intersect [a'd] ab ' and o' respectively. Then u'p'g’ = 0
= v'p*" and by the first part of the proof upq = 0.= 'vpo.", where % and »
are inverse images of «’ and »’ under g. Then consideration of quadruple
Pp,q,7,u yields pru =0, and in p,7, Uy v we must have puv = 0. But
buv =0, so bup=0 and from bua = 0 it follows that dpa = 0. Hence
b'p'a’ = 0, contrary to the choice of p’. . N

The proot is similar if one or more of p’, ¢’y ' are on sides qf [a'd'¢],
unless the three points are on different sides of [a’b’c']_. In this case if
p'e[a'd’], ¢ e[a'c’], ' e[b'¢], let &’ denote the ir%terse(.:‘ulon of [a,’r’]'a,nd_
[p'g’}. Then from p'z'q’ = 0 we have pag= 0 which with pgr = 0 yields
par = 0. But azr = 0 so apr =0, yielding with apb = 0 the result ard = 0
from which it follows by Lemma 1 that a'r'b’ = 0, contrary to the choice
of .

LEvta 3. Under the hypotheses and notation of Lemma 1,if p, q,7  D(g)
such that L(p'g’) intersects [a'b] and [a’c'], and if apq= apr+ arg, then,
for each x in D(g)

rpq = xpr+arq .

Proof. By hypothesis, L{p’q’) intersects sides [a'd’] and [a'¢’] of
[a'b’¢’], say in points ¢’ and #" respectively. Let s and ¢ be their respective
inverse images. The labelling may be so chosen that B(p’, ¢, t').

Tt @'Ia'p’c’ it follows using Lemma 1 that zIapc and since a,p,¢,.

t,5C, B, and apz = a'p’s’, acw = a'c'z’, and pex = p'¢'s’, we have further
a;p,¢,t,m ~ya,pye, o

and pte = p't's’. Now «'Ipt'e’ or a'la'p’t’, and it follows that sIpic or

zlapt respectively. In the former case since p, ¢, t, ¢, 5 C, By we have indeed
Dyt ¢, T NP T, g0

and hence xpg= 2'p'q’, and a similar argument yields the same result

if o'Ia'pt’. Similarly apr = 2'p'r’. Repeating the argument using r in

place of p, we see that if 'Ja'r'c’ then arq = x'r'q’, and the desired result

follows. A similar argument yields the result if z'Ia'r'd’.

The only remaining points 2’ of E(g) satisfy #'Ib'r'c’. We must show
that zpg = 2pr+-2rq where z is the inverse image of such a 2'. Consider
a line through 2’ parallel to L(p’'q’). For at least one ' on this line, we
have #'Ia'r'c’ or #'Ja'r'b’. Consider [#'z’] for such an o'. For each y' ¢ [2'2']
the inverse images must satisfy either ypg = ypr--yrq, ypr = ypq-+ygr,

or yrg = yrp+ypq. The proof is completed by partitioning [2'»] into
two sets

T, ={y" «[#'s]| ypg=ypr+yrg} and
To={y <[22 ypg—ypr = —yqr or ypq—yqr = —ypr}
and showing that T, = @.
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Assertion 1. T, and T, are closed sets.

For if y* were a limit point of T, a sequence {y;} C T, could be found
converging to y’, i.e., with yapq = y,pr-+ Yn7¢, and a subsequence, here-
atter denoted by {y.}, could be chosen so that all members add in the
same way with p,gq,r, eg, Yupg—ynpr = —y,qr. Hence since {yn}
converges, it is 2 - Canchy relative to a’, b', and ¢, and thus {y,} is 2- Cauchy

" relative to a, b, and ¢, and thus converges to some y* ¢ D(g). But then

y*' = g(y*) is a limit of {y,} relative to a’, b’y and ¢', and hence y* = y’.
Thus {y»} converges to y and hence ypq = ypr+yrq, and y' e T,. Simil-
arly T, is closed. .

Assertion 2. T, ~n T, = @.

For if there were a common point, say y’, then both ypg = ypr-+yrq
and either ypg—ypr = —ygr or ypg—ygr = —ypr would hold, and thus
ypr =10 or ygr = 0. Assuming the former, then y'p's’' = 0, contrary to
the choice of #' on the line through 2’ parallel to L(p'r'). Similarly ygr = 0.

The desired result then follows immediately, for if 7, were non-
empty [2'¢'] would be expressed as the union of non-null, closed, disjoint
sets, contrary to the connectedness of Euclidean segments. This com-
pletes the proof of the lemma.

5. Existence of 2-segments. Making use of the preceding
lemmas the main theorem now follows readily.

THEOREM. Let 8 be a 2-complete, linearly 2-convex 2-metric space
in which each 5 points containing a triadic quadruple and a point linear
with one side are 2-congruent with 5 points of By. Then each three points
a, b, ¢ of 8 with abc 5= 0 are vertices of a 2-segment.

Proof. It suffices to show that for each p, q, r of D(g), p'¢'r' = pgr.
Suppose that p’, ¢, 7', a’ are triadic, and choose the labelling so that
p'Ia'q"r’. Then there is a point ' in R(g) such that B(a',p’,2’) and
B(q¢', «’,r"). Letting « denote the inverse image of x' we have from
B(q',a'yr'), using Lemma 1, that agr= agr-+azr, and by Lemmsa 3
pqr = pqz+pxr. But from B(a', p’, 2’) and Lemma 3 we have agxr = agp -+
pqz and arz = arp+ pre. Thus

Pqr = Ppar--par = aqr— aqp - arr— arp
= a'q'r’—a'q'p +ar'x —a'r'p’
= p'qr,
the desired result. A similar procedure is followed if p’, ¢’, 7', a’ are
atriadic, and. the proof is complete.

In conclusion, a simple counterexample shows that the requirement
that 8 be linearly 2-convex cannot be replaced by the requirement of
the existence of a weak interior point or a strict interior point for each
of its triples.
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On the equivalence of an exhaustion principle
and the axiom of choice

by

T. Neubrunn (Bratislava)

INTRODUCTION. An interesting and very general abstract formu-
lation of the exhaustion principle used in measure theory was given in
the paper [1]. The aim of this note is to give, in a direct way, an abstract
formulation of the following simple form of the exhaustion principle
and to show that it is equivalent to the axiom of choice.

TrmorEM I (MEASURE EXHAUSTION THEOREM). Let (X, M, u) be
a measure space with o finite measure. Then there exists a set P e M such
that EC M, B C X—P, implies u(F) = 0.

Notation. We shall use the notation according to [2]. Let us ex-
plain some further symbols which we shall use in the paper.

(a) 8 will denote a fixed set and m a cardinal number such that
m < § (A denotes the cardinal number of the set A).

(b) B C 8 x8 will be a relation (see [4], p. 54), 2Ry means {z, y) ¢ R,
xnon Ry means <{z,y) ¢ R.

(¢) ¥ C 8 will be a non-void set. §y stands for a system of subsets H
of ¥ for the elements of which the following is true:

vel,yeEB, x#+y = xRy or yRx,
zekE = znon Rz.

(d) o™ stands for an S-valued function with the domain consisting
of all F ¢ 8y for which E <m.
(e) The function ' and the relation R fulfil the following condition:

yeS, p™(E)Ry = xRy for each z¢E.

Now we ghall formulate an abstract form of Theorem I.

PRINCIPLE OF EXHAUSTION. Let 8, ¥, 8¢, R and oM fulfil assumptions
(a)-(e). Let BE<m and P™(E) e Y for each E ¢ Sy and let there exist at
least one x € Y for which znon Rx. Then there exists z € Y such that, for each
Yy ¢ Y, 2Ry implies yRy.
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