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Thus, we shall obtain 3" congruent perfect sets P,

which conditions (i)-(iii) are fulfilled. bt 100
Having supposed F, =, U Putatsy We obtain EDF,DF,D ..

Loeestn
2F,D

o0
Let F = () Fy. From conditions (i)-(iii) it is easy to see that I ig

n=1
a quite symmetric perfect set.
CorOLLARY 1. For every linear set E of it ‘
. positive Lebesgue
there exists a perfect set P such that P+P C B. e medsure
CorROLLARY 2. If a closed set B has 0 f;—w a melric densi )
' metric densit 7
there ewists a perfect set P such that D(P) C H. Y powh, Hen
We take a quite symmetric subset F' WI;iGh is 8 fric wi
_ § yymmetric with res
to 0. There exists a perfect set P such that P+ P = F. R respect
+P(OS)mceP P li)s also symmetric with respect to 0, we have P—P = P+
CF_C_ITJ. +P and D(P) = (P—P)~ [0, oo] = F [0, o). Thus, D(P)
Corollary 1 solves a problem stated b felslki i
; ry y J. Mycielski in § 4.2 of [1
J. . s . ks . ]‘
T lj\flyclzlskl mform.s us, while this paper was still in preparation,*that
he found a more direct proof of Corollaries 1 and 2 which is to appear
in [2]. T am greatly thankful to him.
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On distributive quasi-lattices
by
Jerzy Plonka (Wroctaw)

Introduction. In the present paper we are concerned with certain

‘algebras which we call distributive quasi-lattices (DQL). These algebras

generalize distributive lattices and the main result proved here is 2 re-
presentation theorem which essentially reduce their structure to that
of a certain direct spectrum of distributive lattices. To get this we need -
first analogous results on certain semigroups called here idempoiem quasi-

Abelian semigroups.
Finally, we characterize the independence in idempotent quasi-Abelian

semigroups and in distributive quasi-lattices.

. § 1. Idempotent quasi-Abelian semigroups. Let us consider
an algebra P = (X; <> in which the fundamental operation o satisties
the following axioms:

1) ' @oy)ez=a°(y°2),
(2) ToX =10,
(3) Boyoz="=0oZY .

In view of (1) and (2)%P is an idempotent semigroup. Such semigroups
will be called idempotent right quasi-Abelian semigroups (QAS).
If - fulfils (1), (2), and

(3" » ' Loyorz=YyoBoZ,
then P is called an idempotent left quasi-Abelian semigroup. In the sequel

we deal only with idempotent right quasi-Abelian semigroups. The left

cage is dual.
We shall give now some examples -of such semlgroups.

BxamprEs. 1. Let a be a positive real number. Let the set X of the

algebra P be {z: 0 < o] < a}-
Operation o will be defined as follows: If sgna = sgny then @ o § = 3
in the remaining cases, oY = lz|. It is easy to see that here o depends

on. both variables.
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2. Let X be a set of complex numbers different from zero. For two
numbers #, = a,+ b and 2, = a,+b,¢ operation o will be defined ag
follows:

%

B o’ = I—z“l’i‘maix{]zﬂ; 2]} «

3. Let I be an arbitrary set |I|>2 and X = {{a, 4): aed C1,

|[4| < 8,}. Operation o will be defined as follows: <a, 4> <b, B>
= <a, 4 v B). This is a QAS.
(1) @ oy 0@y 0 0@y =T 0 By, © By 0 e 0 By, WHEFE (4, vv\ B0) 18 am

arbitrary permutation of (1,2, ..., n).
This follows from (1), (2), (3). ‘
(ii) ([4]) The algebra B is a QAS ff it has the form

(TLSJT T; o) Ty~ Ty=0 for

the set T 4is partially ordered with Lu.b. by a cerfain relation <*, for every Tt

"~ and Ty, where T, <*T,, there exists a mapping ¢r,r, transforming the
set Ty into the set T, such that '

where T, # T,

Pr2(®) =2,  Pr,y(Pr,n(®) = @r,T,(®) |

and if aely, bel, then aob=gpr,(a), where Ty, =1lub. (T, T,).

(iii) If there emists in an algebra W an operation satisfying (1), (2), (3)
and U is not a one-element algebra but it is an idempotent algé'bm (4.e. ’each
legebmic operation s idempotent), then the operation o is either trivial
©.6. ¥ oy = w, or depends on both variables. ’

' Indeed, if o does not depend on both variables then, because of
idempotency of the algebra, it can only be oy = & or z o 4 = 9. In the

second case, however, there is #oy =womoy, whence, y=aoy=
y o = . . )

" § 2. Distributive quasi-lattices.

2.1. Detinition and simple properties. An algebra Q = (X HE ST
whose fundamental operations satisfy the axioms T

1)

o4x=uw,
(2) re=uw,
3) oty =y+a,
(4) By =y,
(8) (@+y)+e=a+(y+2),
(6) -

- (@y)z=a(y-2)
will be called a quasi-lattice. (In the sequel we shall also write oy for #-y.)

iom®
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If, moreover, the operations + and - satisfy the axioms
©(y+2) =ay+ w2,

(7
(8) (@+y)(@+2) =a+yz,

then the algebra Q will be called a distributive quasi-lattice (DQL). (In
the formulation of the above axioms we assume that - links stronger
than --.) A quasi-lattice is a generalization of a lattice and a DQL is
a generalization of a distributive lattice, since lattices fulfill (1)-(6). Lattices
fulfill the additional condition

(9) zz+y) =ty =2

called awiom of absorption.

Notice that if in a DQL the operations + and - are equal, then
axioms (1)-(8) are reduced to the axioms of a semi-lattice, i.e. of an algebra
of sets with addition. The examples of DQL given below are not distri-
butive lattices, and hence this generalization is essential.

Exameres: 1. Let, for positive integers & and y, [, y] denote the
least positive common multiple of # and ¥, and let (z, ¥) denote the greatest
common divisor of those numbers. Let us consider an algebra % = (X; +, *),
where the set X is a set of all integers, zero excluded, and operations +
and - are defined as follows #+y = —[|ai, |y|] when @,y < 0 and #-+y
= [|m|, |y|] in the remaining cases; & - ¥ = — (|2, ly|) when @,y < 0 and
@y = (|#|, ly]) in the remaining cases. Tt is easily seen that % is a DQL
which does not satisfy (9) (since we have for instance (—1+(—=1) - @)
=(=1+1) = (1) # (1)

9. Let J be the interval [0,1] and let F be a set of all nowhere
vanishing continuous real functions defined on J. We define an algebra
9 = (F; v, n) by putting f; v fo = max{|fil, |fz]} if one of the functions
fisfa is positive, and fivfy= —max{|fyl, Ifl} H f,/<0; fink
= min{|f,|, |f.|} if at least one of the functions f; and f, is positive, and
finally, f, A fo = —min{|fil, [fal} if fi, fo < 0. Tt is easy to check that the
algebra ¥ is a DQL, which does not satisfy (9). : ‘

3. Let § be an arbitrary set with 8| > 2. Let us consider an algebra
Q= (25%2% +, ), where the operation - is defined by <Ay, B+
+ {4y, By = (4 v 4y, By v B,y and - by <4, By - (43, By) = {41~
A Ay, B, v By. Tt is eagy to check that Q is a DQL which does not
satisfy (9). ((9) fails if B, and B, are guch that B, C B, and B; # By.)

TEMMA 1. In a DQL the following weakened laws of absorption are
fulfilled

(10)
(11)

sry+oy =o+Y,
wy(@+9y) =2y,
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12)
(13)

o+ay+yz = a2+ yz,
w(e+y)(y+2) = 2(y+2).

Proof. It suffices to prove (12), since (13) is dual to (12) and (10)
and (11) can be obtained ffrom (12) and (13), respectively, by identifying
variables ¥ and 2. Because of (8), (7), (5), (2), and (4) we have x+yz
= (249)(@+2) = (@+y)o+(@+y)z = o+ oy+22+yz, Whence wtay+
+yz = (x+y2)t+ oy = ot ay-+az-+y2t+ay = o+oy -+ e+ yz = 4 yz, ie.
(12) holds.

icm

THEOREM 1. Replacing in the set of awioms (1)-(8) awxiom (2) by -

formula (10), we obtain an equivalent set of awioms. Similarly, replacing
aziom (1) by axiom (11), we oblain an equivalent set of axioms.

‘We shall prove the first part of Theorem 2. The proof of the second
part is dual. By Lemma 1 it suffices to show that (1), (3)-(8) and (10)
imply (2). We have 2 =2 =a+t+o+2-v=0-F+2 -2 = (2+2)(@-+x)
= 2

LevMa 2. In a DQL the operation of two variables x(O Yy = m—{—my
satisfies axioms (1)-(3) of § 1.

Proof. Because of (1)-(8) and (11) we have (2Qy) Oz = (34 xy)+
+(@+tay)z = o+ oy+ ozt ayz = -+ayz, 2OWYOR) = x+x(yY+y2) =2+
+ oy + ayz = o+ xyz, i.e. (2OY) Oz = Oy Or), thus (1) of § 1 is satisfied.
Formula (2) of § 1 i3 obvious. Arguing similarly as in the proof of asso-
ciativity, we obtain xQy Oz = 2+ 2y2z and »OzQy = x+ w2y, but by (4)
the right-hand sides of the last two equalities are equal and (3) of §1
follows.

LevMa 3. The following formulae hold

(@4+9)Or = (#08)+ (y O2)
(@ - 9) Oz = (£ 0O2) (y O2) .

Proof. We have (z+4¥)0O2 = (#+y)+(2+¥) 2 = 2+y-F-oe-t+y2
= (@+a2)+ (y+y2) = (202)+ (yO2), (@ - y) Oz = wy+wyz = (wy+ vyz)+
+(@yz+ayz - 2) = 2(y+y)+ v2(y+y2) = (@ 2)(y+y2) = (2 O2)(y O2).

Levwya 4. If in a DQL the operations -~ and - are distinct, then
either Oy = @ (thus O is Wivial) or © depends on both variables and is
different from each of the operations -- and :

Proof. Let us observe that from the assumption of the lemma 1t
follows that our DQL has more than one element. If © does not depend
on both variables, then because of (iii) it must be # Oy = ». If © depends
on both variables, then O is distinet from -+ and -, because by (10) in
the first case we would get #+y = o-+y+ay = (y+a)+ay = y+yo+
+oy = xy+y = 2y+ (2y)y = 2y and in the second cage z+y = x4+ y-+
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gy = (@+oy)+y = ay+y = y+y2 = ys, which contradicts the sup-

position.

THEOREM 2. If there exists in a DQL an element 1 such that 1 +m =
and 1 - o = o for every x or there ewists am element 0 such that 0+x =@
and 0 - @ = 0 for every w, then our DQL is a distributive lattice.

Proof. We shall prove the first part of Theorem 3; the proof of
the second part is dual. Wehaver =1 -5 = (I+y)o =1 sty = o+2Y
and we get (9).

2.2. Representation Theorem.

. THEOREM 3. An algebra Q is a distributive quasz lattice iff it has
the form ( U T; +,-), where T ~ T' =0 for T # T'; T is partially ordered
with L. b by a certain relation <*; each of the sets T is a distributive latfice,
with respect to + and -5 for each pom T and T', where T <* T', there ewists

a homomorphism oo, T—>T’ such that pr.r(2) = @, gvT,,T,(quTx,T, )} @y, 7(%)
and if a €Ty, beT, then

(14) a+ b= ‘PTx,Tu(”') + ‘PT:.Tu(b)
and
(15) ab = lPTth.l(a') 'q7T:-Tu(b) ’

where Lub.(Ty, Ty) = Ts.

Proof. We have first to prove that algebras of this form are DQL.
Notice that p, r,(®) € Tp. Let us check, for example, formulae (3) and (7).
The proofs of the remaining formulae are analogous. We put

Lub. (Ta, Ty) = Ty L. (Th, Tyy To) = Thos -
Let aeTy, beT,, ceTs; we have
b b = pry (@) + Praza(d) = P 7(d) +er.r.(e) = b+a.
.Thus (3) holds. Further, we havev
a(b+4c) = “(¢T,.T..(b)+¢r,,r.,(0))
= Prab gy Tas( D)  PTasdwb. Tsa Ty (@3, 72a(5) -+ @10, 105(0))
= Qrylub.TyTa(0)" (‘PT:.,T;:,(QJT:,T"(b) + <Pr.,,wm(¢1'.,r,,(0)))\)
== @1y T1aa( @) (Pr0, 710 (D) + Pratis(©))
= @y Taae(@) - P Taas(D) F P73 1106 8) P T12s(0) :

Similarly we prove that
ab+ ac = 901'1,1‘12;(“) . ‘P.’l‘,,ﬁu(b) -+ ‘pThTua(a) ‘971';,1'1;;(0) .
Thus (7) follows.
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We shall now show that each DQL Q = (X; +-, ) i of the required
"form. For this purpose let us consider the operation x4-wy. Because of
Lemma 2 the algebra (X; 4 axy) is a idempotent quasi-Abelian semi-
group. Let us denote the operation z+ay by 2(©y. Thus (X, ©) has
a form described in (ii). Hence (© is trivial in each of the sets T,
i.e. in each of those sets the formula 2Oy = &2y = « holds, i.e. in each
of the sets T the axiom of absorption (9) iy satisfied. It is easy to verify
that the sets T are closed under + and -, Thus in this case T'is a distri-
butive lattice. Now we have to show that in our case the mappings ¢z,m(2)
considered in (ii) are homomorphisms. ggg(2) for e T and p e T' has
been defined by the formula ¢g,¢(®) = #Op. Thus the fact that gq v is
a homomorphism follows from Lemma 3. It remains to prove (14) and
(18) which reduces to a-+-b = (a©b)4 (bOa) and a-b = (a ©b)(bOa). By
(10) we have (aOb)+ (bOa) = a-+ab+b+ba = a4 b-+ ab = a-4-b. Simi-
larly (a©b)(bOa) = (a-+ab)(b+ba) = ab, g.e.d. T

§ 3. Independence in idempotent quasi-Abelian semigroups
and in distributive quasi-lattices. In the present section we shall
characterize independent sets in QAS and DQL. Notice that if a QAS
hag more than one element and the operation o does not depend on both
variables, then because of (iii) of § 1, we have ® o y = #. Our QAS is then
a trivial algebra in which each subset is obviously independent. If o de-
pends on both variables and the formula & oy = y o # holds, then this
is a semi-lattice. G. Szasz proved in [3] that a subset J of a semi-lattice
(8; +) is independent iff it does not contain different elements a,, ..., a,
satisfying the relation as < a;+ a3+ ...+ ay—1. Thus we have to consider
only the case where o depends on both variables, and @ oy # y o .

THEOREM 4. If in a QAS P the operation o depends on both variables,
and x oy =y o @, then a subset J in P is independent if and only if it does

not contain different elements ay, ..., as for which at least one of the following
relations is satisfied. . '

(1)
@)

Gy ©.is 0 gy = Oy © ...

@ oayo...

© Qg1 © Uy

0 Qg == Ay 0y © ... 0 .

Proof. Because of axioms (1)-(3) of §1 and becanse of (i) of §1
every m-ary algebraic operation g in 8 can be presented in the form

g(mly ey :I?n) =f,{'1,...,£,(601, ey wn) = @y 0 Bgy © aea 0 w{p ,

where 1 SPpsm I<i<n (k=1,..,p) and all i; are different, and
the operation f7, . s, does not depend on the order of the indices gy eeey Up-

icm°®
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We shall prove that if (i) {iy, ..., g} # {Ja, - Jo} Or (i) {&y, ey ip}
= {jiy -y Jo} DU 4y # J; then

(3)
does not hold. . .
Tndeed, in case (i) there exists an # such that T ¢ {J1y ooey ]q}. or tht.ere
exists an ¢ such that jré {3, ..., ip}. Let, for instance, ¢ {js, ....,?q}.
Then putting @ instead of the variable and y instead of the remaining
variables, we obtain from (3) one of the equalities woy =2, yo& =&
and each of them contradicts the assumption that o depends on both
variables. In case (ii) let us substitute in (3) @ for s, y for oz, and « for

1
. Hrin(@1y oy @n) = [FigelBry ooy o)

.the remaining variables. We ghall obtain either 2 =y or sy =Y.

Both the equalities contradict the assumption. o ‘
Suppose now that J is dependent. Thus there exist in J different

elements by, ..., bn such that
Floipay -

either (i) or (ii) holds. . ‘
wnd In ca.se( ()i) let( r be a number such that ér € {jyy ...s Jo}; them by o by, ©
o b,'p = bh © ... 0 qu, whence bi‘ o .0 bi,, = bi1 '0 e © b,;p o bi,. z,bh ° ..:
Hence b7'1 0 ... 0 bi'a ° b{, = bix 0.0 b,-q, 1.e. b,—r <, b7'1 0.0 b,-q,
relation of the form (1) holds. .
In case (i) a formula of the form (2) obviously hqlds (see § 1, (1))
To complete the proof let us assume that J has different elements
Ay, -y g SUCh thatb either (1) or (2) holds. Then

7b%) =f;L1 ----- iq(bly

° bfa o bif .
consequently, a

. f;,z,...,s(a'n ey @) = fg,‘.’,....,s—-l(aly ey Bg)
or .
Sisla, ay ey ag) = [2,1,8,005(B1y G2y -y as) -
Since both equalities cannot be identities in B, then the set J is dependent,
g.e.d.

Let us characterize now the independer.lce in a ]?QL. ‘A familyblF
of subsets of {1, 2, ..., n} will be called & family of relatively incompara le
sets if §* ¢ F, where §* = | ) S and FA\{8*} is a family of sets incomparable

SeF

by inclusion.
TaEoREM 5. Hvery algebraic operation f(®y, -, %) of & DQL can .

be written in the form
w) = [

Dy oon
Pr(yy ey & Ls

where F is a fwm‘ly of relatively incomparable subsets of the set {1, .., n}
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Proof. Because of distributivity of multiplication with respect to
addition it is clear that f(wy, ..., #,) can be presented in the form of a sum

of products
2 [

TeG ieT

Py ooy Bn)

Formula (10) of Section 2.1 can easily be generalized as follows

(4) it t 2y = B+ Byt ot B+ By By @p

Putting in (4) #; = 2i...2%, we obtain

(8)

1 1 i i n v
RN A SO Y R A Y

1 1 v 0 1 1 v 0
=1 e B+ ...+ 2 -...-mh,—l-my...w;lﬂ...‘ml:...-mlp .

Formula (5) means that to the sum of products we can always add the

product of all products. Hence, to the family G in pe we can always add

the set 8* = |J 7. Let us assume that the set §* has been added.
TeG

Putting in (12) of Section 2.1 # = ...a%, Y =By Wy eee B vaee it dy
and 2 = Zgi1c .- LBirem, We obtain

(6) @@ty B oo B+ Dy o Bppgom = By eeslll =By ors s Thotelbom -

It follows that if in G T, C T, C 8%, then T, can be removed. Repeating
all this we finally obtain a family F of relatively incomparable sets, q.e.d.

Ifin a DQL #+7vy = %y, then it is a semi-lattice, and in semi-lattices
the independent sets have been characterized by Szész (as mentioned
above).

If 4 and - are distinct then because of Lemma 4 operation (O is
either trivial or depends on both variables and is different from -+ and -.
In the first case our DQL is a distributive lattice and we have the following
theorem of E. Marczewski (see [2]): A subset J of a distributive lattice
is dependent if and only if it does not contain different elements Gy veey Oy
byy ..., by for which a;-...-am < b, +...4b, holds. Thus it remains to
consider non-trivial .

In order to formulate the condition of independence we define a relation

at
(@< D) <= (a+b=1>0). It is easy to see that < is a partial order.

TrrOREM 6. If in a DQL the operations - and - are different and the
operation O depends on both variables, then a subsel J of this DQL is in-
dependent iff it does not contain different elements a,,
(my =1, my > 1) satisfying at least one of the relations

)
(8)

ey Ay Dy sy by

Oy By by by By K by by
Wy oo Oy < a,,-...Aa‘ml(b1+..v.+bm*) .

icm°®
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Pr;)of. Tet us assume that J is dependent. Then there exist ‘diffgrent
elements @y, -, @ €J and two different families F and F’ of relatively
inecomparable subsets of the set {1,..,n} and such that

(9) DE(@yy oy On) = Dr{yy -vy Bn) -
b = * — | ] T. Since F = F', we have either
Let S* —»SK}JF»S' and T TLJN ,

(j) . S* # T+
or
(id) and  F\{8*} # F'\{T*}.
i) we have S*\T* % 0 or TA\§* = 0.
" c%ﬁfpggse that S*\T* # 0 (the other case is dual). We can assume

that
(10)

8% =TI**

m™CR* and T*#8*,

gince otherwise, multiplying (9) byj I1 a; we can obtain (10) indeed. Then

eT*\8*
applying formulae (4) and (), we get

(m)é Zaﬂ"

fete

H @ < Pr(Gyy ooy ) = Pr(tyy -y
jesS*
i i f the form (7).
£ (10) the last relation yields ome o .

Beca';rfec;se((ii;, by virtue of a lemma of Marczewski (see [2]) we have
either
(a)  There exists in the set FN\{S*} a set S, such that T\S, 5 0 for each
T e F\{T*} :
or

(b) _’i’here exists in the set FAN\{T*} a set T such that S\T, # 0 for each

8 ¢ F\{§8*}. |
Because of symmetry it suffices to consider
that

(11)

(a). We can assume

S, CT and 8,1 for every TeF,
0

e : we can obtain (11)
since otherwise multiplying both sides of (9) by ,gl,“’

indeed. Then we can get
(12) H a7 < Prlllyy ey Gn) = Pr(ry ooy On)

F€So
(”a;)'pi"'(am ey On) <n"'f 2 2

fed, TleFllfeTl
7€Se rese

aj
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where F'' = {T\8,: T e F'}. In the last equality of (12) we took advantage
of the possibility of putting the common factor before Darenthesis, ang
in the last inequality we used formulae (4) and (5). Relation (12) obviously
yields one of the form (8).

To conclude the proof let us assume that for some different elementg ‘i

Oyy ey Gmyy byy ooy by OF J either (7) or (8) holds. We shall show that J
is then dependent in DQL. ‘

Formula (7) can be written in the form al...amlb,_...bm,—I—bl.'{_,‘_
+bmy = byt ..+ bmy; if J was. independent this would mean that th
following identity holds

By ooe Oy Yy oo Yma ot Yol oo Ymg = Yyt o - Ymy
’Ifhen putting @; = @, y; = y we obtain my--y =y contrary to the agsump-
tion that © is non-trivial.
Inequality (8) can be written in the form

Gy oos Oy Oy Oy (B4 oo D) == Ay oo @y (By - oo Oimg) -
If J was independent this would mean that the following identity holds
By eer oy ~+ @y e By (Yu - oo Yimg) == By (g - e Yimy)

By applying identification like in the previous case we obtain w-+ay
= @y contrary to Lemma 4; q.e.d.

References
[1] E. Marczewski, Independence and homomorphism in
3 p ud 5 v abst i .
Maith. 50 (1961), pp. 45-61. . ? viroat lgebras, Fuad

[2] — Ooncerning independence in lattices, Colloq. Math. 10 (1963), pp. 21-93,

(8] G. Sz4sz, Marceewski’s independence in latts i-latti
10 (1568) m s 74 ioes and semi-lattices, Collog. Math.

[4] M. Yamada and N. Kimura, Note i igr :
Aead 34 15y oy and 2 y on idempotent semigroups. II, Proe. Jap.

Regu par la Rédaction le 7. 6. 1966

PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
DE L’ACADEMIE POLONAISE DES SCIENCES

Z. Janiszewski, Oeuvres choisies, 1962, p. 320, $ 5.00.
J. Marcinkiewicz, Collected papers, 1964, p. VII- 673, § 10.00.
8. Banach, Oeuvres, Vol. I, en préparation.

JOURNAUX

ACTA ARITHMETICA I-XII.

ANNALES POLONICI MATHEMATICI I-XIX.

APPLICATIONES MATHEMATICAE (ZASTOSOWANIA MATEMATYKI) I-IX.
COLLOQUIUM MATHEMATICUM I-XVI. '
DISSERTATIONES MATHEMATICAE (ROZPRAWY MATEMATYCZNE) I-LII
FUNDAMENTA MATHEMATICAE I-LX.

STUDIA MATHEMATICA I-XXVIII+ Série spéciale, vol. I.

MONOGRAFIE MATEMATYCZNE

10. 8. Saks i A. Zygmund, Funkeje analityczne, 3-¢me éd., 1959, p. VIII+ 431, $ 4.00.

20. C. Kuratowski, Topologie I, 4-2me éd., 1958, p. XTI+ 494, $ 8.00.

21. C. Kuratowski, Topologie II, 3-8me éd., 1961, p. IX+ 524, $ 8.00.

27. K. Kuratowski i A. Mostowski, Teoria mnogosci, 2-8me éd., augmenteé et
corrigée, 1966, p. 376, § 5.00.

28. 8. Saks and A. Zygmund, Analytic functions, 2-éme éd. augmentée, 1965,
p. IX+ 508, § 10.00.

30. J. Mikusifdski, Rachunek operatoréw, 2-éme éd., 1957, p. 375, § 4.50.

31. W.Slebodzinski, Formes extérieures et leurs applications I, 1954, p. VI4154,§ 3.00.

34. W. Sierpiriski, Cardinal and ordinal numbers, 2-éme éd., corrigée, 1965, p. 492,
$ 10.00.

35. R. Sikorski, Funkecje rzeczywiste I, 1958, p. 534, § 5.50.

36. K. Maurin, Metody przestrzeni Hilberta, 1959, p. 363, § 5.00.

37. R. Sikorski, Funkeje rzeczywiste II, 1959, p. 261, § 4.00.

38. W. Sierpifiski, Teoria liczb II, 1959, p. 487, $ 6.00.

30. J. Aczél und 8. Golab, Funktionalgleichungen der Theorie der geometrischen
Objekte, 1960, p. 172, § 4.50.

40. W. Slebodzifski, Formes extérieures et leurs applications II, 1963, p. 271, § 8.00.

41. H. Rasiowa and R. Sikorski, The mathematics of metamathematics, 1963,
p. 520, $ 12.00.

42. W. Sierpiniski, RElementary theory of mumbers, 1984, p. 480, $ 12.00.

43. J. Szarski, Differential inequalities, 1965, p. 256, § 8.00.

44. K. Borsuk, Theory of retracts, 1967, p. 251, § 9.00.

45. K. Maurin, Methods of Hilbert spaces (en préparation).

46. M. Kuezma, Functional equations in a single variable (en préparation.)

47. D. Przeworska-Rolewicz and S. Rolewicz, Equations in linear spaces (en
préparation).


Artur




