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On a family of AR-sets
by
R. Molski (Warszawa)

K. Borsuk has recently constructed [3] a family of 2% 2. dimensional
compact AR-sets such that none of them contains a 2-dimensional
closed subset homeomorphic -to a subset of an other set. As an appli-
cation of this family it has been shown that there is no universal 2-di-
mensjional AR -set, and that a 3-dimensional cube @3 has no r-neighbour
on the left.

In the present note we shall show that these results can be extended
to every finite dimension, and, with a slight modification, to an infinite
dimension. The constructions and the proofs are suitably adapted con-
structions and proofs of [3].

The author would like to express his gratitude to Professor K. Borsuk
and Docent A. Lelek for their valnable remarks and advices.

1. Zone. Let E" denote the m-dimensional Euclidean space and
E™ the Hilbert space. Let A be an n-dimensional simplex in B"*¥, where
k is a natural number or the infinity. Let us denote by E** the ortho-
gonal complementary space to the hyperspace E" of 4 in E™** and by
U, 1, ..., Ix the orthogonal basis of the space F**. Giving a sequence
{&;} of positive numbers such that e < 1/24, i =1, 2, ..., k, let us denote
by L; the segment with length 2¢; with the centre in the barycentric
centre by of 4, and in the direetions of vector I;. By the k-dimensional
zone of the simplex A we understand the minimal convex subset of E" E
containing the set 4 and all segments L;. It will be denoted by Z¥4, {e}).

In this paper we use only the case where k=1 or k = oo,

Let us consider a homogeneously - n-dimensional (n > 2) polytope
PCE™ with'a t’riangula;tion T. By the boundary of P we understand
the union P of (n—1)-dimensional simplexes of 7 which are incident
exactly with one #-dimensional simplex of T, and by the edge of P the
closure P* of the set of all points of P having a neighbourhood in P
which - cannot be disconnected by a simple arc. Obviously the mnotions
of boundary and edge are independent of the choice of triangulation T.

One can easily see that for e sufficiently small the common part
of the zones of different simplexes of T coincides with the common part
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of the boundaries of those simplexes. The sequence {e;} satisfying this
condition is said to be suitable for the triangulation I'. Let {&;} be the
sequence suitable for the triangulation T. By the k- dimensional zone
(k » natural number or the infinity) of the triangulation 7 we shall
nnderstand the polytope

7T, (&) = U 2M4, {&}) -
deT

Evidently the polytope P is a deformation retract of the zone
kg
ZX(T, {e})-

2. Construction of a finite-dimensional membrane. Given
a sequence {ny) of natural numbers >1, let us assign to each natural
number % > 1 a polytope Py, its triangulation Ty and a positive number
&® satisfying the following conditions:

(1z) Pp is a homogeneously n-dimensional polytope (n > 2) in B
which is an AR-set with the boundary P = Pi.

(2%) The edge P% of Py is a subset of Pr—DPj; and its components are
rectilinear segments.

(31) ANl simplexes of triangulation Ty of Py have the diameter <1[k.
For every point % € Px— P} the union of all simplexes of Tx containing x is
homeomorphic to an n-dimensional ball.

(4) &® s switable for the triangulation Tk, &° < 1/k; for k=2 if
A € Tr_1 and A e Ty is such n-simplex that ACZ(A™, &%), then

) Qtr Z(4", D)

Let P, denote a polytope in B homeomorphic to an % -dimensional
gimplex (n > 2), T, its triangulation with diameters of simplexes <1,
and ¢ a number <1 suitable for the triangulation T,.

Let us assume that we have defined the polytope Py, its triangu-
lation T% and the number £® in such a manner that conditions (1z), ..., (4x)
are satisfied. For each n-dimensional simplex 4 of Tk, let us consider
a system consisting of nx n-simplexes 4y, 4,, ..., 4g,; lying in the interior
.of the simplex 4 and such that b, is their common vertex and that
Ai~ Ay=hy for i#74. Let a4 be a point lying on the axis L of Z(4,s®)
at a distance £®/2 from b,. Consider the system of (n-1)ny n-dimen-
sional simplexes A, ds, ..., A2n+1)n,,; their vertices are: a, and n vertices
of the simplex 4;, 1 =1, 2, ..., m.

One can easily see that the polytope

nk (n4-1ng ,
By =(4— _UlAi) u( -U1 A}
i= i=
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is homogeneously =-dimensional and is a deformation retract of the
zone Z (4, &®). We set Pry = | ) Bs. The set Py is said to be a mod-
AeTy

ification set of the polytope Py corresponding to the triangulation T%
and to the number 7.

As Tr+1 we choose an arbitrary triangulation of Pry with simplexes
of diameter <1/(k+1) and as £*+D the number satisfying (dx.1). It is
easily seen by the same argument as in [1] that P4 and its triangu-
lation Ty satisfy conditions (1x+1), (Ze+1) and (3gs).

The construction implies that the edge P7, coincides with the segments
EE, where 4 € Tk, k<< m. Since a;b, is a common part of nm sim-
plexes, we shall say that it is a segment of ramification of order nnx.

It follows from (4x) that

Z(Txs, e%+0) C Z(Ti, e®), k=1,2,.

e

i.e. the sequence of the polytopes {Z(T%k, ™)} is decreasing.
Every space X homeomorphic to the set

P(ne}) = () Z(Ts, o)

will be called a membrane corresponding to the sequence {nz}. The poly-
tope P, will be called the base of membrane X, the boundary P; of base
P, will be called the boundary of membrane X and will be denoted by X'.
As in [1] we can prove that every membrane with a base homeo-
morphic to an n-dimensional simplex is an %-dimensional AR-set.

3. Construction of an infinite-dimensional membrane. Let
W be a polytope and T a triangulation of W. We shall say that the
polytope W is strongly connected in the dimension m if, given two sim-
plexes 4 and A’ of dimension >m of T, there exists a sequence of sim-

‘plexes 4 = 4y, 4y, ..., 4s = A’ of T such that for 4;, 4:+1 one of them

is the face of the other and dimd;>m, =2, ..,s—1. Obviously
this property is independent of the choice of the triangulation 7. One
can easily see that if an x-dimensional polytope with a triangulation T
is strongly connected in the dimension , then its (n—1)-skeleton, that
is the union of all (n—1)-simplexes of 7, is strongly connected in the
dimension (m—1).

Now, given a sequence {nz} of natural numbers >1, let us assign
to each natural number k =1 a polytope Py, its triangulation Tk and
a sequence { ’} of positive numbers satisfying the following conditions:

(1%) P is a homogeneously (g k)-dimensional (g = 3) polytope in
Ea+k+1 gnd is an AR-set strongly conmected in a dimension >=3.

(2%) The edge P% of Pi is a wunion of disjoint rectilinear segments.
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(3%) The si'mplewes of the triangulation Ty have diameters <1[k. For each
point © e Py—P¥ the union of all simplewes of Ty containing x is @ homo-
geneously (k-+ q) dimensional AR -set strongly connected in a dwnenszon >3.

(4%) The sequence {&, k)} s switable for the triangulation Ty, &P < 1/29,

Bk, v=1,2,., k=1,2,..50 4" ¢ Ty and 4 eTy is a (g+k)-
dimensional simplex of Tk such that 4 C 224" {7, then

2204, &) € 2747, 55 .

As P] we take a polytope in E**® homogeneously (¢-+1)-dimensional
(¢>3) which is an AR-set strongly connected in a dimension >3
satisfying (31), as T; its triangulation with simplexes of diameter <1; as
{9} we set a sequence satisfying (41)-

Let us assume that we have defined the polytope Pk, its triangu-
lation 7% and the sequence {e(k’} in such a manner that conditions
(1), ., (4%) are satistied. Let Ay, 4y, ..., 4w, and 4i, Asy ooy Digt et
denote two systems of (g+k)-simplexes defined in the same manner as
in the construction of polytope Prs1 in the finite-dimensional case.
‘We set

nk (k+g+1)mg ,
R—(a—Jagot U 4,
i= j=

and R = |J R,. Let T} be a triangulation of the polytope E with the

simplexesdsolf'k diameter 1/(k-+1), and let £#+D be a number suitable for
the triangulation T} and such that s*+V < 1/(k-1).

We set Phya= Z(T%, &%) and let Ty be its triangulation.
Z5( T, {e(,k’}) is an AR-set and since B is a deformation retract of i,
R is also an AR-set and consequently Pj; is an AR-get. One can easily
see that we can choose the triangulations T% and Tk in such a manner
that the (g+ %—1)-dimensional skeleton of T% is included in the trian-
gulation Ty.1. The edge Pi\: is the union of the edge P% and all seg-
ments of the form a4b,, where 4 is a (¢+k)-dimensional simplex of Tk.
From the construction it follows that the condition (3%+;) is satisfied.
‘We can also choose a sequence {.s +1)} 50 that (4%4+1) iy satisfied.

From (4%) it follows that the sequence of sets {/”" (T, {e”“)}}
decreasing.

Every space X homeomorphic to the set

P({m)) = lﬁzw(z‘k, {9

-

is said to be an nfinite-dimensional membrane corresponding to the
sequence {nx}. The polytope P; will be called the base of the membrane X,
and its boundary P; the boundary of the membrane X and will be de-
noted by X .

icm®
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From the construction of T%.; it follows that the triangulation Tyiq
contains the (¢ %—1)-dimensional skeleton of Tj. Thus P’'({n}) con-
tains the (¢4 4—1)-dimensional skeleton of 7T'; for ¢ — 1,2,.. and con-
sequently the set P{{m}) has an infinite dimension.

We can say more, namely every point of P'({nz}) has arbitrary
small neighbourhoods whose boundaries have finite dimension. Thus
P'({nx}) has transfinite dimension ([6]).

The (g k-41)-dimensional simplexes of Ty contained in

(4, {& )1, where 4 is a (¢4 k)-dimensional simplex of 7% form the
tnanglﬂatlon Tix+r of the polytope Z (T;(RA),s(k*l)) which is an
AR-set. It follows that Z°"(Td pers {6570 s also an AR-set. Thus
there exists a retraction 7% of the set Z® (4 {a(k)}) to the set Z%(T s,
{5, Since Fr(4) C 2%(Tps1, {s(kﬂ) (the boundary Fr(4) is taken
rela,mvely to the polytope Pi), ri(X)= gz for 2z e Fr(4). Setting 7i(z)
= rl(z) for zeZ%(A, {&”}), ATy, we infer that the mapping 7 is
a retraction of Z%(Tk, {&8”}) to Z°(Thu, {F7"}) such that for every
Aely

(274, (87)) = Z°(Tapss, (5577)) .

Let us set #7 (@) = e ... 74(2) for :stm(Tl, {a”}) The mapping
r; is a retraction of Z™(T,, {e(l)} to Z%( T, {8577, and if xeZ™(T,,
{8 and _1 is a (g+%--1)-dimensional simplex of Ty, such
that r4(x) e ( ,{s"“)}), then every point riyfz) for i =1,2, ...,
belongs to Z°°(4", {£°*}). Since the diameter of the zone Z(4", {**7})
< "/(Z,Tl then the sequence {ry} converges unifermly to a map r of
Z‘Z Ty, (&) to P'({mg}). For every e P'({m}), we have 'z € Z%°(T%,
%) and ri(e) =z for every k=1,2, ...; consequently 7 is a re-
traetlon of Z%(T, {sl)}) to P'({m}). Since the zone Z¥(TY, {a(,l)}) is a com-
pact set, we conclude that every infinite-dimensional membrane is a com-
pact AR-set.

4. Bits of a membrane. As in [3], by a bit of & membrane X
(of finite or infinite dimension) we understand a membrane Y (cor-
responding to an arbitrary sequence {m;} of naturals >2) such that
YCX and that Y ~ X—Y C Y. One can easily see that if a set @ is
a union of simplexes of the triangulation 7; homeomorphic to the n-di-
mensional ball (> 2) in the finite-dimensional case, and to 2 homo-
geneously (¢-I)-dimensional AR-set strongly connected in the dimen-
sion >3 in the infinite-dimensional case, and if 7" denotes the trian-
gulation of @ which consists of simplexes included in 7}, then the con-
structions of § 2 and § 3 applied only to the simplexes of the triangu-
lations Tres (=1, 2,...) lying in Z(7", (P}) (j = 1, c0) define a set

X =P({m}) ~ Z (T, {&)) where 4=1, 00,
10%
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which is a bit of membrane X corresponding to the sequence {my}
and with base Q.

By an m-membrane we shall understand a set Y which is a union
of m membranes X, ..., Xn (of finite or infinite dimensions) such that
there exists a simple are L satisfying the condition X; n X; = Xjn X;
=L, i #j. The arc L will be called the edge of the m-membrane ¥
and will be denoted by Y¥*. By Y we shall denote the interior of ¥*,

The membranes X;, ¢ =1,2,..,m, will be called the wings of the
m-membrane Y. By the boundary Y of the m-membrane ¥ we shall
m

understand the set ¥ = U X;.

=1

By the m-bit we shall understand a subset Y of a membrane X
which is an m-membrane and ¥ ~ X-YCY.

We omit the proof of the following lemma because it is completely
analogous to the proof which (in the case n = 2) ig included in [3].

TEMMA 1. A closed subset Y of an m-dimensional membrane X is
n-dimensional if and only if it contains at least ome bit of X.

Obviously every open subset of an infinite-dimensional membrane
contains a bit of this membrane.

5. Topological classification of points of a membrane. Let
us consider the following subsets of the membrane X (of dimension
or oo):

X7 consists of all points « ¢ X, such that for every & > 0 there exists
a neighbourhood of  in X which is a bit with diameter <e. The points
of X1 are said to be regular poinis of X.

X™ consists of all points © e X—X7 such that for every ¢> 0 there
exists a neighbourhood of # in X which is an m-bit with diameter <.
The points of Xfx are said to be points of the ramification of order m of
the membrane X.

=]
X = X—X;— U’X’I"I’. The points of Xy are said to be singular

m=2
points of X.
These definitions imply the topological invariance of the sets X,
X7t and Xyy. Evidently

X =Xro U Xt v Xy

m—2
and the sets X7, | X1t and Xy are disjoint.
m=1

Let X be an infinite-dimensional membrane (in the finite-dimen-

sional case the argument is analogous) and let » ¢ X. There occurs oné
of three cases:
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(i) There exists a natural ! such that x belongs to the (I+¢—1)-
skeleton of triangulation 7T; and z does not belong to P{'. It follows
that # belongs to the (j-g—1)-skeleton of triangulation T, and that
z does not belong to Pf for any j > I. From (3;) we infer that =< Xi.

(i) For every I =1, 2, ..., the point & belongs to the set

U (24, {")—4) ;5
AdeTy

thus « e Xy.
(iii) There exists a natural I such that z e Pf. Only in this case
2 can belong to \J X7t v Xmx. v
m=1

1t follows that every point of ramification and every singular point
of X belongs to one of the segments of ramification a,b,, and one can
easily see that if # belongs fo the interior of the segment a,bs, then
# is not a singular point. Thus only the end-points of the segments of
ramification a,b, can be singular and consequently the set of singular
points is countable.

6. Points of ramification.

LEMMA 2. There are only two possibilities: either the simple arc dis-
conmects the m-membrane into m components or it does not discomnect it
at all.

Proof. Let us suppose that there exists a simple arc I which dis-
connects the m-membrane Y. Let us assume at first that the arc I is
an irreducible cutting, that is that no subset L QL disconnects Y. Let
Gy, G,, ..., Gs denote the components of the set Y —L. Then L is a com-
mon boundary of @, Gy, ..., Gs ([5], p. 175). Let us show that no regular
point of ¥ belongs to L. Suppose to the contrary that # e L ~ ¥Y1. Then
there exists an arbitrary small neighbourhood which is a bit of ¥. We
can assume that this neighborhood is of the form Xg, where @ is an
r-dimensional polytope connected in a dimension >3 if » > 3, and @ is
homeomorphic to an 3-dimensional ball if dimY = 3. Since L is the
common boundary of the components of ¥—IL, we infer that the set
L ~ X, disconnects Xp and since Fr(@) C Q"™ (Q" denotes the (r—1)-
skeleton of the polytope @), the set L ~ Q"™ disconnects QY. But
this is impossible because, if 7 > 3, then Q""" ig connected in a dimen-
sion >2 and dim(L ~ Q" V)< 2. If dim¥Y = 3 it is impossible because
then L disconnects the set Fr(¢) homeomorphic to an 2-dimensional
sphere. )

Thus the are I contains only the points of ramification or the sin-
gular points of ¥ and, since these points belong to the segments of
ramification which are digjoint, we infer that L is included in one of
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them. If m = 1, that is if ¥ is a membrane, one can see at once that
none of the segments of ramification disconnects Y. If m > 2, then by
the definition of an m-membrane there exists an edge Y* which dis-
connects Y into m components X, X,, ..., Xp. If there exists in ¥ an
other simple arc I’ which disconnects ¥ into p components and p = m,
then I’ & Y* However, no are included in the edge disconnects ¥.

Now let L be any simple arc in Y. Since Y is an AR-set, L con-
tains an irreducible cutting of ¥ ([5], pp. 176, 287, 335). If Y is a mem-
brane, that is, if m = 1, than L does not disconnect Y, since no irre-
ducible cutting does. If m > 1, and if L disconnects Y, then LD ¥*
and therefore L disconnects ¥ into k& components where % > m. But if
%k > m then for some % the are L ~ Y; disconnects the membrane ¥;
which is impossible. Thus & = m and the proof ig finished.

Let us put Xy = Xi.

LeEMMA 3. The sets Xor and XTr are disjoint for p # m.

Proof. Obviously it suffices to consider the case p << m. Suppose
to the contrary that @ ¢ Xfy ~ X7;. Since # ¢ Xf;, there exists a mneigh-
bourhood Z, which is a p-bit with the wings 7, Z,, ..., Z, and since
2z e X1t, there exists a neighbourhood Z’ which is an m-bit with the
wings Zi, Z3, ..., Zn, and such that ZD Z'. There exists in Z’ an arc Z*'
which disconnects Z‘ into m components Zi, Zs, ..., Z, and since
Z; ~ Zj #+ @ for each pair 4, §, the are Z* disconnects Z into at least m
components, which by Lemma 2 is impossible because p < m.

Lemma 3 implies that if X = P({ns}), then every point lying in
the interior of one of the segments a,bs, where 4 is an n-simplex of
the triangulation T in the finite-dimensional case  ((%k+ ¢q)-dimen-
sional simplex of T in the infinite-dimensional case) belongs to the
set XTI (to the XE™™ in the infinite-dimensional case). Conse-
quently for each subsequence {mz} of the sequence {ny} and for each
open set G of the membrane X, the set G ~ XI7* (the set G ~ X{E+ome
for k > k) is of the power 2%. On the other hand, the set LJVX{I v X,

i€

where N is the set of all naturals which do not belong to the sequence
{nmx} (to the sequence {(k+g¢)-nx}), is at most countable because it
containg only the end-points of the segments of ramification.

7. Main theorem| and corollaries.

THEOREM. For each n, where n is a natural nwmber or infinity, there
exists o function D assigning to every real number t an n-dimensional
membrane O (t) C B in such a manner that, for t <1, if n is a finite
number then no n-dimensional closed subset of ®(1) is homeomorphic to
any subset of D(I'), and if n is the infinity then no open subset of (1) s
homeomorphic to any subset of D(t') which contains an inner point.
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Proof. If » = 2 the theorem was proved in [8]. The proof in the
case of n> 2, n finite, is completely analogous and will be merely outlined.
In the same manner as in [3] we construet a funetion assigning to every
real number ¢ an increasing sequence of natural numbers {nz(t)} such that
for 1" < ¢ the sequence {m?)} contains an infinite sequence {my} whose
terms do not belong to {m(t')}. We set

D(t) = P ({m(1)) -

Let us suppose that there exists a homeomorphism % of the sub-
set A of the membrane @(f) to the subset h{4) of the membrane &(t'),
where A is an #n-dimensional closed set. The set 4 contains a bit
Y of the membrane @(t). The points of ramification of order nmy
included in an arbitrary open set of &(f) form a set of the power
9% wwhile the points of ramification of amg included in the membrane
@(t') form a set at most countable. Consequently, there exists in the
open set ¥Y—1Y  a dense subset R consisting of all points of ramification
of order mmy and such that any point of the set h(R) is neither & sin-
gular point nor a point of ramification of order nmmy. Further there
exists a point a ¢ R such that h(a) is an interior point of A(¥). But this
is impossible because a is a point of ramification of order mm; while
(a) is neither a singular point nor a point of ramification of order nomy.

In the infinite-dimensional case. we construct a function assigning
to every real number ¢ an increasing sequence of natural numbers {ng(t)}
in @ little different manner. It is easy to construct an enumeration {w,}
of all rational numbers w [0, 1] such that the set {wmn: #=1,2,...}
is dense in the segment [0, 1] for every natural m. Let us define an
increasing sequence of natural numbers {n(t)} by the formula

ni(t) = min{n: w > ng-a(t), |[t—werma] <L/k}, ¢e[0,1].

It is easy to see that if ¢ <% #', then the sequence {nz(t)} contains
a subsequence {my} such that the sequence {(g+ k)mz} does not belong
to {m(t)}. We set ®(1) = P ({m(0)})-

Further the proof is the same as in the finite-dimensional case.
It suffices only to replace the points of ramification of order nm; by
the points of ramification of order (g k)mx.

Remark 1. Let {49}, ¢ =1, 2, ..., jz, denotes the set of all »-sim-
plexes (the (g4 k)-simplexes in the infinite-dimensional case) of the

triangulation T%. Let us assign to each pair (4,%), a number »(s, %)
k-1

U Jr+1, (jo=0), and let {m,ux} be an increasing sequence of nat-
ural numbers >1. It is easy to see that if we build the membrane by
constructing the modification set on At e Ty by means of #n,ur Sim-
Dlexes Ay, 4,, ..., dnyy,, that is, if we cut off from every simplex in
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every path of the construction another number of simplexes, then we
obtain a compact AR-set P({n.,un}) with the following property: if
dim P ({#y5}) =0, then no two homogeneously #-dimensional different
closed subsets of P({fn}) will be homeomorphic, and if dim P ({n,;})
= oo, then no two different open subsets of P ({ni,x»}) will be homeomorphic.

Remark 2. The polytopes Py are smoothly connected ([6], p. 124)
in the dimension (n—1), and we can construct a polytope ([6], p. 128)
subordinate to the polytope Pk.

Let us denote it by P;. Now if Py, denotes the modification set
on Pj, then we obtain a sequence of polytopes {Pr}. If we use them
for the construction of the membrane in the same manner as in § 2 and,
moreover, if we modify in a suitable manner the definition of the sub-
ordinate polytope, then we can obtain a family @(t) the elements of
which are all irreducible #-dimensional AR -sets [6].

COROLLARY 1. Let Y be an arbitrary n-dimensional (infinite-dimen-
sional) ANR-set. There ewists a family ¥ consisting of 2% n-dimensional
(infinite-dimensional) ANR-sets such that ¥ ¢ ¥ and none of the elements
of ¥ contains an n-dimensional closed subset (open subset) homeomorphic
to a subset (containing an inner point) of the other element.

Proof. In the finite-dimensional case it is the consequence of the
following theorem [2]:

In an n-dimensional ANR-set every family of n-dimensional subsets
which are ANR-sets with the common part of amy two of them at most
(n—1)-dimensional is necessarily at most countable.

From this theorem we infer that the subset of elements of @(1)
such that their n-dimensional closed subsets are homeomorphic with
the subsets of Y is at most countable. Thus, if we remove these elements
from the family ®(t), and add the set ¥, then we obtain a family ¥
which has the desired property. In the infinite-dimensional case the
proof follows and once from the separability of ¥.

The theorem cited in the proof of corollary 1 can be used also in
the proof of

COROLLARY 2. There is no universal n-dimensional AR-set, that is
an AR-set which contains all the other n-dimensional AR -sets.

In the infinite-dimensional case we can formulate this corollary in
the following manner:

COROLLARY '2'. For an arbitrary infinite-dimensional AR -set X, there
exists another infinite-dimensional AR-set ¥ such that for every injection
@ of Y in X the set ¢(Y) is a non-dense set in X.

COROLLARY 3. The n-dimensional cube has no r-neighbours on the
left [1].

The proof is the same as in [3] in the case of n = 2.
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